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Recent experiments have revealed nonlinear features of the magnetoresistance in metallic bilayers consisting
of a heavy metal (HM) and a ferromagnetic metal (FM). A small change in the longitudinal resistance of the
bilayer has been observed when reversing the direction of either the applied in-plane current or the magnetization.
We attribute such nonlinear transport behavior to the spin-polarization dependence of the electron mobility in the
FM layer acting in concert with the spin accumulation induced in that layer by the spin Hall current originating
in the bulk of the HM layer. An explicit expression for the nonlinear magnetoresistance is derived based on a
simple drift-diffusion model, which shows that the nonlinear magnetoresistance appears at the first order of the
spin Hall angle, and changes sign when the current is reversed, in agreement with the experimental observations.
We also discuss possible ways to control sign of the nonlinear magnetoresistance and to enhance the magnitude
of the effect.
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Recently, nonlinear magnetoresistance has been observed
experimentally in several heavy-metal (HM)/ferromagnetic-
metal (FM) bilayers [1–3]. In these experiments, both the
current and the magnetization of the FM layer lie in the
plane of the layers and are mutually perpendicular, as shown
in Fig. 1. For a given magnitude of the current density (in
the range of 107–108 A/cm2), it has been found that the
longitudinal resistance changes when the current direction
is reversed. Furthermore, by injecting an ac current, it has
been observed that the second harmonic component of the
longitudinal resistance changes sign as the magnetization
direction is reversed [1]: This shows that, different from the
familiar linear transport, the magnetoresistance has a linear
dependence on the current density.

A definitive interpretation of these experimental observa-
tions has not yet emerged. Avci et al. associated the nonlinear
magnetoresistance with the modulation of interface scattering
potential induced by the spin Hall effect and the ensuing inter-
facial resistance change, similar to the interfacial contribution
of giant magnetoresistance (GMR) [4–7]. Another interpreta-
tion of the effect invokes magnon excitation in the FM layer
due to electron spin-flip scattering at the interface [2,3]. While
this process has recently been shown to play a key role in the
spin-charge conversion in HM/ferromagnetic-insulator (FI)
layered structures [8–13], it is usually neglected in metallic
systems, for which it is a good approximation to assume that
the spin current is continuous at the interface [4].

In this Rapid Communication, we present a simple ana-
lytical theory of the nonlinear magnetoresistance in HM/FM
bilayers. We propose that the effect arises from the combined
action of spin accumulation induced by the spin Hall effect
in the HM layer and the spin-polarization dependence of the
electron mobility in the FM layer. As schematically shown
in Fig. 1, when an in-plane current is driven in a HM/FM
bilayer, a spin Hall current flowing perpendicular to the layers
is generated in the bulk of the HM layer and subsequently
creates spin accumulation on both sides of the interface. Spin
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accumulation is known as a local quantity that characterizes an
excess density of electrons with one specific spin orientation
and a corresponding depletion of electrons with the opposite
spin orientation, so that no charge accumulation is created.
Although such local spin-dependent density variation in the
HM layer would not alter the conductivity of the layer in
which the mobility of electrons is spin independent, the
conductivity of the FM layer is indeed modified by the spin
accumulation inside the layer. This may be best understood
by thinking of the spin accumulation near the interface as an
artificial ferromagnetic layer. Based on our understanding of
the current-in-plane (CIP) GMR [14–17], we would anticipate
a change in longitudinal resistance when the “magnetization”
of the artificial FM layer (i.e., the direction of the spin
accumulation) switches from parallel to antiparallel (or vice
versa) to that of the “natural” FM layer. The only difference
from CIP-GMR lies in the fact that “magnetization” of the
artificial FM layer is generated by the electric current itself
via the spin transport perpendicular to the layers. This simple
analogy immediately demonstrates the nonlinear character of
the corresponding magnetoresistance effect.

When an in-plane current is applied to a HM/FM bilayer,
a spin current propagating perpendicular to the layers is
generated by the spin Hall effect [18–21] in the HM. This
transverse spin current affects the linear in-plane resistivity
via the inverse spin Hall effect, a phenomenon that has been
intensively studied [22–28] and goes under the name of “spin
Hall magnetoresistance” [29,30]. In addition, the modulation
of the electron spin density in the ferromagnet generates a
nonlinear resistivity, as discussed above and shown in detail
below. Here, we treat both linear and nonlinear contributions
on equal footing through a set of equations that couple the spin
and charge transport in directions parallel and perpendicular
to the plane of the layers.

To be specific, let us assume the external electric field is
applied in the x direction, i.e., Eext = Ex x̂ (Ex could be either
positive or negative), and fix the magnetization vector of the
FM layer in the positive ŷ direction, which is also taken as the
quantization axis of the electron spin. The HM/FM interface
is located at z = 0. The general drift-diffusion equation for

2469-9950/2016/94(14)/140411(5) 140411-1 ©2016 American Physical Society

https://doi.org/10.1103/PhysRevB.94.140411


RAPID COMMUNICATIONS

STEVEN S.-L. ZHANG AND GIOVANNI VIGNALE PHYSICAL REVIEW B 94, 140411(R) (2016)

Artificial
FM layer

M M
FM layer

HM layer

dF

-dH

z

0

z

0

dF

-dH

(a) (b) 

z

x y

Eext

Eext Eext

Eext

xx
(AP)

xt xx
(P)

xt

FIG. 1. Schematic diagrams showing the mechanism of nonlinear
longitudinal resistivity in HM/FM bilayers due to spin accumulation
in the FM layer induced by the spin Hall effect in the HM layer.
The external electric field Eext is applied in the positive x direction
in (a) and in the negative x direction in (b). The dotted arrows in
the HM layer denote the directions of the spin Hall currents. The
solid arrows in the gray dashed boxes describe the magnitude and
direction of the spin accumulation μs which may be regarded as an
artificial FM layer. The difference in longitudinal resistivity of the
bilayer in (a) antiparallel and (b) parallel configurations arises from
the spin dependence of the mobility in the FM layer, in analogy with
CIP-GMR.

electrons with spin orientation α [α = ± or ↑ (↓) denoting the
spin orientation parallel or antiparallel to the magnetization]
can be written as follows,

jα
x (z) = σα(z)Ex − αθjα

z (z) (1)

and

jα
z (z) = σα(z)

d

dz
μα(z) + αθjα

x (z), (2)

where jα
i is the current density carried by spin-α electrons

with i = x or z denoting the spatial direction of flow, θ is the
bulk spin Hall angle (SHA), and μα(z) is the spin-dependent
chemical potential, which is related to the nonequilibrium part
of the electron density nα(z) as follows,

μα(z) = [Nα(εF )]−1nα(z) − φ(z), (3)

with Nα(εF ) being the density of states of spin-α electrons at
the Fermi level, and φ(z) being the spin-independent part of
the chemical potential. Notice that in Eqs. (1) and (2) we have
assumed a spatially dependent local conductivity controlled
by the electron spin density as follows,

σα(z) = να
[
nα

0 + nα(z)
]
, (4)

where nα
0 and να are the equilibrium density and the mobility of

spin-α electrons, respectively. The charge and y-spin current
densities are defined as ji(z) ≡ j

↑
i (z) + j

↓
i (z) and Q

y

i (z) ≡
j

↑
i (z) − j

↓
i (z).

We also assume that charge neutrality is locally maintained,
i.e.,

n↑(z) + n↓(z) = 0. (5)

In metals, this is justified by the observation that the integrated
space charge vanishes beyond a very short screening length, of
the order of angstroms. This supplemental condition links the
transport in the two spin channels. In what follows, we shall
discuss the transport in each layer separately.

In the HM layer, the equilibrium conduction electron
density is spin independent and therefore transport coefficients

such as the mobility and the diffusion constant can be taken
to be spin independent up to first order in the current-induced
spin polarization. Equations (1) and (2) reduce to

jα
x (z) = σα

H (z)Ex − αθH jα
z (z) (6)

and

jα
z (z) = 1

2
αθHσ0,H Ex + σ0,H

d

dz
μα(z), (7)

where σ0,H = νH n0,H is the bulk Drude conductivity of the
HM. Notice that in the second of these equations we are
keeping only terms up to first order in θH .

In a steady state, the spin-dependent current density satisfies
the generalized continuity equation

d

dz
jα
z (z) = σ0,H

d2

dz2
μα(z) = nα(z) − n−α(z)

τsf,H
, (8)

where τsf,H is the spin-flip relaxation time. With Eq. (3),
we may express the right-hand side (rhs) of this equation in
terms of the chemical potentials which are found to satisfy the
following differential equations,

d2

dz2
μc(z) = 0 (9)

and

d2

dz2
μs(z) − μs(z)

L2
H

= 0, (10)

where we have defined the sum and difference of
the chemical potentials as μc(z) ≡ [μ↑(z) + μ↓(z)]/2
and μs(z) ≡ [μ↑(z) − μ↓(z)]/2, respectively, and
LH ≡ √

σ0,H τsf,H /2NH (εF ) as the spin diffusion
length.

For the transport in the FM layer, we neglect the anomalous
Hall effect since the SHA is usually an order of magni-
tude smaller than that in the HM layer. This assumption
allows us to simplify the equations for current densities in
FM layer as

jα
x (z) = να

F

[
nα

0,F + nα(z)
]
Ex (11)

and

jα
z (z) = σα

0,F

d

dz
μα(z), (12)

with σα
0,F being the bulk conductivity of the spin-α channel in

the FM layer. In a steady state, the continuity equation reads

d

dz
jα
z (z) = σα

0,F

d2

dz2
μα(z) = nα(z) − n−α(z)

τsf,F
. (13)

Making use of Eqs. (3) and (5) to express nα − n−α in terms
of μα − μ−α , we find that the equation for μc takes the form

d2

dz2
μc(z) + pσ

d2

dz2
μs(z) = 0, (14)

where pσ ≡ (σ ↑
0,F − σ

↓
0,F )/(σ ↑

0,F + σ
↓
0,F ) is the conductivity

spin asymmetry. On the other hand, the equation for μs

remains of the same form as in the HM layer [Eq. (10)],
except for replacing LH by the ferromagnetic spin diffusion
length LF =

√
σ0,F (1 − p2

σ )τsf,F /2NF (εF )(1 − p2
N ), where
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pN ≡ (N↑
F − N

↓
F )/(N↑

F + N
↓
F ) is the spin asymmetry in the

density of states at the Fermi level.
For the boundary conditions at the interface (z = 0), ne-

glecting interfacial spin-flip scattering and the small interfacial
resistance [4,31], we assume that both the spin current density
flowing in the z direction and the chemical potentials are
continuous, i.e., Q

y
z (0−) = Q

y
z (0+) and μα(0−) = μα(0+).

At the same time, since there is no charge flow in the z

direction, we set jz(z) = 0 everywhere. Also, we take Q
y
z

to vanish at the two outer surfaces, i.e., at z = −dH for the
HM layer and z = dF for the FM layer, with dH and dF

being the thicknesses of the HM and FM layers, respectively.

By inserting the general solutions of the chemical potentials
and the spin current densities into the boundary conditions
for each interface, we can now determine all transport
quantities of interests. For example, up to first order in
θH , the in-plane charge current density in the FM layer is
given by

jx(z) = σ0,F Ex + 1
2 (ν↑

F − ν
↓
F )[n↑(z) − n↓(z)]Ex, (15)

where σ0,F = n
↑
0,F ν

↑
F + n

↓
0,F ν

↓
F is the total bulk conductivity

of the FM and the spin accumulation is given by

n↑(z) − n↓(z) = − 2(θH LH )NF (εF )
(
1 − p2

N

)
tanh

(
dH

2LH

)
cosh

(
dF −z
LF

)
cosh

(
dF

LF

) + (
1 − p2

σ

)( σ0,F LH

σ0,H LF

)
sinh

(
dF

LF

)
coth

(
dH

LH

)Ex. (16)

Note that the negative sign in front of the expression on the
rhs of Eq. (16) implies that minority electrons are accumulated
near the interface when both θH and Ex are positive.

Equations (15) and (16) are quite remarkable. First, we
observe that the correction to the in-plane charge current
density [i.e., the second term on the rhs of Eq. (15)] is
proportional to E2

x , since n↑(z) − n↓(z) is the linear response
of the spin density to the external electric field. Second,
the nonlinear contribution appears at the first order in the
SHA, in contrast to the linear spin Hall magnetoresistance
which is known to be of second order in the SHA [30]. The
above features qualitatively agree with recent experimental
observations [1,32].

Equation (15) makes clear that, in our interpretation, the
spin dependence of the electron mobility, i.e., the nonzero
value of (ν↑

F − ν
↓
F ), is essential to the appearance of a

nonlinear magnetoresistance. Indeed, if the mobilities were
not spin dependent, the total in-plane conductivity σ ↑ + σ ↓
would remain unchanged by virtue of the charge neutrality
condition (5). This is exactly what happens in the HM layer,

where the in-plane charge current remains unchanged up
to O(θH ). The underlying physics is rather transparent: If
majority electrons in the FM layer exhibit higher mobility
than minority electrons [i.e., ν

↑
F > ν

↓
F ], then accumulation of

majority electrons will lead to an increase in the conductivity,
and vice versa. The crucial role of spin asymmetry in the
electron mobility of the FM is also consistent with the absence
of nonlinear magnetoresistance effect in HM/FI bilayers
[such as Pt/yttrium iron garnet (YIG)] measured in recent
experiments [32].

The total longitudinal resistivity of the bilayer can be
calculated as ρxx = (dH + dF )Ex/

∫
dzjx(z), where the cur-

rent density is integrated over the thickness of the bilayer.
Similar to GMR, the amplitude of the unidirectional spin Hall
magnetoresistance (USMR) is characterized by the ratio

USMR = ρxx(Ex) − ρxx(−Ex)

ρxx(Ex)
. (17)

Up to first order in θH , we obtain

USMR � 6

(
σ0,F LF

σ0,H dH + σ0,F dF

) (pσ − pN )(θHExLH/εF ) tanh
(

dH

2LH

)
tanh

(
dF

LF

)
1 + (

1 − p2
σ

)( σ0,F LH

σ0,H LF

)
tanh

(
dF

LF

)
coth

(
dH

LH

) , (18)

where we have used the relations να
F = σα

0,F /nα
0,F and Nα

F =
3nα

0,F /2εF for the free-electron model with εF being the Fermi

energy of the FM. Note that ν
↑
F − ν

↓
F is proportional to the

difference of the spin polarization of conductivity pσ and of
density of states at Fermi energy pN .

In Fig. 2, we plot the USMR as a function of the thickness
of one layer while the thickness of the other is fixed. As
we have pointed out previously, although the leading order
nonlinear correction to the in-plane current density only occurs
in the FM layer, the HM layer also plays an essential role
by inducing the spin accumulation in the FM layer via the
spin Hall effect. Therefore, when the thickness of either layer
becomes much smaller than the corresponding spin diffusion

length, the USMR diminishes. On the other hand, when the
thickness of either layer is much larger than the spin diffusion
length, more current is shunted into the bulk of the layers and
hence the interfacial effect of USMR gets diluted, as indicated
by the prefactor on the rhs of Eq. (18). Not surprisingly, the
USMR peaks around the respective spin diffusion length of
each layer. The dependence of the USMR on the thickness of
the HM layer agrees qualitatively with experiments, whereas
the dependence on the thickness of the FM layer has not yet
been measured.

With Eq. (18), we can also make quantitative comparisons
of the calculated magnitude of USMR with experimen-
tally observed values. For a Pt (6 nm)/Co (3 nm) bilayer
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FIG. 2. USMR as a function of the thickness of the HM layer
[scaled with the spin diffusion length (SDL) LH ] for fixed thickness
of the FM layer of dF = LF = 10 nm (solid line) and as a function of
the thickness of the FM layer (scaled with LF ) for fixed thickness of
the HM layer of dH = LH = 5 nm (dotted line). Other parameters as-
sumed in the numerical calculation are θH = 0.1, |Ex | = 10−4 V/nm,
pσ − pN = 0.5, εF = 5 eV, and σ0,H = σ0,F = 0.033 (μ� cm)−1.
The calculations are done to first order in SHA.

with Ex = 10−4 V/nm and the following material parame-
ters, θH = 0.1 [1,33,34], σH = 0.02 (μ� cm)−1, LH = 5 nm,
σF = 0.05 (μ� cm)−1, LF = 40 nm [31], εF = 5 eV, and
pσ − pN = 0.5, we find USMR � 0.9 × 10−5, which is only a
factor of 2 smaller than the experimental value [1,32]. We have
checked that the USMR is negligibly reduced in the presence
of an interfacial resistance rI ∼ 1 f� m [35].

We notice that the magnitude of the USMR may be
underestimated due to several simplifying assumptions we
adopted in our model calculation. First, in the derivation
of Eq. (18), we assumed spherical Fermi surfaces and
constant density of states at the Fermi energy. Strong en-
ergy dependence of the density of states near the Fermi
surface (e.g., in Ni [36]) may enhance the effect just as
it enhances the spin accumulation-induced nonlinear GMR
effect observed in dual spin valves [36]. Second, we neglected
the indirect influence of the spin accumulation on transport
parameters such as the bulk and interfacial resistances due
to electron-electron correlation or shift of the scattering
potential.

In the presence of interfacial spin-flip scattering, there
would be a partial loss of spin current across the interface
(known as spin memory loss [31,37–40]). This effect can be
easily incorporated in our treatment through a simple change
in the boundary conditions for the spin current [41]. Spin
memory loss, treated in this way, results in a reduction of the
USMR given in Eq. (18) by a factor of order unity. However,
the absorbed spin current may in turn lead to additional
contribution to the USMR via interfacial spin-dependent
scattering [42].

An interesting observation based on Eq. (18) is that the
USMR depends linearly on the difference of pσ − pN , which
suggests that the sign of the USMR also depends on the overall
sign of pσ − pN . In Ref. [43], Fert and Campbell showed
that the signs of pσ for various binary alloys of transition
metals may change depending on the relative position of
the d bands of the host and the impurity. For example,
they showed that pσ of NiFe is positive whereas that of
FeCr is negative [43]. By making use of this property, a
“reversed” CIP-GMR, that is to say, a CIP-GMR in which the
antiparallel alignment of magnetizations has lower resistance
than the parallel arrangement, could be explained in a Fe/Cu
superlattice with half of the Fe layers being intercalated with
thin Cr layers [44]. Similar experiments can be carried out to
test our theory of USMR. For example, we predict that the
USMR in Pt/FeCr should have an opposite sign to that in the
Pt/NiCr bilayer.

Our model calculation also suggests several ways to
enhance the USMR. For metallic systems, the effect would
be amplified in an asymmetric trilayer structure of the form
HM1/FM/HM2, with HM1 and HM2 having opposite signs
of θH (for example, HM1 = Pt and HM2 = Ta). In such
a structure, the orientations of the spin accumulations on
opposite sides of the FM layer will be identical, hence the
contributions of the two interfaces to the USMR will add
constructively. Our theory also suggests that an enhanced
USMR may be found in paramagnetic and ferromagnetic
semiconductor bilayers, which have much lower carrier densi-
ties than their metallic counterparts. As shown by Eq. (18),
the USMR is inversely proportional to the Fermi energy
which scales with the equilibrium free-electron density as
εF ∝ n

2/3
e . Very recently, Olejnı́k et al. found that the USMR in

ferromagnetic-(Ga,As)Mn/paramagnetic-(Ga,As)Mn bilayers
is larger than that in metallic bilayers by several orders
of magnitudes [45], and they attributed the big enhance-
ment to the low carrier densities in their semiconducting
systems.

In summary, we have developed a drift-diffusion theory for
HM/FM bilayers with an in-plane electric current. The theory
is self-consistent in the sense that it takes into account the effect
of the current-induced spin accumulation on the longitudinal
resistance. The unidirectional magnetoresistance is an effect
of first order in the spin Hall angle of the HM layer, in contrast
to the linear spin Hall magnetoresistance which is an effect of
second order in the spin Hall angle. We have suggested ways
to control the sign of the nonlinear magnetoresistance and to
amplify the magnitude of the effect by a judicious choice
of materials and/or nanostructure engineering. It appears
that conducting bilayers consisting of a ferromagnet and
a paramagnetic metal with a large spin Hall angle have
considerable potential to work as reversible diodes that may
be controlled by the magnetic direction of the ferromagnetic
layer.
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