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We study the temperature dependence of nuclear magnetic relaxation (NMR) rates to detect unconventional
superconductivity in doped topological insulators, such as M(=Cu,Nb,Sr)xBi2Se3 and Sn1−xInxTe. The Hebel-
Slichter coherence effect below a critical temperature Tc depends on the superconducting states predicted by a
minimal model of doped topological insulators. In a nodal anisotropic topological state similar to the ABM phase
in 3He, the NMR rate has a conventional s-wave-like coherence peak below Tc. In contrast, in a fully-gapped
isotropic topological superconducting state, this rate below Tc exhibits an antipeak profile. Moreover, in a twofold
in-plane anisotropic topological superconducting state, there is no coherence effect, which is similar to that in a
chiral p-wave state. We also claim in a model of CuxBi2Se3 that a signal of the fully-gapped odd-parity state is
attainable from the change of the antipeak behavior depending on doping level. Thus, we reveal that the NMR
rates shed light on unconventional superconductivity in doped topological insulators.
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I. INTRODUCTION

The recent discovery of topological insulators [1–10] leads
to a number of studies about topological aspects in condensed
matter physics [11]. Topological superconductors have also
attracted much attention because of their potential applications
for topological quantum computing [12]. The quest for bulk
topological superconductors is an exciting issue in topological
material science. Both surface and bulk probes are crucial
for identifying topological materials. The bulk-boundary
correspondence indicates that the presence of gapless surface
bound states between different topological materials is an
evidence of a nontrivial topological order. Bulk quantities
also contain a signature of their topological order. A definite
example in condensed matter physics is the conductance in the
integer quantum Hall systems [13]. Quantized behaviors ruled
by a topological invariant are observed.

Doped topological insulators are candidates of 3D time-
reversal invariant topological superconductors with Z2 invari-
ants [14,15]. Bi2Se3 has a superconducting critical temperature
Tc around 3 K with Cu, Sr, and Nb doping [16–19]. The doped
topological crystalline insulator Sn1−xInxTe also becomes
a superconductor with Tc ∼ 4 K [20,21]. The properties of
CuxBi2Se3 and Sn1−xInxTe are studied by different physi-
cal probes, including point-contact spectroscopy [20,22,23],
scanning tunneling spectroscopy [24], the Knight-shift mea-
surement [25], and the angular-resolved heat capacity mea-
surement [26]. The point-contact spectroscopy showed the
zero-bias conductance peaks from the Majorana bound states at
the surface edges. The scanning tunneling spectroscopy, how-
ever, indicated a fully gapped feature in the density of states;
there is no in-gap state, and therefore the superconducting
state could be topologically trivial. In addition, the Knight-
shift and the angular-resolved heat capacity measurements
on CuxBi2Se3 showed the presence of twofold in-plane
anisotropy. This result indicates a strong anisotropic order
parameter since the normal-state electronic structure has a

sixfold in-plane symmetry caused by the crystal structure
[27–30]. A similar anisotropic feature is also observed by
the torque magnetometry measurement in NbxBi2Se3 [19].
Thus, the doped topological insulators have unconventional
properties in their superconducting states, which might be
topologically nontrivial superconductors.

A correlation function is a key quantity of connecting topo-
logical characters with bulk measurements. Current-current
correlation functions signal the topological invariant in integer
Hall systems as a quantized conductance, for example. In
topological superconductors, the authors proposed that spin-
spin correlation functions, measured by the nuclear magnetic
relaxation (NMR) rate (T −1

1 ), can detect their topological
nature [31]. The NMR rate in a spin-singlet s-wave super-
conductor is enhanced just below Tc, owing to the coherence
factor [32]. This coherence peak (Hebel-Slichter peak) comes
from the formation of s-wave-like Cooper pairs [33,34]. We
claimed that an inverse coherence effect is the signature of a
3D odd-parity fully gapped topological superconducting state
in time-reversal-invariant multiorbital systems; the coherence
factor contributes to the NMR rates with an opposite sign to
that of the conventional s-wave states.

In this paper, we study the temperature dependence
of NMR rates to detect a sign of unconventional topo-
logical superconductivity in doped topological insulators
M(= Cu,Nb,Sr)xBi2Se3 and Sn1−xInxTe. We focus on both
isotropic and anisotropic superconducting states. Our model is
a massive Dirac Hamiltonian with a superconducting gap. This
is a minimal model of 3D time-reversal-invariant multiband
topological superconductors. Moreover, we add a hexagonal
warping term to the normal-electron Hamiltonian, allowing us
to argue an effect of in-plane six-fold symmetry [30]. Focusing
on a model of CuxBi2Se3, we also claim that the disappearance
of the inverse coherence effect leads to a signal of the
fully-gapped odd-parity state when doping level increases.
We reveal that the NMR rate in a 3D doped topological
insulator becomes a tool to detect topologically nontrivial
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unconventional superconductivity, even with the hexagonal
warping term.

This paper is organized as follows. Section II shows
our mean-field superconducting model of doped topological
insulators. We also show the explicit formula of the NMR rate.
In Sec. III, we show the approximate formulation of the NMR
rate below Tc. In Sec. IV, the numerical results are shown. We
discuss the effect of the hexagonal warping term. In Sec. V, we
examine the dependence of the coherence effects on electron
doping level more closely. Section VI shows the discussion.
The summary is given in Sec. VII.

II. MODEL

The mean-field Bogoliubov-de Gennes (BdG) Hamiltonian
is H = (1/2)

∑
k ψ

†
kȞ (k)ψ k, with ψ k = (c†k,c

T
−k) and ψT

k =
(ck,c

†
−k). The 2no-component column (raw) vector ck (c†k)

contains electron’s annihilation (creation) operators, with
the number of orbitals no. When no = 2, we have cT

k =
(c1

↑k,c
1
↓k,c

2
↑k,c

2
↓k). The BdG matrix Ȟ (k) is

Ȟ (k) =
(

Ĥ0(k) �̂(k)
�̂†(k) −Ĥ0(−k)∗

)
, (1)

where the normal-state Hamiltonian matrix is Ĥ0(k). The
pairing potential fulfills �̂T(k) = −�̂(−k), owing to the
Fermion anticommutation property. Ǎ signifies the 2no × 2no

matrix structure in the Nambu-Gor’kov particle-hole space,
whereas Â does the no × no matrix structure in the orbital-spin
space.

In this paper, we focus on a minimal model for 3D
time-reversal-invariant topological superconductor. A typi-
cal candidate for a topological superconductor is a doped
topological insulator with a strong spin orbit coupling, such
as MxBi2Se3 and Sn1−xInxTe. The low-energy normal-state
k · p Hamiltonian around a time-reversal-invariant point in
the momentum space (e.g. � point in MxBi2Se3 or L point
in Sn1−xInxTe ) is given by a massive Dirac Hamiltonian
[14,20,22,28,35,36]

Ĥ0(k) = γ 0

[
−μ�0 +

3∑
i=1

viki�
i + m�4 + h5(k)�5

]
, (2)

with chemical potential μ, spin-orbit coupling constants vi ,
and mass m. This Hamiltonian is the same as that in Ref. [14]
except h5. The last term h5(k) ≡ iλ(k3

+ + k3
−) with k± = kx ±

iky corresponds to the effects of hexagonal warping in the
Fermi surface of MxBi2Se3 [30]. Six kinds of 4 × 4 matrices
�A (A = 0 ,1 . . . ,5) are composed of the gamma matrices γ μ

(μ = 0, 1, 2, 3) [37] and the identity: �A = γ A (A �= 4) and
�4 = 14, with γ 5 = iγ 0γ 1γ 2γ 3. Our choice [38] is that γ 0 =
σx ⊗ 12, γ 1 = −iσy ⊗ sy , γ 2 = iσy ⊗ sx , and γ 3 = iσz ⊗ 12,
where σx, y, z (sx, y, z) are the 2 × 2 Pauli matrices in the orbital
(spin) space. In Sec. V, we argue a more suitable model for
studying doped topological insulator CuxBi2Se3. In this paper,
we study the momentum-independent pair potential �̂, owing
to the onsite interaction [14,15]. The fermion anticommutation
relation leads to

�̂A = �A�Aγ 2γ 5. (3)

Since γ 2γ 5 = 12 ⊗ sy , the case of �A to be the identity
(i.e., A = 4) describes a spin-singlet s-wave state: �4 ∝

∑〈c1
−k↓c1

k↑ + c2
−k↓c2

k↑〉. The additional �A (A �= 4) charac-
terizes a twist of each order-parameter component in the
orbital-spin space, compared to the conventional s-wave state.
According to Ref. [14], even-parity order parameters (A1g

states) are given by �4 and �0. Odd-parity states correspond to
�1,2,3,5. The component �5 corresponds to an odd-parity fully-
gapped (A1u) state [14,15]: �5 ∝ ∑〈c2

−k↓c1
k↑ + c2

−k↑c1
k↓〉. The

others are anisotropic odd-parity topological states; �1 and �2

(Eu states) have deep minima, respectively, in the directions
of the x and y axes, whereas �3 (A2u state) does so in the
z direction. Specifically, the odd-parity states with twofold
deep gap minima on the a-b plane are composed of �1 ∝∑〈c1

−k↑c2
k↑ − c1

−k↓c2
k↓〉 and �2 ∝ ∑〈c1

−k↑c2
k↑ + c1

−k↓c2
k↓〉. In

the case of Eg pairing without the hexagonal warping term
(e.g., λ = 0), the superconducting order parameter with point
nodes in the θN direction is expressed as [29]

�̂θN = (cos θN�̂1 + sin θN�̂2). (4)

The point nodes are located at [29]

k±
node = ±

√
μ2 − m2 + |�|2(cos θN, sin θN,0). (5)

Here, we adopt |�|2 = |�1|2 = |�2|2. With increasing λ, the
point nodes change to the deep minima in the momentum space
[30]. In this paper, we set θN = 0; the nodes are lifted up by
the hexagonal warping term, resulting in a full gap.

The NMR rate [31,39,40] in a multiorbit superconductor is
calculated by

1

T1(T )T
= π

∑
α,α′

∫ ∞

−∞
dω

[
−df (ω)

dω

]

× Re {ρGαα′
↑↑ (ω)ρGα′α

↓↓ (ω) − ρFαα′
↑↓ (ω)[ρFαα′

↓↑ (ω)]∗}.
(6)

We use the unit system of � = kB = 1. The indices α and α′
represent orbital labels. The Fermi-Dirac distribution function
is denoted by f (ω) = 1/(eω/T + 1). The spectral functions
ρ̂G(ω) and ρ̂F (ω) are the submatrices of

ρ̌G(ω) = −1

2πi

∑
k

[Ǧk(iωn → ω + i0)−Ǧk(iωn → ω − i0)],

(7)

with the temperature Green’s function defined as

Ǧk(iωn) = [iωn − Ȟ (k)]−1. (8)

Here, the fermionic Matsubara frequency is ωn = πT (2n + 1)
(n ∈ Z). The matrix form of Ǧk(iωn) in the Nambu-Gor’kov
particle-hole space is

Ǧk(iωn) =
(

Ĝk(iωn) F̂k(iωn)
ˆ̄Fk(iωn) ˆ̄Gk(iωn)

)
. (9)

The diagonal block Ĝk leads to ρ̂G, relevant to the electron’s
density of states. The off-diagonal block F̂k contributes to the
anomalous spectral function ρ̂F .

III. APPROXIMATE FORMULATION BELOW Tc

A coherence effect just below Tc originates from the second
term in Eq. (6) [39,41]. The Hebel-Slichter peak appears when
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this term, including the minus sign in front of the spectral
functions, has a positive contribution to T −1

1 . To understand the
behaviors of the second term, we evaluate anomalous Green’s
function near Tc. Linearizing Ǧ with respect to �̂A, we obtain

F̂ A
k (iωn) ≈ ĜN

k (iωn)�̂A ˆ̄GN
k (iωn), (10)

with normal-state Green’s functions:

ĜN
k (iωn) ≡ [iωn − Ĥ0(k)]−1, (11)

ˆ̄GN
k (iωn) ≡ [iωn + Ĥ0(−k)∗]−1. (12)

With the use of the relation γ 2γ 5Ĥ0(−k)∗γ 2γ 5 = Ĥ0(k), we
have

ˆ̄GN
k (iωn) = γ 2γ 5(iωn + Ĥ0(k))−1γ 2γ 5,

= −γ 2γ 5ĜN
k (−iωn)γ 2γ 5. (13)

A normal-state Green’s function is evaluated by an alge-
braic relation of Ĥ0; we find that [Ĥ ′

0(k)]2 = E(k)2, with
Ĥ ′

0 ≡ Ĥ0 + μ and E(k)2 = ∑3
i=1 v2

i k
2
i + m2 − h5(k)2. This

property corresponds to the fact that the Dirac equation is the
square root of the Klein-Gordon equation [37]. Hence, we
obtain

ĜN
k (iωn) =

∑
�=±

P̂�(k)

iωn − �E(k) + μ
, (14)

with the projectors

P̂± = 1

2

[
1 ± Ĥ ′

0

E(k)

]
≡ γ 0

5∑
A=0

wA
�k�

A. (15)

Just below Tc, the anomalous Green’s function F̂k(iωn) is
expressed as

F̂ A
k (iωn) = −

∑
l,l′=±

Wll′k(iωn)P̂l(k)P̂l′A(k)�̂A, (16)

with

Wll′k(iωn) ≡ 1

iωn − lE(k) + μ

1

−iωn − l′E(k) + μ
, (17)

P̂l′A(k) ≡ �AP̂l(k)[�A]−1 ≡ γ 0
5∑

A′=0

wAA′
lk �A′

. (18)

Thus, the local anomalous Green’s function becomes∑
k

FA
k (iωn) = αA�̂A + βAγ 0�̂A + δAγ 1γ 5�̂A. (19)

Here, we use the fact that momentum-odd terms in P̂l(k)
vanish. The coefficients αA, βA, and δA are defined as

αA(iωn) = −
∑

k

∑
l,l=±

Wll′k(iωn)
5∑

A′=0

wA′
lk wAA′

l′k (1 − 2δA′5),

(20)

βA(iωn) = −
∑

k

∑
l,l=±

Wll′k(iωn)
(
w4

lkw
A0
l′k + w0

lkw
A4
l′k

)
, (21)

δA(iωn) = −
∑

k

∑
l,l=±

Wll′k(iωn)
(
w5

lkw
A1
l′k − w1

lkw
A5
l′k

)
. (22)

The sign of the coherence effect of T −1
1 is determined by

the spin parity of the local anomalous Green’s function [31].
The first and second terms of

∑
k FA

k (iωn) in Eq. (19) have the
spin parity of the order parameter �̂A, since the multiplication
of γ 0 with �̂A does not change the property of a spin-index
exchange. The third term, which is proportional to the warping
term h5, rotates spins, since γ 1γ 5 = 12 ⊗ sx . For example, in
the case of the fully-gapped odd-parity state �̂5 ∝ σy ⊗ sx ,
the first and second terms contribute to the anomalous spectral
function ραα′

↑↓ = ραα′
↓↑ . The third term does not contribute to the

anomalous spectral function, since this term is proportional
to γ 1γ 5�̂5 ∝ σy ⊗ 12. Thus, the inverse coherence effect [31]
can appear, irrespective of hexagonal warping. In the case of
the anisotropic odd-parity state �̂1 ∝ σy ⊗ 12, the spin-singlet
element of the gap function �αα′

↑↓ is zero so that the first and
second terms do not contribute to the NMR rate. The only
third term contributes to ραα′

↑↓ = ραα′
↓↑ and the amplitude of the

inverse coherence effect is proportional to the magnitude of
the warping term.

IV. NUMERICAL RESULTS

In this section, we show the temperature dependence of
the NMR rate T −1

1 with various odd-parity superconducting
phases. We assume the phenomenological temperature depen-
dence of the gap amplitude as [40]

�(T ) = �0 tanh(a
√

Tc/T − 1), (23)

with Tc = 1.76�0. Equation (23) with a = 1.74 reproduces
well the temperature dependence of the BCS gap. We set the
gap amplitude �0 = 0.1, the Dirac mass m = 0.4, and the
spin-orbit interaction vi = 1. The k integrals are performed
by the trapezoidal rule in the spherical coordinate system,
with cutoff momentum kmax = 9 and mesh (Nk,Nφ,Nθ ) =
(384,96,96). The smearing factor of the delta function is set by
0.01. To compare with the previous results by self-consistently
solving the gap equations [31], we set same parameter the
with μ = 0.8 as that in Ref. [31]. We introduce the effective
gap function on the Fermi surface to discuss the quasiparticle
excitations due to the thermal effect. According to Eq. (9) in
Ref. [30], the spectral gap on the Fermi surface in the presence
of the hexagonal warping in the �1 state is expressed as

�spec,1(k) = |�|
√

1 − [k̃ · ( ẑ × n)]2, (24)

with k̃ ≡ (kx,ky,kz)/
√

μ2 − m2 and n = (0,1,0).

A. Without the warping term h5

In this section, we drop the warping term h5. The Fermi
surface in normal states is isotropic as shown in Fig. 1(a).
Dropping the warping term, there are point nodes in the
x direction in the �1 state. The results are summarized as
Table I.

Figure 2 shows the temperature dependence of the NMR
rate with various kinds of gap functions. First, let us argue the
results of the isotropic gaps [Figs. 2(a) and 2(b)]. Just below
Tc we confirm the coherence effects predicted in Sec. III. We
find a standard behavior in the low-temperature region, caused
by a full gap. We stress that all of the non-self-consistent
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FIG. 1. The Fermi surface and the spectral gap �spec,1(k) defined
in Eq. (24) with kz = 0 (a) without and (b) with the hexagonal warping
term (λ = 1) to treat the sixfold crystal structure.

TABLE I. Parity table of different gap functions. The coherence
effect is characterized by spin parity ps [�αα′

↑↓ (k) = ps�
αα′
↓↑ (k)],

momentum parity pm [�αα′
↑↓ (k) = pm�αα′

↑↓ (−k)], and orbital parity

po [�αα′
↑↓ (k) = po�

α′α
↑↓ (k)], with pspmpo = −1.

Spin Orbital Anisotropic Coherence
Gap type parity ps parity po direction effect

A1g(�4) state −1 +1 Isotropic positive
A1u(�5) state +1 −1 Isotropic negative
A2u(�3) state −1 +1 z positive
Eu(�1 or �2) +1 −1 x or y negligible negative

state

temperature dependences have a good qualitative agreement
with those in our previous self-consistent calculations [31]. It
indicates that the usage of Eq. (23) is adequate for investigating
the temperature dependence of the NMR rates in doped
topological insulators.

Next we focus on the anisotropic topological states. As
shown in Fig. 2(c), the positive coherence effect appears in
the �̂3 state, since the spin parity of the gap function �̂3 ∝
σz ⊗ sy is odd so that the anomalous spectral function becomes
ραα′

↑↓ = −ραα′
↓↑ . In the case of the �̂1 state, as shown in Fig. 2(d),

no coherence effect occurs. As discussed in Sec. III, this gap
function without the warping term h5 does not have spin-off-
diagonal elements of the anomalous spectral function (i.e.,
ραα′

↑↓ = ραα′
↓↑ = 0). In the low-temperature region (T ∼ 0.2Tc),

there are low-energy quasiparticle excitations in Figs. 2(c) and

(a)
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FIG. 2. Temperature dependence of nuclear magnetic relaxation rates in (a) an even-parity gap �4 (A1g) ∝ ∑〈c1
−k↓c

1
k↑ + c2

−k↓c
2
k↑〉, a

fully-gapped isotropic odd-parity gap �5 (A1u) ∝ ∑〈c2
−k↓c

1
k↑ + c2

−k↑c
1
k↓〉, (c) a nodal odd-parity gap �3 (A2u) ∝ ∑〈c1

−k↓c
1
k↑ − c2

−k↓c
2
k↑〉, and

(d) a nodal odd-parity gap �1 (Eu) ∝ ∑〈c1
−k↑c

2
k↑ − c1

−k↓c
2
k↓〉 . We set the chemical potential μ = 0.8, the Dirac mass m = 0.4, and the

gap amplitude �0 = 0.01. We ignore the warping term. Equation (23) is used as the phenomenological temperature dependence of the gap
amplitude.
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FIG. 3. Temperature dependence of nuclear magnetic relaxation
rates with the hexagonal warping term in (a) a fully-gapped isotropic
odd-parity gap �5 (A1u) and (b) an anisotropic odd-parity gap �1

(Eu). The parameters are the same as in Fig. 2.

2(d), since �̂3 (A2u) and �̂1 (Eu) states have point nodes in
momentum space.

B. With the warping term h5

We take the warping term h5 into account to consider a
sixfold symmetry due to the crystal structure. We consider
λ = 1 to describe an anisotropic Fermi surface. The Fermi
surface with the warping term is shown in Fig. 1(b). On this
Fermi surface, the spectral gap function �spec,1(k) does not
have point nodes.

In both �5(A1u) and �1(Eu) states, the warping term
slightly changes the temperature dependence of the NMR
rate, as shown in Fig. 3. The difference between Fig. 2(a)
and Fig. 3(a) with the �5 gap function comes from the density
of states on the Fermi surface, since the third term in Eq. (19),
induced by the warping term, does not contribute to the NMR
rate. In the case of the �1 gap function, an inverse coherence
effect induced by the warping term may occur, according to
Sec. III. The numerical calculation can conclude, however, that
the induced coherence effect is negligibly small as shown in
Fig. 3(b). We confirm that the relativistic indicator, introduced
in Ref. [31], does not affect the induced coherence effect, by
changing the Dirac mass m and the chemical potential μ. This
result comes from the fact that the warping term is the third
order of the momentum so that the summation in the whole
momentum space becomes small.

FIG. 4. Doping dependence of the Fermi surface in the model for
CuxBi2Se3. The unit of the energy is eV.

At the low temperature region (T < 0.2Tc), the amplitude
of 1/T1T in Fig. 3(b) is smaller than that in Fig. 2(d). This
originates from the fact that there is no point node in the �1

state with the warping term as shown in Fig. 1(b). Note that
this difference might be too small to identify whether there are
point nodes or not at low temperatures. By comparison with
the numerical results with and without the warping term, we
conclude that the warping term does not affect the temperature
dependence of the NMR rate near Tc.

V. DOPING DEPENDENCE IN THE MODEL FOR CuxBi2Se3

We study the behavior of the coherence peak with respect
to the electron doping level in a doped topological insulator
CuxBi2Se3. We take a normal-electron model for CuxBi2Se3.
According to Ref. [20], we have

Ĥ0(k) = γ 0

[
ε(k)�0 +

3∑
i=1

Pi(k)�i + P4(k)�4

]
. (25)

The momentum dependence of the coefficients is
summarized as follows [20]: ε(k) = D̄1[2 − 2 cos(kzc)] +
(4D̄2/3)[3 − 2 cos(

√
3kxa/2) cos(kya/2) − cos(kya)] − μ,

P1(k) = (2Ā2/3)
√

3 sin(
√

3kxa/2) cos(kya/2), P2(k) =
(2Ā2/3)[cos(

√
3kxa/2) sin(kya/2) + sin(kya)], P3(k) =

Ā1 sin(kzc), and P4(k) = M − B̄1[2 − 2 cos(kzc)] −
(4B̄2/3)[3 − 2 cos(

√
3kxa/2) cos(kya/2) − cos(kya)], with

D̄2, B̄1, B̄2, Ā2, and Ā1, determined by first-principles
band-structure calculations of Bi2Se3 [42]. Taking |k| → 0,
we can obtain a linearized massive Dirac Hamiltonian equal
to Eq. (2) without the hexagonal warping term. We stress
that the algebraic structure of Eq. (25) is the same as that
of Eq. (2). Consequently, all the techniques in Sec. III are
applicable to the analyses in this section.

We describe the change of doping level via the variation of
μ, with keeping M = 0.28 eV and �0 = 0.05 eV. Figure 4
shows the doping dependence of the Fermi surface. With
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FIG. 5. Temperature dependence of nuclear magnetic relaxation rates in the model for CuxBi2Se3 with (a) an even-parity gap �4 (A1g) ∝∑〈c1
−k↓c

1
k↑ + c2

−k↓c
2
k↑〉, a fully-gapped isotropic odd-parity gap �5 (A1u) ∝ ∑〈c2

−k↓c
1
k↑ + c2

−k↑c
1
k↓〉, (c) a nodal odd-parity gap �3 (A2u) ∝∑〈c1

−k↓c
1
k↑ − c2

−k↓c
2
k↑〉, and (d) a nodal odd-parity gap �1 (Eu) ∝ ∑〈c1

−k↑c
2
k↑ − c1

−k↓c
2
k↓〉 . The model parameters are shown in Eq. (25). The

doping dependence is considered as the chemical potential dependence μ. The minimum and maximum values of the chemical potentials are
μ = 0.33 [eV] and μ = 1.03 [eV], respectively. At a higher doping level, larger (T1T )−1 at T > Tc. We set the gap amplitude �0 = 0.05 [eV].
Equation (23) is used as the phenomenological temperature dependence of the gap amplitude.

increasing of the doping level, the ellipsoidal Fermi surface
changes into the cylindrical Fermi surfaces; it indicates the
presence of the Lifshitz transition [43].

Figure 5 shows the NMR rates with different values of μ,
depending on the kinds of gap functions. Note that at a higher
doping level, larger (T1T )−1 at T > Tc. When increasing the
doping level, the inverse coherence effect in the fully-gapped
odd-parity state �5 (A1u) becomes faint [Fig. 5(b)]. This is
contrast to the even-parity state �4 (A1g); the conventional
coherence peak is pronounced [Fig. 5(a)]. We also find that the
other two states do not significantly depend on the doping level,
except for the amount of the normal-state component. Thus, we
obtain an interesting way of distinguishing �5 with the others;
the disappearance of the inverse coherence effect associated
with the increase of the doping level definitely signals the
fully-gapped odd-parity state.

We discuss the importance of a multiorbital feature in
CuxBi2Se3, before closing this section. A theoretical study
on the NMR rate of CuxBi2Se3 with the odd-parity states was
reported in Ref. [43]; there was no inverse coherence peak and
doping dependence shown in this paper. The discrepancy of
the present paper with Ref. [43] is the NMR-rate formula; the
NMR rate in a single-band superconductor was utilized there
[See Eq. (12) in Ref. [43]]. Thus, the two-orbital character
of CuxBi2Se3 is strongly linked to the exotic behaviors of
the NMR rate. It is interesting to examine when a single-
band approximation is valid. In the case of the massive
Dirac Hamiltonian, the condition is obtained intuitively; a

lower Dirac band, corresponding to the negative-frequency
solution of the free-particle Dirac equation, is negligible in a
nonrelativistic limit (i.e., M � k2

F) [31]. In contrast, a more
realistic model of CuxBi2Se3 given by Eq. (25) has no definite
criterion of dropping a specific normal-electron band since
the Fermi surfaces are composed of the two orbitals for
arbitrary μ.

VI. DISCUSSION

We discuss the amplitude of the coherence effects. As
we discussed in Ref. [31], the relativistic indicator defined
by β ≡

√
(μ/m)2 − 1 characterizes the amplitude of the

coherence factor. This indicator is controlled by the chemical
potential shift. With increasing the chemical potential μ, the
indicator β increases. In the ultrarelativistic limit β → ∞ (i.e.,
either μ → ∞ or m → 0), the amplitude of the coherence
effect becomes largest in the fully-gapped isotropic topological
superconducting state �5 (A1u), as shown in Fig. 3 in
Ref. [31]. We confirm that the similar behaviors occur in other
topologically nontrivial superconducting states A2u and Eu.

The robustness of the coherence effect against impurities
is important information to measure the NMR rate in exper-
iments. We discussed the robustness of the density of states
against impurities in Refs. [44,45]. We concluded that the
relativistic indicator β characterizes the impurity effect. In
the nonrelativistic limit β → 0 (i.e. μ → m), the topolog-
ical superconducting states A1u and Eu are fragile against
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nonmagnetic impurities, since the effective gap functions are
p-wave ones [45,46]. In this limit, the Dirac-BdG Hamiltonian
is regarded to the BdG Hamiltonian. As we discussed above,
the amplitude of the coherence effects in these topological
states is proportional to the indicator β so that one does
not observe the coherence effects below Tc even without
impurities. On the other hand, the low-energy density of states
is robust against nonmagnetic impurities in the ultrarelativistic
limit. In this limit, the Dirac-BdG equations are divided into
a left-handed sector and a right-handed sector as discussed
in Ref. [31]. The effective gap functions are s-wave ones.
Thus, the large amplitude of the coherence effect is robust
against nonmagnetic impurities. We reveal that the NMR rate
in a 3D doped topological insulator becomes a tool to detect
topologically nontrivial unconventional superconductivity.

VII. SUMMARY

In conclusion, we studied the temperature dependence of
the NMR rate in topologically nontrivial superconducting
states in doped topological insulators. We found that an
inverse coherence effect occurs in a fully-gapped isotropic
odd-parity state and a negligible small inverse coherence
effect occurs in a strong in-plane anisotropic odd-parity state.
The hexagonal warping term to describe the sixfold crystal

structure does not affect the temperature dependence of the
NMR rate near Tc. At the low temperature region (T < 0.2Tc),
the amplitude of 1/T1T with the warping term is smaller
than that without the warping term. However, this difference
might be too small to identify whether there are point nodes
or not at low temperatures. We also studied the behavior of
the coherence peak with respect to the electron doping level
in a doped topological insulator CuxBi2Se3 with the use of the
realistic model proposed by the first-principles calculation.
The disappearance of the negative coherence effect associated
with the increase of the doping level definitely signals the
fully-gapped odd-parity state. We reveal that the NMR rate
in a 3D doped topological insulator becomes a tool to detect
topologically nontrivial unconventional superconductivity.
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