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Topological phase transitions and a two-dimensional Weyl superconductor in a
half-metal/superconductor heterostructure
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We find a series of topological phase transitions in a half-metal/superconductor heterostructure, by tuning
the direction of the magnetization of the half-metal film. These include transitions between a topological
superconducting phase with a bulk gap and another phase without a bulk gap but with a ubiquitous local
gap. At the same time, the edge states change from counterpropagating Majorana edge modes to unidirectional
Majorana edge modes. In addition, we find transitions between the second phase and a nodal phase which
turns out to be a two-dimensional Weyl superconductor with Fermi line edge states. We identify the topological
invariants relevant to each phase and the symmetry that protects the Weyl superconductivity phase.
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I. INTRODUCTION

The discovery of topological insulators has infused great
enthusiasm in finding new materials with novel topological
properties [1,2]. One particularly exciting subject is how to
realize Majorana fermions, which is not only of fundamental
interest but also has potential application in fault-tolerant
topological quantum computation [3]. Among many schemes
proposed so far [4–15], the heterostructure consisting of a
semiconductor clamped between a magnetic insulator and an s-
wave superconductor appears to be the most promising one [7].
The spin splitting of the Fermi surface of the semiconductor
by the Rashba spin-orbit coupling (RSOC) and the existence
of an out-of-plane Zeeman field are essential ingredients of the
scheme. A similar mechanism has also been proposed in cold
atom systems [16,17]. An alternative system, a heterostructure
consisting of a half-metal (HM) and an s-wave superconductor
(sSC) containing the same essential physical ingredients, has
also been studied [18,19].

In existing hybrid solid-state systems proposed to host
the topological superconducting phase and the Majorana
fermions, the magnetization (exchange field) is required to
be perpendicular to the spin of the charge carriers fixed by
the SOC [6–9,19]. In the HM/sSC heterostructure, however,
there is an intrinsic degree of freedom in directing the
magnetization of the HM thin film, as shown schematically
in Fig. 1. This is achieved either by cutting the thin film along
different high-symmetry directions of the bulk parent material
or through a magnetic field when the magnetic anisotropy
of the parent HM is small. For an ideal HM without SOC,
there exists SU(2) symmetry with respect to the simultaneous
rotation of the magnetization and the electron spin. The above
tunability generates no physical difference as the exchange
field or the magnetization changes its directions. However,
the formation of a heterostructure with the substrate and the
superconductor enforces the inversion asymmetry to the HM
thin film along the normal direction of the film. The ensuing
RSOC breaks the above SU(2) symmetry [20]. In the presence
of the RSOC, the physics associated with a general orientation
of the magnetization so far has not been examined in the
proposed heterostructure. It is thus interesting to know whether
there is a single phase or there are topologically distinct phases

for different directions of the magnetization in the HM/sSC
heterostructure.

Inspired by the above observations, we study in this paper
the possible topological phases existing in the HM/sSC het-
erostructure. Three phases with distinctive topological num-
bers and edge states are found. In particular, we demonstrate
that a Weyl superconductivity phase with two Weyl nodes
appears in the heterostructure and it is protected by an emergent
mirror symmetry of the system when the magnetization lies in
the plane of the HM film.

II. MODEL AND SYMMETRIES

To illustrate the principle, we consider the simplest model
for the HM/sSC heterostructure shown in Fig. 1. We describe
the HM thin film by a one-orbital model defined on a square
lattice and assume perfect interfaces between the HM and
the substrate and the sSC. Denoting the basis vector as φ

†
k =

[d†
k↑,d

†
k↓], the model Hamiltonian for the HM thin film with a

RSOC term induced by the formation of the heterostructure is
Ĥ0 = ∑

k φ
†
kh0(k)φk, where [7,19]

h0(k) = εkσ0 + mxσ1 + mzσ3 + λ(sin kxσ2 − sin kyσ1). (1)

σ0 is the rank-2 unit matrix, and σi (i = 1,2,3) are Pauli
matrices in the spin subspace. εk = −2t(cos kx + cos ky) − μ.
t is the hopping amplitude, μ is the chemical potential, and
λ is the amplitude of the RSOC. Introducing m (m > 0)
and θ (0 � θ < 2π ) to denote the magnitude and direction
of the magnetization (see Fig. 1), we have mx = m sin θ ,
mz = m cos θ . To describe a HM with Ĥ0, we assume that
m is of the same order of magnitude as t and is much
larger than the externally induced λ. The chemical potential
is to be tuned to make sure that it crosses only with the
lower spin-split band of h0(k) [see Fig. 4(a) in Appendix B
for an illustration of the band structure obtained by solving
Eq. (1)], which amounts to μ � −4t . The proximity-induced
superconductivity in the HM arising from coupling with an
sSC is described by Ĥp = 1

2

∑
k φ

†
k�(k)φ†

−k + H.c., where
�(k) = �0(k)iσ2 [6,7]. For the sake of simplicity and without
losing generality, we ignore in the following analysis the
wave-vector dependency of the pairing amplitude and thus
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FIG. 1. Schematic drawing of a heterostructure consisting of a
half-metal (HM) thin film sandwiched between an s-wave supercon-
ductor and an insulating substrate, viewed laterally. m and θ are the
magnitude and direction of the exchange field (magnetization) in the
HM, which is assumed to lie on the xz plane.

we take �0(k) = �0 as a real constant (see also Appendix D)
[6,7]. In the Nambu basis, ϕ

†
k = [φ†

k,φ
T
−k], the full model is

written as Ĥ = 1
2

∑
k ϕ

†
kh(k)ϕk, where

h(k) = εkτ3σ0 + mxτ3σ1 + mzτ3σ3

+ λ(sin kxτ3σ2 − sin kyτ0σ1) − �0τ2σ2. (2)

τi (i = 1,2,3) are Pauli matrices in the Nambu space. Diago-
nalizing Eq. (2) gives the four quasiparticle bands En(k), with n

running from −2 to 2 in an order of increasingly higher energy.
Only the two low-energy quasiparticle bands, E±1(k), have
nontrivial topological properties and will be the main focus
of our following discussions [see Fig. 4(b) in Appendix B for
an illustration of the full band structures obtained by solving
Eq. (2)].

Now we list the fundamental symmetries of the model
relevant to our following discussions. First of all, a nonzero
m breaks the time-reversal symmetry of the model for all θ .
However, for all values of m and θ , the model preserves the
particle-hole symmetry, �−1h(k)� = −h(−k). The particle-
hole operator is defined as � = τ1σ0K , in which K denotes
complex conjugation. For θ = π/2 and 3π/2, the model has
a mirror reflection symmetry, which takes x → −x. The
operator acting on h0(k) for this mirror reflection symmetry
is Mx = iσ1, which gives M−1

x h0(k)Mx = h0(−kx,ky). The
transformation of the pairing term is M−1

x �(MT
x )−1 = �. For

the full model expressed in the Nambu basis, the mirror
symmetry is represented as M̃x = iτ3σ1. Finally, the RSOC
breaks the inversion symmetry of the model.

III. TOPOLOGICAL PHASE TRANSITIONS

To probe possible phases in the HM/sSC heterostructure
with different orientations of the magnetization, we have
calculated the energy spectra for both the bulk material and
a strip of 500 unit cells with two edges running along the y

direction. The calculations are based on Eq. (2). Qualitative
changes in the bulk and edge state spectra are obtained
when the value of θ is sweeping from 0 to 2π . Focusing
on the first quadrant of the cycle (θ ∈ [0,π/2]), Fig. 2 shows
results for a typical set of parameters and several particular
values of θ . Only the two low-energy quasiparticle bands

(a) (e)

ππ ππ

(b) (f)

ππ ππ

(c) (g)

ππ ππ

(d) (h)

ππ ππ

FIG. 2. Energy spectra for bulk (a, b, c, d) and strips (e, f, g, h) of
the system, for a typical set of parameters m = t > 0, λ = �0 = 0.2t ,
μ = −4.6t . The strips have 500 unit cells along the x direction.
θ = 0.03π for (a) and (e), θ = 0.06415π for (b) and (f), θ = 0.25π

for (c) and (g), θ = 0.5π for (d) and (h). The energies are in units
of t .

[E−1(k) and E1(k)] are shown. When θ � 0, the bulk is
fully gapped [Fig. 2(a)] and the edge state consists of two
counterpropagating modes [Fig. 2(e)] which are known as
chiral Majorana fermions [7,9]. Increasing θ to a parameter-
dependent critical value, θc, the two low-energy quasiparticle
bands are still separated by a local gap in the whole two-
dimensional (2D) Brillouin zone (BZ) but the global gap
disappears [Fig. 2(b)]. Correspondingly, one of the two chiral
edge modes becomes flat [Fig. 2(f)]. This critical point θc

is determined approximately in the limit of |λ|/m � 1 and
|�0|/m � 1 by

| tan θc| = |�0|
m

. (3)

See Appendix B for more details of the derivation of Eq. (3).
Increasing θ further, the energy overlap between the two
low-energy quasiparticle bands increases [Fig. 2(c)], and the
two chiral edge modes become unidirectional [Fig. 2(g)]. Then
at θ = π/2, not only is the bulk gap absent but the local gap
also closes at two nodes along the (0,ky) direction [Fig. 2(d)],
and the two edge modes become degenerate [Fig. 2(h)]. Since
the two low-energy quasiparticle bands are nondegenerate,
the appearance of the two nodes and the conelike dispersion
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close to them (see Appendix B for more details) indicates the
appearance of a 2D Weyl superconductivity phase [21–24].
The presence of only two Weyl nodes at different energies is
consistent with the fact that both time-reversal symmetry and
inversion symmetry are broken [25–27]. The phase changes
in the other ranges of θ are qualitatively similar. More
spectral properties of the edge states which are relevant to
the experimental detection of various phases can be found in
Appendix C.

In what follows, we identify the underlying bulk topological
invariants relevant to the phase transitions found above.
The properties of the Weyl superconductivity phase will be
analyzed later (see also Appendix B). In an earlier work by
Ghosh et al., a Pfaffian Z2 invariant for the 2D semiconductor
heterostructure was introduced from the particle-hole sym-
metry [28]. Since our system is also 2D and particle-hole
symmetric, the same Pfaffian Z2 invariant can be defined,
which turns out to be

P = sgn
[
�2

0 + ε2
k=(0,0) − m2

]
, (4)

where εk=(0,0) = −4t − μ; the function sgn(x) gives the sign
of a real number x. See Appendix A for more details on the
derivation of P . The phase is nontrivial (trivial) if P = −1
(P = 1). Clearly, the above Pfaffian invariant depends only
on the magnitude m of the exchange field and is blind to
the angle θ . According to Eq. (4), we would have a single

topological phase for all θ once m >
√
�2

0 + ε2
k=(0,0) [28]. This

is different from what we predicted for the global-gapless
phases in Figs. 2(g) and 2(h). Therefore we have to find some
finer criteria, if any, to discriminate the different phases in
Fig. 2.

Because time-reversal symmetry is broken in the present
2D system, a natural topological invariant to consider is the
Chern number. One way of calculating the Chern number is
through the Thouless-Kohmoto-Nightingale-den Nijs (TKNN)
formula [29]

C = 1

2π

∫∫
BZ

d2k · ∇k × A(k), (5)

where the Berry connection is defined as A(k) = i
∑

En(k)<0 <

un(k)|∇kun(k) >, with |un(k) > the eigenvector of the nth
quasiparticle band. We call C obtained from Eq. (5) the
TKNN number, which gives the Hall conductance of the
model (in units of e2/h). Since a local gap exists between
all consecutive pairs of the four quasiparticle bands for all θ

except π/2 and 3π/2, we are motivated to define another set of
Chern numbers related to the respective quasiparticle bands.
Defining the Berry connection for the nth quasiparticle band
as An(k) = i < un(k)|∇kun(k) >, the Chern number for the
nth quasiparticle band is defined as

Cn = 1

2π

∫∫
BZ

d2k · ∇k × An(k). (6)

When a bulk gap throughout the BZ is present, the TKNN
number is just a summation over the Chern numbers of the two
negative energy quasiparticle bands, C = ∑

n,En(k∈BZ)<0 Cn =
C−2 + C−1. For the present model C±2 = 0, thus C = C−1.
However, such a simple relationship breaks down when the two
low-energy quasiparticle bands (n = ±1) overlap in energy.

(a)

θ π
(b)

π

  π

FIG. 3. (a) TKNN number (C) and the bandwise Chern numbers
(Cn) for the two low-energy quasiparticle bands (n = ±1). (b) The
ky-resolved Zak phase Zn for the two low-energy quasiparticle bands
(n = ±1). The parameters are the same as those for Fig. 2.

An explicit calculation of C and Cn [29,30] shows that, upon
crossing the transition point from the bulk gapped phase
to the bulk gapless phase, C changes from an integer to
a nonintegral value but Cn remains quantized [Fig. 3(a)].
As we tilt the exchange field continuously to the in-plane
direction, C continuously approaches zero and Cn remains
quantized until the exchange field lies exactly along the
in-plane direction (θ = π/2 or 3π/2). By crossing the nodal
Weyl superconductivity phase, when the mz component of the
exchange field changes sign, the bandwise Chern numbers
Cn for the two low-energy quasiparticle bands (n = ±1) also
change sign [Fig. 3(a)]. In the Weyl superconductivity phase,
the Weyl nodes make the band-wise Chern number of the
two low-energy quasiparticle bands ill defined. And thus no
results for Cn (n = ±1) are shown in Fig. 3(a) for θ = π/2 and
3π/2. Therefore, we have shown that while the bulk gapped
phase is characterized by both the quantized TKNN number
and the quantized bandwise Chern number, the bulk gapless
phase with a local gap is characterized by a nonintegral TKNN
number and a quantized bandwise Chern number. The Weyl
superconductivity phase is a quantum critical point separating
two bulk gapless phases with opposite quantized bandwise
Chern numbers.
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The TKNN number shown in Fig. 3(a) can be detected by
the thermal Hall effect, which is a transverse thermal current in
response to a longitudinal temperature gradient. The formula
for the thermal Hall conductivity is [31–33]

ktr
xy = 1

4πT

∫
dEE2C(E)

∂f (E)

∂E
, (7)

where T is the temperature, f (E) = 1/(eβE + 1) is the Fermi
distribution function (β = 1/kBT , kB is the Boltzmann factor),
and C(E) is the TKNN number defined by Eq. (5) but with
the energy cutoff (zero) in the definition of A(k) replaced by
E. In the low-temperature limit, ktr

xy � −πT
12 C(E = 0). The

coefficient for the thermal Hall conductivity in the linear-T
regime therefore gives a direct measurement of the TKNN
number.

IV. THE 2D WEYL SUPERCONDUCTIVITY PHASE

For θ = π/2 and 3π/2, the gap between E−1(k) and
E1(k) closes at two Weyl nodes with conelike dispersions
(see Appendix B for explicit expressions for the low-energy
effective models of the Weyl nodes). It is well known that
accidental band degeneracies in two dimensions are vanish-
ingly improbable if no symmetry constraint exists [34–37]. It
is thus highly desirable to know whether the Weyl nodes in
the present system are ensured by a symmetry. We show that
the Weyl nodes and thus the Weyl superconductivity phase are
indeed ensured by an emergent symmetry for θ = π/2 and
3π/2, which is the mirror reflection symmetry Mx (M̃x).

The transformations of h0(k) and � under Mx are
M−1

x h0(k)Mx = h0(−kx,ky) and M−1
x �(MT

x )−1 = �. Turn-
ing to the eigenbasis of h0(k), we have U †(k)h0(k)U (k) =
hd (k), where hd (k) is a diagonal matrix storing the eigenen-
ergies of h0(k) and the unitary matrix U (k) stores the
eigenvectors in corresponding columns. For the explicit ex-
pression of U (k), see Appendix B. The pairing term becomes
�̃(k) = U †(k)�[U †(−k)]T. The mirror operation becomes
wave-vector dependent and is

Mxd (k) = U †(kx,ky)MxU (−kx,ky). (8)

hd (k) and �̃(k) now transform as M−1
xd (k)hd (k)Mxd (k) =

hd (−kx,ky) and

M−1
xd (k)�̃(k)

[
MT

xd (−k)
]−1 = �̃(−kx,ky). (9)

Now, focus on the mirror-invariant lines in the 2D
BZ, namely, (kx0,ky) with kx0 = 0, ± π . On these lines,
h0(−kx0,ky) = h0(kx0,ky). Thus, Mx and h0(kx0,ky) can be
diagonalized simultaneously since they commute with each
other. Defining U (kx0,ky) as the common eigenvectors of
Mx and h0(kx0,ky), clearly we have U (−kx0,ky) = U (kx0,ky).
From Eq. (8), Mxd (kx0,ky) is diagonal and stores the eigen-
values of Mx . Since Mx = iσ1 is k independent, Mxd (kx0,ky)
is also k independent with its two diagonal elements +i and
−i acting as a label of the two eigenvalues of h0(kx0,ky).
Explicitly, we have Mxd (kx0,ky) = iσ3. Substituting it into
Eq. (9), we have

iσ3�̃(kx0,ky)iσ3 = �̃(kx0,ky), (10)

which acts as a constraint on the four elements of the
pairing term expressed in the eigenbasis of h0(kx0,ky). Most

importantly, Eq. (10) ensures the vanishing of all intraband
pairing components, namely, �̃αα(kx0,ky) = 0 (α = ±). The
interband components, although they can be nonzero, only
change slightly the value of the energy spectrum and do
not influence the gap structure of the quasiparticle spectrum.
Therefore, we have verified that the Weyl nodes are protected
by the mirror symmetry Mx . From the generality of the above
derivation, the protection of superconducting gap nodes along
mirror invariant lines (2D) or planes [three-dimensional (3D)]
is a very robust feature and should be applicable to other
relevant systems.

For a 3D Weyl semimetal, the existence of the Fermi arc
can be understood from the quantized Chern number defined
in a reduced 2D subspace of the 3D BZ [38]. In a similar sense,
the Fermi line on the edge of the present 2D sample is found
to be associated with a quantized topological invariant defined
in the reduced one-dimensional (1D) subspace of the 2D BZ.
This topological invariant is the Zak phase [39]. By taking ky

as a parameter, the Zak phase for the nth quasiparticle band is
defined as

Zn(ky) =
∫ π

−π

dkxA
(x)
n (kx,ky). (11)

For θ = π/2 and 3π/2, the mirror symmetry acts effectively
as inversion symmetry for the quasi-1D model at each fixed
ky . The Zak phase in this case is known to take either of two
quantized values, zero or π [39]. As shown in Fig. 3(b) and
in comparison to Fig. 2(h), the edge state exists when the Zak
phase takes the nontrivial value of π . Thus, the edge states
can be regarded as the end states of the quasi-1D model. The
Weyl nodes act as phase boundaries separating two regions
with zero and π Zak phase. The correspondence between Zak
phase and the existence of edge states was also pointed out in
graphene [40].

V. EXPERIMENTAL CONSIDERATIONS

To observe the predicted topological phase transitions and
intermediate Weyl superconductivity phase, it is crucial to have
high-quality HM thin films with a single spin-nondegenerate
band at the Fermi surface. Fortunately, this has been shown
by Chung et al. to be achievable in several thin-film materials,
including atomically thin films of VTe, CrTe, and CrO2 [19]. In
addition, a hydrogenated graphene C6H1 with slight electron
doping was predicted recently to be a 2D HM with a single-
electron pocket around the � point [41]. This ideal 2D material
provides a perfect playground to realize the predictions in the
present work. Besides the materials mentioned above, it is still
an open question whether a simple Fermi surface with a single
spin-polarized band can be obtained in other materials. The
possibility could be manganites [42,43], double perovskites
like Sr2FeMoO6 [44], and electron-doped HgCr2Se4 [45].

Another important requirement to be satisfied is the possi-
bility to tune the direction of the spontaneous magnetization,
θ . In principle, this can be achieved by two kinds of methods
depending on the specific material. If the magnetic anisotropy
of the material is small, θ can be tuned over a large range
with an external magnetic field above the superconducting
transition temperature. In this case, all the phase transitions
together with the intermediate Weyl superconductivity phase
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can be observed. On the other hand, for a material with large
magnetic anisotropy, θ can still be tuned by controlling the
direction along which the thin film is cut from the bulk HM.
Though only some particular θ can be attained in this case,
some typical examples of the different phases can still be
observed. In particular, since the easy axis of the magnetization
is usually along a high symmetry direction, the condition for
the realization of the Weyl superconductivity phase can still
be fulfilled.

Finally, since the heterostructure consisting of a ferro-
magnet and a superconductor is a standard element in the
superconducting spintronics, a great deal of experimental
experiences have been accumulated [46–51]. Besides, the issue
of choosing a proper substrate to generate a large RSOC is also
a mature field [52–54]. Thus, our predictions should have good
prospect to be realized by experiments in the near future.

VI. SUMMARY

To summarize, we have found topological phase transitions
in a HM/sSC heterostructure as the orientation of the mag-
netization varies. While the transition between a fully gapped
phase and a gapless phase can be distinguished by a change in
the TKNN number, the transition between the gapless phase
with a local gap and a Weyl superconductivity phase is captured
by a bandwise Chern number. The protection of the Weyl
superconductivity phase by an emergent mirror symmetry is
established. The position of the Weyl nodes and the existence
of Fermi line edge states are captured by the Zak phase defined
in the 1D subspace of the 2D BZ. In order for our predictions
to be confirmed by future experiments, it is important to seek
the materials to form the HM/sSC heterostructure.
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APPENDIX A: PFAFFIAN Z2 TOPOLOGICAL INVARIANT

An important symmetry of our model is the particle-hole
symmetry, which is expressed as �−1h(k)� = −h(−k). The
particle-hole operator is represented as � = τ1σ0K = �K ,
where K denotes complex conjugation. As was shown by
Ghosh et al., a Z2 topological invariant can be defined from
the particle-hole symmetry of the model [28]. Namely, at the
particle-hole-invariant momenta Ki , an antisymmetric matrix
can be defined as W (k) = h(Ki)�. In terms of the Pfaffian of
W (k), a number that takes on discrete values of ±1 is defined
as

Q[h(Ki)] = sgn{inPf [W (Ki)]}, (A1)

where n = 2 is half of the rank of h(k). Since Pf [W (Ki)]2 =
det[h(Ki)�] = det[h(Ki)], Q[h(Ki)] changes sign only when
h(Ki) has a zero eigenvalue. Therefore, Q[h(Ki)] is invariant

once there is a gap in the spectrum of h(Ki). It was further
illustrated by Ghosh et al. that, when the Chern number is
well defined, its parity is directly related to the product of
the four invariants at the four Ki [K1 = (0,0), K2 = (π,0),
K3 = (0,π ), K4 = (π,π )]. The Z2 invariant related to all four
particle-hole-invariant momenta is defined as

P = Q[h(0,0)]Q[h(π,π )]

Q[h(π,0)]Q[h(0,π )]
. (A2)

For our present model defined as Eq. (2) of the main text, we
have

W (Ki) = εKi
iτ2σ0 + mxiτ2σ1 + mziτ2σ3 + �0iτ3σ2. (A3)

The Pfaffian and the Z2 invariant for Ki are

Pf[W (Ki)] = m2
x + m2

z − �2
0 − ε2

Ki
= m2 − �2

0 − ε2
Ki

, (A4)

and

Q[h(Ki)] = sgn
{
ε2

Ki
+ �2

0 − m2
}
. (A5)

Recalling the definition εk = −2t(cos kx + cos ky) − μ, and
our assumption that μ � −4t , we have

P = Q[h(K1)] = sgn
{
�2

0 + ε2
K1

− m2
}
. (A6)

An important feature of the above expression is that it depends
only on the magnitude m of the exchange field and does not
see the difference of phases induced by the changes in θ .

APPENDIX B: LOW-ENERGY EFFECTIVE MODEL

Because the pairing amplitude is usually much smaller
than other important energy scales in the problem, such as
the chemical potential and the exchange field in the present
HM, only the low-energy spin-polarized band which crosses
the chemical potential (thus contributing to the Fermi surface)
is important in the analysis of the physical properties. A
simplified approach of studying the low-energy physics is
to project the original model containing information both
of the high-energy band and of the low-energy band to an
effective model retaining only information of the low-energy
band [55,56]. In this section, we implement this reduction of
the model and show in some detail several physical quantities
that can be studied in terms of this approach.

We first repeat the definition of the model. Denoting the
basis vector as φ

†
k = [d†

k↑,d
†
k↓], the model Hamiltonian for the

HM thin film with a RSOC term induced by the formation of
the heterostructure is Ĥ0 = ∑

k φ
†
kh0(k)φk, where

h0(k) = εkσ0 + mxσ1 + mzσ3 + λ(sin kxσ2 − sin kyσ1).

(B1)

εk = −2t(cos kx + cos ky) − μ, mx = m sin θ , mz = m cos θ .
Definitions of other parameters are as explained in the main
text. The proximity-induced superconductivity in the HM
arising from coupling with an sSC is described by Ĥp =
1
2

∑
k φ

†
k�(k)φ†

−k + H.c., where �(k) = �0(k)iσ2. For the
sake of simplicity, we neglect the wave-vector dependence of
the pairing amplitude by taking �0(k) = �0 and so �(k) = �.
As usually is the case, we assume �0 much smaller than the
leading energy scales (t , m, and μ + 4t) in the problem.
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(a)

α

π

α

(b)

π

FIG. 4. (a) Eα(k) (α = ±) for m = t > 0, λ = 0.2t , μ = −4.6t ,
and θ = 0. (b) En(k) (n = −2, −1, 1, 2) for m = t > 0, λ = �0 =
0.2t , μ = −4.6t , and θ = 0. As is shown in the inset of (b), there is
a small gap of the size of about 0.05 eV between E−1(k) and E1(k).
The energies are in units of t . The horizontal dotted lines mark the
positions of the chemical potential.

h0(k) can be diagonalized by a unitary transformation
U †(k)h0(k)U (k) = hd (k), where hd (k) is a diagonal matrix
with the diagonal elements storing the two eigenvalues of
h0(k), and U (k) is a unitary matrix containing the eigenvectors
of h0(k) in corresponding columns. The two eigenenergies of
h0(k) are

Eα(k) = εk + α

√
m2

z + (mx − λ sin ky)2 + λ2 sin2 kx

= εk + αẼ(k), (B2)

where α = ±. Notice that Eα(k) (α = ±) are the electronic
energy bands in the normal state (i.e., without the proximity-
induced pairing term) and should be distinguished from the
quasiparticle bands En(k) (n = −2, −1, 1, 2) defined as
eigenvalues of Eq. (2) in the main text. As shown in Figs. 4(a)
and 4(b) are plots for Eα(k) and En(k) along (kx = 0,ky) and
for θ = 0. In all other figures of this paper, only the low-energy
parts of the energy spectrum are shown. U (k) is written as

U (k) =
(

u+(k) u−(k)

v+(k) v−(k)

)
, (B3)

where we choose(
uα(k)

vα(k)

)
= 1

Dα(k)

(
mx − λ sin ky − iλ sin kx

αẼ(k) − mz

)
, (B4)

where α = ± and Dα(k) =
√

2Ẽ(k)(Ẽ(k) − αmz). Clearly,
for λ �= 0, up-spin and down-spin states are mixed in a
nontrivial manner, and therefore eigenstates in each band no
longer point to the same direction in the spin subspace. In the
eigenbasis, the pairing term is rewritten as

�̃(k) = U †(k)�U ∗(−k). (B5)

Since only the E−(k) band contributes to the low-energy
properties, we can retain only this band and the pairing
term within this band to construct the low-energy effective
model. In the reduced Nambu space defined by the basis
ϕ̃
†
k = [d†

k,−,d−k,−], the low-energy effective model is written
as

H̃ = 1

2

∑
k

ϕ̃
†
k

(
E−(k) �̃−−(k)

�̃∗
−−(k) −E−(−k)

)
ϕ̃k

= 1

2

∑
k

ϕ̃
†
kh̃(k)ϕ̃k. (B6)

The intraband pairing amplitude is

�̃−−(k) = �0[u∗
−(k)v∗

−(−k) − u∗
−(−k)v∗

−(k)]. (B7)

For θ = 0, we have

�̃−−(k) = −i�0
λ

Ẽ(k)
(sin kx + i sin ky), (B8)

which indicates the formation of chiral px + ipy pairing on the
Fermi surface [19]. The effective pairing interaction vanishes
in the limit of λ = 0, even if �0 �= 0. The explicit expression
of �̃−−(k) for general θ is cumbersome. However, a universal
property is that �̃−−(k) vanishes for λ = 0. We will analyze
in what follows two special cases, from which we can extract
several important quantities of the system.

1. The critical angle θc

The first quantity we would like to determine is the
critical angle θc marking the first phase transition from the
phase with a bulk gap to the phase without a bulk gap but
with a ubiquitous local gap in the momentum space. The
superconducting gap opens along the Fermi circle determined
by E−(k) = −E−(−k). Since E−(k) is symmetrical in kx ,
the transition is driven by the qualitative change of the
quasiparticle spectrum along the ky direction. Thus, we focus
on the line (kx = 0,ky). The two Fermi points in this direction
that lie on the Fermi circle are determined by

ε0,ky
= 1

2

∑
α=±

√
m2

z + (mx + αλ sin ky)2. (B9)

Focusing on the limit of |λ|/m � 1, we can make a Taylor
expansion of the square roots in Eq. (B9) over λ and keep the
leading-order terms and get

− 2t cos ky − (μ + 2t) = m

(
1 + λ2

2m2
sin2 ky

)
. (B10)
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Among the two solutions to cos ky from the above equation,

cos ky = |2mt | ±
√

4m2t2 + λ2(2m2 + 2m(μ + 2t) + λ2)

sgn(mt)λ2
,

(B11)

the physical one is clearly the one corresponding to the
minus sign. The equation for the Fermi points can be further
simplified to

cos ky0 � −m + μ + 2t

2t
. (B12)

Take ky0 = arccos[−m+μ+2t

2t
]. The energy gaps are thus in-

troduced at (0,ky0) and (0, − ky0) with energies E−(0,ky0)
and E−(0, − ky0), respectively. The corresponding pairing
amplitudes are �̃−−(0,ky0) and �̃−−(0, − ky0). The transition
point θc is arrived at when the composite gap amplitude

�(ky0) = |�̃−−(0,ky0)| + |�̃−−(0, − ky0)| (B13)

equals the energy difference between the two Fermi points:

E(ky0) = |E−(0,ky0) − E−(0, − ky0)|. (B14)

In the limit of |λ|/m � 1 (together with the assumption
of |�0|/m � 1 made in deriving the low-energy effective
model), the condition �(ky0) = E(ky0) gives

| tan θc| = |�0|
m

. (B15)

Therefore we have reproduced Eq. (3) in the main text. Note
that Eq. (B15) gives the approximate values of all the four
critical angles (in the whole range of θ ∈ [0,2π )) which
separate the bulk gapped phase and the bulk gapless phase
with a ubiquitous local gap.

2. The Weyl nodes and the effective models close
to the Weyl nodes

In the main text, we have proved that the emergent mirror
symmetry for θ = π/2 (and also for θ = 3π/2) ensures the
presence of Weyl nodes along the mirror invariant lines which
cross the Fermi circle. Here, we reconfirm this conclusion from
the explicit expression of the low-energy effective model.

For θ = π/2, mx = m and mz = 0. The effective pairing
amplitude has a simple form:

�̃−−(k) = �0

2

[
λ(sin ky − i sin kx)

(
1

M+(k)
+ 1

M−(k)

)

+m

(
1

M+(k)
− 1

M−(k)

)]
, (B16)

where Mα(k) = √
(m + αλ sin ky)2 + λ2 sin2 kx (α = + or

−). On all mirror-invariant lines along which sin kx = 0, the
pairing amplitude �̃−−(sin kx = 0,ky) = 0. Thus, once the
Fermi circle crosses with one or several mirror-invariant lines,
it will give one or several pairs of Weyl nodes and result in a
Weyl superconductivity phase. For our model and assumption
on the parameters (μ ∼ −4t), the relevant mirror-invariant line
crossing the Fermi circle is along (0,ky). The Weyl points are
determined by the condition of E−(0,ky0) = −E−(0, − ky0),

which gives approximately for |λ|/m � 1

cos ky0 � −m + μ + 2t

2t
. (B17)

For the parameters that we focus on, the above equation gives
us a pair of solutions which correspond to the two Weyl nodes
at kx = 0 and

ky0 � ± arccos

[
− m + μ + 2t

2t

]
. (B18)

Introducing the relative momenta qx and qy close to the
Weyl node (0,ky0), the low-energy effective model can be
written in terms of qx and qy by making series expansions to
the terms in h̃(k) and retaining the leading-order terms. The
result turns out to be

h̃(qx,ky0 + qy) �
3∑

i=0

di(qx,qy ; ky0)τi, (B19)

where

d0(qx,qy ; ky0) = E−(0,ky0) + (λ cos ky0)qy

= E−(0,ky0) + v0qy, (B20)

d1(qx,qy ; ky0) = 0, (B21)

d2(qx,qy ; ky0) = λm�0

m2 − λ2 sin2 ky0
qx = v2qx, (B22)

and

d3(qx,qy ; ky0) = (2t sin ky0)qy = v3qy. (B23)

In the presence of the d0 term, on one hand the two Weyl nodes
have different energies, and on the other hand the two cones
are tilted along the ky direction, which are both clear from
Fig. 2(d) of the main text. d1(qx,qy ; ky0) = 0 is consistent
with our conclusion in the main text that the effective pairing
amplitude vanishes along the (0,ky) direction, which is ensured
by the mirror reflection symmetry. The coefficient of the d3

term, 2t sin ky0 = v3, has opposite signs for the two nodes.
Therefore, we can define the chirality for the two Weyl nodes
as c = sgn(v2v3), which takes the value of +1 and −1 for the
two nodes.

APPENDIX C: EXPERIMENTAL FEATURES OF THE
EDGE STATES

In Figs. 2(e)–2(h) of the main text, we have shown the
energy spectra for strips of the system at several typical values
of θ . The chiral edge states traversing the (local) gap are
seen clearly. On the other hand, the experimentally relevant
quantity related to the edge states is the spectral function for the
edge layers, rather than the full quasiparticle spectrum. In this
section, we give more numerical results on the experimentally
relevant spectroscopic properties of the chiral Majorana edge
states. These include the spectral functions and the local
density of states of the two edge layers. The spectral function is
defined as the imaginary part of the retarded Green’s function
for states on the edge layers. The integration of the spectral
function over the one-dimensional edge BZ (−π � ky < π )
then gives the density of states (DOS).
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To get the Green’s functions for the two edge layers of a
strip with two edges parallel (perpendicular) to the y (x) axis,
we bring the x coordinate of the model to the real space. This is
achieved by making a partial Fourier transformation to Eq. (2)
of the main text in terms of

dkσ = 1√
Nx

∑
nx

dnxkyσ e−ikxnx , (C1)

where σ is the spin label, Nx is the number of unit cells (layers)
of the strip along the x direction, and nx is a label for the layers
along x and takes the value from 1 to Nx . The lattice constant
has been taken as the length unit. In terms of the Nambu basis
defined in the mixed (nx,ky) space, ϕ†

nxky
= [φ†

nxky
,φT

nx,−ky
], the

model is no longer diagonal in nx and takes the form

Ĥ = 1

2

∑
nxky

ϕ
†
nxky

[h′(ky)ϕnxky
+ h+ϕnx+1,ky

+ h−ϕnx−1,ky
],

(C2)

where

h′(ky) = ε̃kτ3σ0 + mxτ3σ1 + mzτ3σ3

−λ sin kyτ0σ1 − �0τ2σ2, (C3)

h+ = −tτ3σ0 + λ

2i
τ3σ2, (C4)

and

h− = h
†
+ = −tτ3σ0 − λ

2i
τ3σ2. (C5)

ε̃k = −2t cos ky − μ. The retarded Green’s function for an
isolated layer is defined as

g(ky,ω) = [ω + iη − h′(ky)]−1, (C6)

where η is the positive infinitesimal and will be taken as a small
finite positive number (i.e., η = 10−5t) in actual calculations.
Consider a strip that is wide enough (i.e., Nx → ∞) so that
the finite-size effect is absent. Denote the retarded Green’s
function for the two edge layers with nx = 1 and Nx as GL

and GR , respectively. GL(ky,ω) and GR(ky,ω) are obtained
iteratively in terms of the following formula [57]:

G
(m)
L (ky,ω) = [

g−1(ky,ω) − h+G
(m−1)
L (ky,ω)h−

]−1
, (C7)

and

G
(m)
R (ky,ω) = [

g−1(ky,ω) − h−G
(m−1)
R (ky,ω)h+

]−1
. (C8)

m � 1 is the label for the number of iterations that has been
performed. The iterative calculation starts with G

(0)
L (ky,ω) =

G
(0)
R (ky,ω) = g(ky,ω) and ends when the differences between

every matrix element of G
(m)
L(R)(ky,ω) and that of G

(m−1)
L(R) (ky,ω)

are smaller than a certain precision set by hand. The converged
G

(m)
L (ky,ω) and G

(m)
R (ky,ω) are then taken as approximations

to GL(ky,ω) and GR(ky,ω). The spectral functions for states
on the two edges are then obtained from

AL(ky,ω) = − 1

π

2∑
i=1

Im[GL(ky,ω)]ii , (C9)

and

AR(ky,ω) = − 1

π

2∑
i=1

Im[GR(ky,ω)]ii , (C10)

where Im means taking the imaginary part of the specified
diagonal matrix element of the Green’s function. Finally, the
DOS for the two edges are obtained by summing over states
in the edge BZ:

ρL(ω) = 1

Ny

∑
ky

AL(ky,ω) (C11)

and

ρR(ω) = 1

Ny

∑
ky

AR(ky,ω), (C12)

where Ny is the number of unit cells in the sample along the y

direction, which is also the number of ky in the edge BZ.
Shown in Fig. 5 are the spectral functions calculated in the

above manner for the two edges (L for nx = 1, R for nx = Nx).
The model parameters (t > 0, m = t , λ = 0.2t , �0 = 0.2t ,
μ = −4.6t) are the same as those used for Figs. 2 and 3 of the
main text. Results for five typical θ angles are displayed. In
addition to the four angles considered for Fig. 2 of the main
text, we also include the results for θ = 0, for which the system
is equivalent to the well-known p + ip chiral superconductor,
as was shown explicitly in Eq. (B8). From Figs. 5(a)– 5(d)
for θ = 0 and 0.03π , which correspond to the fully gapped
phase with quantized TKNN number, the edge states on nx =
1 and Nx have separately positive and negative velocities.
As θ increases, the velocity of the edge states on nx = Nx

decreases. When θ is increased to the critical angle θc (�
0.06415π for the present parameters), the edge states on the
nx = Nx edge become flat [Fig. 5(f)]. Increasing θ further,
the system turns to the second phase (without a bulk gap but
with a ubiquitous local gap) and the edge states on nx = 1 and
Nx become unidirectional and copropagating [Figs. 5(g) and
5(h)]. Finally, in the Weyl superconductivity phase [Figs. 5(i)
and 5(j)], the two edge states have exactly the same dispersion
and both connect the projections of the two bulk Weyl nodes on
the edge BZ. Since the Weyl nodes are extended bulk states,
this means that the two edge modes are connected together
across the bulk of the strip through the two Weyl nodes.

The spectral functions shown in Fig. 5 are in principle
observable by the angle-resolved photoemission spectroscopy.
Another promising method of probing the θ -dependent edge
states is the scanning tunneling spectroscopy (STS). For a
clean sample with perfectly smooth and uniform edges, STS
measures the DOS on the two edges, which are defined by
Eqs. (C11) and (C12). The DOS of the edge states for five
typical θ values which are the same as those used in Fig. 5
are shown in Fig. 6. For θ = 0, the broad peak in the DOS
centering at ω = 0 can be understood as a combination of
the constant (proportional to the inverse of the velocity of
the edge states) DOS from the 1D edge states with linear
dispersion and the fact that the edge states penetrate more and
more into the bulk of the strip as (ky,ω) deviates from (0,0).
As θ increases and approaches θc, the edge states on nx = 1
(nx = Nx) become increasing dispersive (flat), so the DOS on
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FIG. 5. Spectral functions for the left (nx = 1, in a, c, e, g, i) and
right (nx = Nx , in b, d, f, h, j) edges of a strip of the heterostructure.
Five values of the angle are considered, including θ = 0 for (a)
and (b), θ = 0.03π for (c) and (d), θ = 0.06415π for (e) and (f),
θ = 0.25π for (g) and (h), θ = 0.5π for (i) and (j). The parameters
are taken as t > 0, m = t , λ = 0.2t , �0 = 0.2t , and μ = −4.6t .
The energy ω is in units of t . Darker color means larger spectral
function.

ρ α(ω
)

ω

α

ρ α(ω
)

ω

α

ω

ρ α(ω
)

α

ρ α(ω
)

ω

α

ρ α(ω
)

ω

α

FIG. 6. Density of states on the two edges of a wide strip of
the system, for five typical θ values. θ = 0 for (a), θ = 0.03π for
(b), θ = 0.06415π for (c), θ = 0.25π for (d), θ = 0.5π for (e). The
parameters are taken as t > 0, m = t , λ = 0.2t , �0 = 0.2t , and μ =
−4.6t . The energy ω is in units of t . L and R represent the two edges
with nx = 1 and nx = Nx .
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the right edge (nx = Nx) gets enhanced as compared to the
DOS on the left edge (nx = 1). The contrast between ρL(ω)
and ρR(ω) attains its summit at θ = θc, when the edge states
on the right edge become flat [Fig. 6(c)]. Then the difference
between ρL(ω) and ρR(ω) decreases as θ increases further
[Fig. 6(d)]. In the Weyl superconductivity phase [Fig. 6(e)],
the DOS on the edge layers are only slightly different from
the DOS for the HM with RSOC in the normal phase. The
two bulk Weyl nodes create two dips in the DOS of the edge
states and the Fermi line connecting the two Weyl nodes gives
a broad hump.

APPENDIX D: PROXIMITY EFFECT
IN A REALISTIC SETTING

To justify the simplified treatment of taking the proximity-
induced pairing amplitude as a constant, namely, �0(k) = �0,
we consider a microscopic model for the interface between the
HM and the sSC. The HM is still described by Ĥ0 defined in the
main text. The sSC is also defined on a 2D square lattice and is
assumed to match perfectly with the lattice of the HM. Defining
the basis vector for the sSC as ψ

†
k = [c†k↑,c

†
k↓], the normal state

is described by Ĥ ′
0 = ∑

k ψ
†
kh

′
0(k)ψk, where h′

0(k) = ε′
kσ0. Up

to nearest-neighbor hopping, ε′
k = ε0 − 2t ′(cos kx + cos ky) −

μ. ε0 measures the misalignment between the band centers of
the HM and the sSC. The pairing term of the sSC is written
as Ĥ ′

p = 1
2

∑
k ψ

†
k�ψ

†
−k + H.c., where � = �iσ2 with � a

real constant number. Assuming perfect interface between the
HM and the sSC, and assuming the coupling occurs through
nearest-neighbor hopping along the direction perpendicular to
the interface, we can model the coupling between the HM and
the sSC with a tight-binding term as [19,58]

Ĥmix =
∑

k

[φ†
kγ σ0ψk + H.c.], (D1)

where γ is a complex constant characterizing the strength of
hybridization between the electronic wave functions of the HM
and the sSC. In the Nambu basis ψ̃

†
k = [ψ†

k,ψ
T
−k], the model

for the sSC is written as

Ĥ ′ = 1

2

∑
k

ψ̃
†
kh

′(k)ψ̃k, (D2)

where h′(k) = ε′
kτ3σ0 − �τ2σ2. The hybridization term is

written as

Ĥmix = 1

2

∑
k

[ϕ†
kht ψ̃k + H.c.], (D3)

where ht = (Reγ )τ3σ0 + i(Imγ )τ0σ0.
The effective pairing induced in the HM through proximity

effect with the sSC is contained in the following self-energy
correction to the HM [19,58]:

�(k,ω) = ht [ω − h′(k)]−1h∗
t

= 1

ω2−ε′2
k −�2

(|γ |2(ω + ε′
k)σ0 iγ 2�σ2

−i(γ ∗)2�σ2 |γ |2(ω − ε′
k)σ0

)
.

(D4)

Clearly, the proximity-induced pairing term is an even function
of k and ω, and is a spin singlet. The phase factor resulting
from γ 2 is constant for all k and ω and thus is of no physical
consequence. In the low-energy regime and for states close
to the Fermi surface, the variation of the proximity-induced
pairing amplitude is very small. As a result, we are qualitatively
justified to work with an s-wave pairing term of constant
pairing amplitude to model the proximity effect from the sSC,
which gives Eq. (2) of the main text.
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