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Topologically stable gapless phases in nonsymmorphic superconductors
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We study the topological stability of nodes in nonsymmorphic superconductors (SCs). In particular, we
demonstrate that line nodes in nonsymmorphic odd-parity SCs are protected by the interplay between topology
and nonsymmorphic symmetry. As an example, it is shown that the E2u-superconducting state of UPt3 hosts the
topologically stable line node at the Brillouin zone face. Our theory indicates that the existence of spin-orbit
coupling is essential for protecting such a line node, complementing Norman’s group theory argument. Developing
the topological arguments, we also propose a generalization to point nodes and to other symmetry cases beyond
the group theory arguments.
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I. INTRODUCTION

Nontrivial node structures are a salient feature in uncon-
ventional superconductors (SCs), offering valuable clues to
aid in the understanding of the symmetry of Cooper pairs. The
node structures are detected by the power-law behaviors of
temperature dependence, such as the specific heat and NMR
relaxation rates [1,2]. Since the 1980s, superconductivity in
heavy fermion materials has attracted much attention, as these
materials may be candidates for unconventional SCs [3]. At the
early stage, the group theory is applied to the superconducting
states in order to limit possible Cooper pairs [4] by use
of spin-orbit coupling (SOC) and crystal structure in heavy
fermion materials. From a group-theoretical basis, Blount
showed the impossibility of line nodes in odd-parity SCs in
the presence of SOC [5]; this is called Blount’s theorem. In
contrast, real candidate materials of heavy fermion odd-parity
SCs such as UPt3 have often suggested the existence of line
nodes [6]. To resolve this contradiction, Norman pointed out
the possibility of a stable line node on the Brillouin zone (BZ)
face in odd-parity SCs due to nonsymmorphic symmetry [7],
which is a counter example of Blount’s theorem. Furthermore,
Mickliz and Norman proved that twofold screw symmetry
generally forces an odd representation of a Cooper pair to
vanish on the BZ face perpendicular to the screw axis within
the group theory [8].

Recently, unconventional SCs have been seen in a new
light, i.e., from the viewpoint of topology [9–18]. The stability
of nodes is given by topological numbers. The topological
approach enables us to classify symmetric and accidental
nodes in a unified way, and it may connect the topological
structures of bulk nodes to surface zero-energy states via the
bulk-edge correspondence [19–28]. Using this method, two of
the present authors proved the topological version of Blount’s
theorem [15] and updated the conventional Blount’s theorem
by connecting a bulk line node with a surface zero-energy flat
band instability. At the same time, the reinterpretation may
also raise new theoretical questions regarding the connection
between Norman’s argument and the topological approach,
i.e., the topological stability of line nodes in nonsymmorphic
odd-parity SCs.

In addition to unconventional SCs, similar gapless phases
have been suggested in the context of topological semimetals,
such as Dirac/Weyl semimetals [29–44] and line nodal
semimetals [45–54]. Among them, tight-binding model studies
in orthorhombic perovskite SrIrO3 showed stable line nodes
at the BZ face [55–57]. Because of nonsymmorphic symmetry
and strong SOC in SrIrO3, the line node is topologically
protected [58]. Recently, versatile topological semimetals
[59–65] and insulators [66–78] with a nontrivial influence of
nonsymmorphic symmetry have been anticipated theoretically.

In this paper, we establish a general theory to treat the
topological stability of nodes in nonsymmorphic SCs. Our
theory enables us to take into account nonsymmorphic crystal
in a topological manner, and it is a natural extension of the pre-
vious work [15]. The obtained results include the topological
Blount’s theorem. In a generalized framework, we will find that
the line node proposed by Norman is exactly protected by the
interplay between topology and nonsymmorphic symmetry,
the stability of which is characterized by a mirror topological
number. In addition to the topological number, we also reveal
that SOC plays a central role in protecting the line node. In
the absence of SOC, the Fermi surface acquires a fourfold
degeneracy at the BZ face, and the line node disappears. We
apply our theory to the E2u superconducting state of UPt3,
and we show the existence of nonsymmorphic-symmetry-
protected nodal rings at the BZ face by taking into account an
antisymmetric SOC. In addition, the topological approach pre-
dicts nontrivial nonsymmorphic-symmetry-protected nodes
beyond Norman’s argument. Thus, our results not only connect
the group theory studies with the topological classification,
but they also provide a guiding principle in the search for
nonsymmorphic-symmetry-protected nodes.

The paper is organized as follows. In Sec. II, we construct
the Bogoliubov–de Gennes (BdG) Hamiltonian, taking into
account nonsymmorphic crystals. This part is at the heart of the
mechanism of nonsymmorphic-symmetry-protected nodes. In
Sec. III, the stability of line nodes in nonsymmorphic odd-
parity SCs is discussed in two different ways: group-theoretical
classification of possible Cooper pairs in Sec. III A, and
topological classification of BdG Hamiltonians in Sec. III B.
We apply the topological argument to the E2u-representation
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superconducting state of UPt3 in Sec. III C. In Sec. IV,
we mention a possible generalization of nonsymmorphic-
symmetry-protected nodes. Finally, we summarize this paper
in Sec. V.

II. FORMULATION

First, we generalize the basis function of the underlying
Hamiltonian in order to take into account nonsymmorphic
crystals [79]. A nonsymmorphic crystal has at least two
atoms in the unit cell, and these atoms are separated by
a nonprimitive lattice vector. To involve the nonprimitive
lattice vector in a tight-binding Hamiltonian, we use Löwdin
orbitals ϕα(r − R − rα) [80], where R is a Bravais lattice
(BL) vector and rα denotes the position of an atom α. Here, α

(α = 1, . . . ,m) describes spin, sublattice indices, and orbital
degrees of freedom. The wave functions centered at different
sites (or with different indices α) are orthogonal to each
other. The basis function, which has a discrete translational
invariance in terms of BL vectors, is given by the linear
combination of Löwdin orbitals:

φk,α(r) = 1√
N

∑
R

eik·(R+rα )ϕα(r − R − rα), (1)

where N is the number of primitive unit cells in the crystal.
The function φk,α obeys the Bloch condition: φk,α(r + R) =
eik·Rφk,α(r), and, due to a nonprimitive lattice vector rα , it
satisfies the additional condition φk+G,α(r) = eiG·rαφk,α(r),
where G is a reciprocal-lattice (RL) vector. If rα = 0,
the Löwdin orbital reduces to the Wanner function. Using
the Löwdin orbitals, the tight-binding Hamiltonian is given
by

Hαβ(k) =
∫

d r φ∗
k,α(r)Hφk,β(r), (2)

where H is the single-particle Hamiltonian. The tight-binding
Hamiltonian satisfies

Hαβ(k + G) = e−iG·rαHαβ(k)eiG·rβ . (3)

We model nonsymmorphic superconductors (SCs) phe-
nomenologically using the Löwdin orbitals. We introduce a
creation operator of the wave function φk,α ,

c
†
k,α = 1√

N

∑
R

eik·(R+rα )cα(R + rα)†, (4)

where cα(R + rα)† is a creation operator of an electron with
index α located at R + rα . Equation (4) satisfies c

†
k+G,α =

eiG·rα c
†
k,α . The Bogoliubov–de Gennes (BdG) Hamiltonian is

given by

HBdG = 1

2

∑
k,α,β

(
c
†
k,α,c−k,α

)
H̃ (k)

(
ck,β

c
†
−k,β

)
, (5)

with

H̃ (k) =
(
Eαβ(k) �αβ(k)
�αβ(k)† −Eαβ (−k)T

)
, (6)

whereEαβ (k) = Hαβ(k) − μδαβ is the normal Hamiltonian, the
gap function �αβ(k) satisfies �αβ(−k) = −�βα(k) due to the

Fermi statistics, and μ is the chemical potential. Since the gap
function should be consistent with the structure of nonsymmor-
phic crystals, we require �αβ(k + G) = e−iG·rα�αβ(k)eiG·rβ .
Combining it with Eq. (3), the BdG Hamiltonian has the
constraint under an RL vector G:

H̃ (k + G) = ṼGH̃ (k)Ṽ †
G, ṼG =

(
VG 0
0 VG

)
, (7)

with VG = diag [e−iG·r1 , . . . ,e−iG·rm ] (α = 1, . . . ,m).
In the following, we summarize discrete symmetries that are

relevant to the stability of nodes. To start with, we introduce
particle-hole symmetry (PHS), time-reversal symmetry (TRS),
and spatial-inversion symmetry (IS) as follows:

PHS : CH̃ (k)C† = −H̃ (−k), C =
(

0 δαβ

δαβ 0

)
K, (8)

TRS : T H̃ (k)T † = H̃ (−k), T =
(

Tαβ 0
0 T ∗

αβ

)
, (9)

IS : PH̃ (k)P† = H̃ (−k), P =
(

Pαβ 0
0 ηP P ∗

αβ

)
. (10)

Here, T ≡ UtK , and Ut and P are m × m unitary
matrices satisfying Ut = −UT

t and P 2 = 1m. K is the complex
conjugation operator, and 1m is the identity matrix with
rank m. From Eqs. (9) and (10), TRS and IS, respectively,
require UtH (k)U †

t = H ∗(−k) and Ut�(k)UT
t = �∗(−k), and

PH (k)P † = H (−k) and P�(k)P T = ηP �(−k), where ηP

describes the parity of the gap function, i.e., ηP = +1 for
even parity and ηP = −1 for odd parity. For even-parity
gap functions, we have [C,P] = 0, while for odd-parity
gap functions, {C,P} = 0. Hereafter, we assume [C,T ] =
[P,T ] = 0 unless otherwise specified.

In addition to the nonspatial symmetries, crystal symmetry
may stabilize nodal structure. An element of a space group G

is given as {g|τ } with a point group element g and a translation
τ . Under {g|τ }, x transforms as x → D(g)x + τ . For {g|τ },
c
†
kα transforms as (see Appendix A)

{g|τ }c†k,α{g|τ }−1 = e−iD(g)k·τ c†D(g)k,βUβα(g)

≡ c
†
D(g)k,β Dk({g|τ })βα, (11)

where D(g) and U (g) are matrix representations of g in real
space and the space of α, respectively. When {g1|τ 1} and
{g2|τ 2} are elements of the little group leaving k invariant,
the associative property of Dk, Dk({g1|τ 1})Dk({g2|τ 2}) =
Dk({g1g2|D(g1)τ 2 + τ 1}), leads to

U (g1)U (g2) = ωk
g1,g2

U (g1g2), (12)

where ωk
g1,g2

≡ eik·[D(g1)−1τ 1−D(g2)−1D(g1)−1τ 1] is a factor system
in the group theory [82]. Here, the factor system ωk

g1,g2
is

nontrivial only if k is in a high-symmetric subspace on
the BZ face. Furthermore, if U (g1g2) = tg1,g2U (g2g1) with
tg1,g2 = ±1, the commutation relation between Dk({g1|τ 1})
and Dk({g2|τ 2}) becomes

U (g1)U (g2) = tg1,g2α
k
g1,g2

U (g2)U (g1), (13)

where αk
g1,g2

≡ ωk
g1,g2

/ωk
g2,g1

.
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From Eq. (11), HBdG in Eq. (5) transforms as

HBdG →
∑

c†D(g)kDk({g|τ })E(k)Dk({g|τ })†cD(g)k

+
∑

c†D(g)kDk({g|τ })�(k)D−k({g|τ })T c−D(g)k

+ · · · (14)

under {g|τ }. Since the normal Hamiltonian is invariant under
G, we have

Dk({g|τ })E(k)Dk({g|τ })† = E(D(g)k). (15)

Moreover, in order for {g|τ } to be the symmetry of the
superconducting state, the gap function should obey

Dk({g|τ })�(k)D−k({g|τ })T = ηC,g�(D(g)k), (16)

with ηC,g = ±1. For ηC,g = 1(−1), the right-hand side of Eq.
(14) coincides with HBdG trivially (by performing the π -gauge
rotation of c

†
kα). The phase factors e−iD(g)k·τ are canceled in

Eqs. (15) and (16), so we have

U (g)E(k)U (g)† = E(D(g)k), (17)

U (g)�(k)U (g)T = ηC,g�(D(g)k). (18)

In the matrix form of the BdG Hamiltonian, Eqs. (17) and (18)
are summarized as

Ũ (g)H̃ (k)Ũ (g)† = H̃ (D(g)k), (19)

with Ũ (g) = diag[U (g),ηC,gU (g)∗]. We also have CŨ (g) =
ηC,gŨ (g)C.

Since we are interested in the influence of the crystal
symmetry on the nodes, we focus on the behavior of the BdG
Hamiltonian near a node at k0, where the position of a node
is defined by det[H̃ (k0)] = 0. We assume that k0 lies in a
high-symmetry subspace of the BZ, and {g|τ } belongs to the
little group of k0, i.e., D(g)k0 − k0 is an RL vector. With the
condition (7), the space-group operation {g|τ } on the BdG
Hamiltonian at k + k0 yields

Ũk0 (g)H̃ (k + k0)Ũk0 (g)† = H̃ (D(g)k + k0), (20)

where Ũk0 (g) ≡ Ṽ
†
D(g)k0−k0

Ũ (g). Hence, nodes at k0 obey the

symmetry operation Ũk0 (g) rather than Ũ (g). Consider the
commutation relation between {g1|τ 1} and {g2|τ 2}, which
belong to the little group of k0. The product of Ũk0 (g1) and
Ũk0 (g2) is calculated as (see Appendix B)

Ũk0 (g1)Ũk0 (g2) = ωk0
g1,g2

Ũk0 (g1g2). (21)

Therefore, Ũk0 satisfies the same relationship as Eq. (12),
implying that VG gives the correct factor system. In addition,
if Ũk0 (g1g2) = tg1,g2Ũk0 (g2g1), we obtain

Ũk0 (g1)Ũk0 (g2) = tg1,g2α
k0
g1,g2

Ũk0 (g2)Ũk0 (g1), (22)

which coincides with Eq. (13).
In closing this section, we remark on a few properties of

the factor system ωk
g1,g2

. In the case in which {g1|τ 1} and
{g2|τ 2} are an order-2 operator, i.e., twofold screw (rotation),
glide (reflection), and spatial-inversion symmetries, αk

g1,g2
of

the factor system is simplified as

αk
g1,g2

= eiD(g1)D(g2)k·{[D(g2)τ 1−τ 1]−[D(g1)τ 2−τ 2]}. (23)

In addition, PHS and TRS act trivially in real space, i.e.,
D(C) = D(T ) = 13, so ωk

g,C = ωk
g,T = 1 for any {g|τ } ∈ G

and k. In the following sections, Eqs. (22) and (23) are essential
for nodes protected by nonsymmorphic symmetry.

III. LINE NODE IN NONSYMMORPHIC ODD-PARITY
SUPERCONDUCTORS

In this section, we revisit a line node in odd-parity SCs
predicted by Micklitz and Norman [7,8]. As the minimal
condition, consider a time-reversal invariant odd-parity SC
with twofold screw symmetry. The superconducting state
possesses PHS C (C2 = 1), TRS T (T 2 = −1), IS P (P2 = 1
and {C,P} = 0), and the twofold screw symmetry whose axis
is perpendicular to a line node. When the screw axis is chosen
to be the z axis, the twofold screw operator is described
algebraically by {C2z| 1

2 ẑ}, where ẑ is a unit lattice vector along
the z axis, and C2z is a twofold rotation operator around the
z axis. The matrix representation of {C2z| 1

2 ẑ} in Eq. (11) is

Dk({C2z| 1
2 ẑ}) = e−i

kz
2 U (C2z). Combining the twofold screw

with P , a mirror-reflection operator is also defined as

Dk

({
PC2z

∣∣∣1

2
ẑ
})

= Dk

({
Mxy

∣∣∣1

2
ẑ
})

= e−i
kz
2 U (Mxy), (24)

where Mxy is the mirror-reflection operator with respect to the
xy plane. Due to the spinor representation of rotation, we have
U (C2z)2 = U (Mxy)2 = −1. By calculating the factor system
in Eq. (23), the commutation relation between Dk({Mxy | 1

2 ẑ})
and P yields

U (Mxy)P = eikzPU (Mxy). (25)

Here, we implicitly assume that P commutes with U (Mxy) as
usual. More general cases are discussed in Sec. IV. In what
follows, we elucidate the existence of stable line nodes in
odd-parity SCs in two different ways. In Sec. III A, we rely
on the group-theoretical method by focusing on the symmetry
of Cooper pairs. Then, in Sec. III B, we develop a topological
approach.

A. Group-theoretical approach

In this subsection, we prove the existence of a stable line
node at the BZ face based on the group-theoretical method. The
following argument essentially follows Norman’s argument [7]
but with some simplification. When TRS and IS are present
in a normal metal, Kramer’s doublet exists at an arbitrary k,
labeled by |k〉 and PT |k〉. Here, |k〉 represents an electronic
state with momentum k and a pseudospin β (under PT : β →
−β). |k〉 and PT |k〉 correspond to spin-up and spin-down
electronic states in the SOC free limit. Also, P |k〉 and T |k〉
describe Kramer’s doublet at −k. When electrons at k and
−k form a Cooper pair, we have a single even-parity pairing
(k,T k) − (PT k,P k) and three odd-parity pairings (k,P k),
(PT k,T k), and (k,T k) + (PT k,P k), where (.,.) represents
the electron pairs forming the Cooper pair. Introducing the
d-vector representation, each spin-triplet pairing is described
by −dx + idy , dx + idy , and dz, respectively. Here, we assume
time-reversal invariant spin-triplet SCs that require d ∈ R3. To
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obtain a line node in three-dimensional momentum space, it is
necessary to fulfill d = 0 along a curve on the Fermi surface.
However, it is vanishingly improbable to satisfy the three
conditions on the Fermi surface at the same time. Thus, we
need crystal symmetry. A line node may appear on a cross line
between the Fermi surface and a higher symmetric plane where
some of d vanishes, so here we consider mirror-reflection
symmetry. On the mirror-invariant plane, an electronic state
|k〉 is an eigenstate of the mirror-reflection operator. Without
loss of generality, we assume that |k〉 has the mirror-reflection
eigenvalue +i. Then, the mirror-reflection eigenvalue of other
electrons is systematically determined by the commutation
relation between T , P , and U (Mxy). Likewise, the mirror-
reflection eigenvalue of Cooper pairs is given by the product
of that of two electrons, and it takes ±1. We have a mirror-
reflection symmetry protected line node if mirror-reflection
symmetry forces all components of the d vector to vanish
simultaneously on the mirror-invariant plane.

First, consider the mirror-reflection symmetry in Eq. (24)
and the mirror-invariant plane at kz = 0. From Eq. (25),
[P,U (Mxy)] = 0. We also have [T ,U (Mxy)] = 0. With the
antiunitarity of T in mind, |k〉 and P |k〉 take the mirror-
reflection eigenvalue +i, and T |k〉 and PT |k〉 take −i. Thus,
the Cooper pairs (k,T k) and (PT k,P k) have the mirror-
reflection eigenvalue +1, whereas (k,P k) and (PT k,T k) have
−1. [See Fig. 1(a).] Hence, when the Cooper pair takes
the mirror-reflection eigenvalue +1, only the dz component
consisting of (k,T k) and (PT k,P k) survives on the mirror-
invariant plane, while when the Cooper pair takes −1, the other
dx and dy components are nonvanishing. That is, whichever
mirror-reflection eigenvalue you take, dx , dy , and dz cannot
vanish simultaneously, which means that mirror-reflection
symmetry does not allow a line node in spin-triplet SCs.
Accordingly, a line node at kz = 0 is unstable in time-reversal
invariant spin-triplet SCs with and without mirror-reflection
symmetry. This result is known as Blount’s theorem [5].

Next, consider the mirror-invariant plane at kz = π .
From Eq. (25), we obtain {P,U (Mxy)} = 0 in addition to
[T ,U (Mxy)] = 0, leading to +i for |k〉 and PT |k〉, and −i

for P |k〉 and T |k〉. In contrast to the mirror-invariant plane
at kz = 0, all of the Cooper pairs (k,T k), (PT k,P k), (k,P k),
and (PT k,T k) have the same mirror-reflection eigenvalue +1.
[See Fig. 1 (b).] That is, all components of the d vector vanish
simultaneously when the Cooper pair takes −1, leading to
a stable line node at the BZ face [7,8]. This result does not
contradict Blount’s theorem since the commutation relation
between P and U (Mxy) changes at the BZ face. To sum up,
the mirror-reflection symmetry allows a symmetry-protected
line node only when {P,U (Mxy)} = [T ,U (Mxy)] = 0 and the
Cooper pair is odd under the mirror-reflection operation.

Although it is not clear in Norman’s original argument, it is
important for the SOC to have a stable line node in odd-parity
SCs. Without the SOC, there is fourfold degeneracy on the
Fermi surface at kz = π : As mentioned above, |k〉 and PT |k〉
have the same eigenvalue of U (Mxy) at kz = π . Since |k〉
and PT |k〉 have the same momentum k, there is twofold
degeneracy at each k in the U (Mxy) = i subsector. In the
absence of SOC, on the other hand, spin is a good quantum
number, so |k〉 and PT |k〉 can be written as |k ↑〉 and PT |k ↑〉,
respectively. In this case, we also have full spin-rotation

|k〉
i sector

-i sector

P|k〉

(a) [P,U(Mxy)]=[T,U(Mxy)]=0

i sector

-i sector

T|k〉

PT|k〉

|k〉,PT|k〉

(b) {P,U(Mxy)}=[T,U(Mxy)]=0

T|k〉,P|k〉

Fermi surface

kx

kx kx

kx

ky

ky

ky

ky

FIG. 1. Schematic illustration of the mirror-reflection eigenvalue
of electron states, assuming that U (Mxy)|k〉 = +i|k〉. In the presence
of TRS and IS, Kramer’s degeneracy occurs at any k. The blue
points indicate the electron states on the Fermi surface. |k〉 and
PT |k〉 are the Kramer’s pair located at k and P |k〉 and T |k〉 at
−k. If mirror-reflection symmetry is present, each electronic state
has the mirror-reflection eigenvalue ±i on the mirror-invariant plane,
which is determined systematically according to the commutation
relation between P , T , and U (Mxy). Parts (a) and (b) describe
the case of [P,U (Mxy)] = [T ,U (Mxy)] = 0 and of {P,U (Mxy)} =
[T ,U (Mxy)] = 0, respectively. The upper (lower) figure represent the
mirror-reflection eigenspace with +i (−i). The Cooper pair has the
mirror-reflection eigenvalue +1 (−1) if two electrons that form a
Cooper pair lie in the different (same) eigenspace. Note that, in case
(b), the Fermi surface needs a noncentrosymmetric shape in each
mirror eigenspace in order to avoid a fully gapped SC.

symmetry, which can flip the spin and the eigenvalue of
U (Mxy) at the same time. Thus, using spin-rotation symmetry,
we obtain |k ↓〉 and PT |k ↓〉, which have the same energy
and momentum as |k ↑〉 and PT |k ↑〉, but they have the
different eigenvalue −i of U (Mxy). In total, we have fourfold
degeneracy on the Fermi surface at kz = π .

In this situation, we cannot have a stable line node in
general. Because of the additional degeneracy, there are
additional possible Cooper pairs (k ↑ ,T k ↓), (PT k ↑ ,P k ↓),
(k ↑ ,P k ↓), and (PT k ↑ ,T k ↓), which take the mirror-
reflection eigenvalue −1. Thus, even when the Cooper pair is
odd under the mirror reflection, the d vector of the additional
Cooper pair survives at kz = π . Consequently, no stable line
node can be obtained.

B. Topological approach

Here we prove the stability of the line node from a
topological point of view. We assume that line nodes exist at
kz = 0 and kz = π . Let H̃ (k) be the BdG Hamiltonian defined
by Eq. (6). From Eq. (19), the action of {Mxy | 1

2 ẑ} on the BdG
Hamiltonian is

Ũ (Mxy)H̃ (kx,ky,kz)Ũ (Mxy)† = H̃ (kx,ky, − kz). (26)
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For mirror-reflection symmetry, Eq. (18) becomes U (Mxy)�
(kx,ky,kz)U (Mxy)†=ηC,M�(kx,ky,−kz), under which Ũ (Mxy)
= diag[U (Mxy),ηC,MU (Mxy)∗] obeys CŨ (Mxy) = ηC,MŨ

(Mxy)C. We label the position of a line node as kM for
kz = 0 and k′

M for kz = π , which are invariant under the
mirror-reflection operation up to an RL vector. From Eq. (20),
we have

Ũ (Mxy)H̃ (k + kM )Ũ (Mxy)† = H̃ (D(Mxy)k + kM ), (27)

Ũk′
M

(Mxy)H̃ (k + k′
M )Ũk′

M
(Mxy)† = H̃ (D(Mxy)k + k′

M ),

(28)

where Ũk′
M

(Mxy) = V
†
−2π ẑŨ (Mxy) = V2π ẑŨ (Mxy). It is found

from Eqs. (21) and (25) that V2π ẑ gives rise to the commu-
tation relation [P,Ũ (Mxy)] = {P,Ũk′

M
(Mxy)} = 0. Hence, the

commutation relation between mirror reflection and inversion
differs between the mirror-invariant planes at kM and k′

M . As
shown below, this difference is crucial for protecting a line
node at the BZ face.

To argue the topological stability of the line node, we
employ the Clifford algebra extension method [14,15,83,84],
which leads to the correct topological classification of the
gapped systems. For gapless nodes, one can consider a sphere
or a circle enclosing the gapless nodes in the momentum
space, instead of the whole BZ. Since the Hamiltonian of
the nodes is fully gapped on the sphere or the circle, the
topological classification of gapped systems is also applicable
to the gapless nodes. Following Ref. [15], we expand the BdG
Hamiltonian around a line node, yielding a massless Dirac
Hamiltonian,

H̃ (k + kM ) � v1kzγ1 + v2k‖γ2, (29)

where k‖ is momentum parallel to the mirror-invariant plane,
and we neglect terms of order kn (n > 2). The γ matrices
satisfy γ 2

1 = γ 2
2 = 1m and {γ1,γ2} = 1. The same expansion

is applied to the BdG Hamiltonian at k + k′
M as well. For

the Hamiltonian expanded around the line node, a symmetry
operation is relevant only when it does not change the position
of the line node. PHS, TRS, and IS transfer kM to −kM (k′

M

to −k′
M ) in the BZ, only their combinations are meaningful.

For this reason, we consider the combined symmetry operators
CP and CT , where PT is constructed from the combination
of CP and CT . Furthermore, the mirror-reflection operation
(27) or (28) also does not change the position of the line node
and is also relevant to the line node stability.

For the massless Dirac Hamiltonian, the gap opening at
nodes is equivalent to the existence of a mass term. Hence, the
line node can be stable if Eq. (29) does not have any mass term
under the symmetry constraint. The Clifford algebra extension
method allows us to count all of the possible mass terms in
Dirac Hamiltonians and clarify relevant topological numbers.
Mathematically, the space of mass terms is described by the
classifying space, Ci (i = 0,1) and Rj (j = 0, . . . ,7), and
the topological number is defined by the zeroth homotopy
group of the classifying space, π0(Ci) and π0(Rj ) (cf. Refs.
[15,83] for more information). If the topological number is
zero, a mass term creates a gap, i.e., the line node is unstable,
whereas if the topological number is nonzero, such a mass
term is forbidden by topology and symmetry. In preparation

for the calculation, we define a set of Clifford algebras. We
have the complex Clifford algebra Cln = {l1, . . . ,ln} with
{li ,lj } = δij when the Hamiltonian does not have any antiuni-
tary symmetry, whereas we adopt the real Clifford algebra
Clp,q = {e1, . . . ,ep; ep+1, . . . ,ep+q} when the Hamiltonian
has antiunitary symmetry, where ei is a Clifford algebra
satisfying {ei,ej } = 0 (i 
= j ), and e2

i = −1 (1 � i � p) and
e2
i = +1 (p + 1 � i � q). li and ei are constructed from γi’s

and symmetry operators for the underlying Hamiltonian. In
addition, in order to input the imaginary number i in the real
Clifford algebra, we introduce a generator J (J 2 = −1), which
anticommutes only with antiunitary operators.

For illustration purposes, we first examine the line node
stability in odd-parity SCs without assuming mirror-reflection
symmetry. Odd-parity superconductivity implies the anticom-
mutation relation {C,P} = 0 with P2 = 1. In the case of TRS
breaking odd-parity SCs, we have γ1, γ2, J , and CP . Adjusting
the anticommutation relation between them, the set of Clifford
algebra is constructed as Cl2,2 = {CP,JCP; γ1,γ2}, where
(CP)2 = (JCP)2 = −1. According to Ref. [15], we calculate
the Clifford algebra extension problem in terms of γ2,
leading to Cl2,1 → Cl2,2 and the classifying space R7. Since
π (R7) = 0 [83], a line node is topologically unstable. On the
other hand, in the case of time-reversal invariant odd-parity
SCs, we need to add CT in the above set. Hence, the set
of Clifford algebra becomes Cl3,2 = {CP,JCP,CT ; γ1,γ2},
where (CT )2 = −1. The Clifford algebra extension is Cl3,1 →
Cl3,2, resulting in R6 and π0(R6) = 0. Thus, a line node is
topologically unstable as well. These results imply that an
additional symmetry is necessary to stabilize a line node in
odd-parity SCs with and without TRS. In what follows, we cal-
culate the Clifford algebra extension problem in time-reversal
invariant odd-parity SCs with mirror-reflection symmetry, and
we compare it with the group-theoretical results.

First, consider a line node in the mirror-invariant plane
at kz = 0, in which the mirror-reflection operator satisfies
[P,Ũ (Mxy)] = [T ,Ũ (Mxy)] = 0. The commutation relation
between U (Mxy) and the combined operators becomes

CPŨ (Mxy) = ηC,MŨ (Mxy)CP, (30a)

CT Ũ (Mxy) = ηC,MŨ (Mxy)CT . (30b)

In the presence of mirror-reflection symmetry, we
have γ1, γ2, J , CP , CT , and Ũ (Mxy) as candidates
of the Clifford algebra. Taking into account the sign
of ηC,M , these algebras are packed in the set of Clif-
ford algebras as Cl3,3 = {CP,JCP,CT ; γ1,γ2,γ1Ũ (Mxy)}
for ηC,M = +1 and Cl3,2 ⊗ Cl0,1 = {CP,JCP,CT ; γ1,γ2} ⊗
{; JCT Ũ (Mxy)} for ηC,M = −1, where JCT Ũ (Mxy) with
[JCT Ũ (Mxy)]2 = +1 commutes with the other Clifford alge-
bras and does not affect the extension problem. Calculating the
Clifford algebra extension problem in terms of γ2, we obtain
π0(R7) = 0 for ηM,C = +1 and π0(R6) = 0 for ηC,M = −1.
Therefore, a line node is topologically unstable in both cases.
As a result, mirror-reflection symmetry cannot stabilize a line
node in time-reversal invariant odd-parity SCs. This result,
together with the result without mirror-reflection symmetry, is
the topological version of Blount’s theorem [15].

Next, consider a line node at kz = π . Taking into account
the effect of V2π ẑ , we replace Ũ (Mxy) with Ũk′

M
(Mxy). Then,
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the nontrivial factor system changes the commutation relation
between IS and the mirror-reflection symmetry operator, so
we obtain

CPŨk′
M

(Mxy) = −ηC,MŨk′
M

(Mxy)CP, (31a)

CT Ũk′
M

(Mxy) = ηC,MŨk′
M

(Mxy)CT . (31b)

Hence, the commutation relation with CP changes.
For ηC,M = +1, the set of Clifford algebras is given
by Cl4,2 = {CP,JCP,CT ,J γ1Ũk′

M
(Mxy); γ1,γ2} and

the Clifford algebra extension becomes Cl4,1 → Cl4,2,
leading to R5 and π0(R5) = 0. Thus, a line node
is topologically unstable. On the other hand, for
ηC,M = −1, the set of Clifford algebras is constructed as
Cl3,2 ⊗ Cl1,0 = {CP,JCP,CT ; γ1,γ2} ⊗ {CT Ũk′

M
(Mxy); }.

Here, CT Ũk′
M

(Mxy) with [CT Ũk′
M

(Mxy)]2 = −1 commutes
with the other Clifford algebras and thus plays a role of the
complex factor. Then, the set of Clifford algebras changes
to the complex case [83], Cl3,2 ⊗ Cl1,0 � Cl5. The Clifford
algebra extension becomes Cl4 → Cl5, leading to C0 and
π0(C0) = Z. As a result, a line node at the BZ face can be
topologically stable for mirror-odd (and odd-parity) pairing
states. This result reproduces Norman’s result, in spite of the
fact that the argument is completely different. In Sec. III C,
based on a recently proposed model of UPt3, we show that the
line node at the BZ face actually has a nontrivial topological
number.

In the topological approach, we can generalize the above
result to TRS breaking odd-parity SCs. The Clifford al-
gebra extension is given by removing CT from the set
of Clifford algebras. On the mirror-invariant plane at kz =
0, the set of Clifford algebras is constructed as Cl2,3 =
{CP,JCP; γ1,γ2,γ1Ũ (Mxy)} for ηC,M = +1 and Cl3,2 =
{CP,JCP,J γ1Ũ (Mxy); γ1,γ2} for ηC,M = −1. From the Clif-
ford algebra extension problem in terms of γ2, we obtain
π0(R0) = Z for ηC,M = +1 and π0(R6) = 0 for ηC,M = −1.
Thus, a line node at kz = 0 is topologically stable when
ηC,M = +1. On the other hand, on the mirror-invariant plane
at kz = π , the mirror-reflection operator is Ũk′

M
(Mxy), which

obeys CPŨk′
M

(Mxy) = −ηC,MŨk′
M

(Mxy)CP . Since the only
difference between the above commutation relation and Eq.
(30a) is a minus sign in ηC,M , we can obtain the topological
structure at kz = π from that at kz = 0 by changing the
sign of ηC,M . Therefore, a line node at kz = π can be
topologically stable when ηC,M = −1. In conclusion, there
exists a topologically stable line node at kz = π regardless of
TRS when the Cooper pair is odd under the mirror-reflection
operation. It should be noted here that the possibility of
stable line nodes at kz = 0 in the above is overlooked in
the group-theoretical method: Although only the original
mirror-reflection symmetry exists at kz = 0, there may be
a stable line node. An example of the stable line node at
kz = 0 has been given in Appendix 3 in Ref. [15]. This result
suggests that the topological approach is more powerful than
the group-theoretical method.

Finally, we present the topological number of nodal rings in
the mirror-invariant plane. (Generally, a line node on a plane
forms a nodal ring.) As shown in the above, a nodal ring is
characterized by an integer. The topological number on the

mirror-invariant plane is defined by

Qλ ≡ n>
occ,λ − n<

occ,λ ∈ Z, (32)

where n>
occ,λ (n<

occ,λ) is the number of occupied states with
mirror-reflection eigenvalue λ outside (inside) a nodal ring.
We readily verify that Qλ is nontrivial only if [CP,Ũ (Mxy)] =
0 in TRS breaking odd-parity SCs or [CP,Ũ (Mxy)] =
{CT ,Ũ (Mxy)} = 0 in time-reversal invariant odd-parity SCs.
This is because CP symmetry leads to n

>(<)
occ,λ = Nλ − n

>(<)
occ,λ

when {CP,Ũ (Mxy)} = 0. (Nλ is the total number of eigen-
states with λ and does not depend on k.) This means that
n>

occ,λ = n<
occ,λ = Nλ

2 , leading to Qλ = 0. In the same way, CT
symmetry leads toQλ = 0 when [CT ,Ũ (Mxy)] = 0. Applying
Qλ to time-reversal invariant odd-parity SCs, the commutation
relations at kz = 0 are given by Eqs. (30a) and (30b), so
Qλ is always trivial. On the other hand, the commutation
relations at kz = π are given by Eqs. (31a) and (31b). That
is, Qλ is nontrivial only when ηC,M = −1. Accordingly, Qλ

coincides with the above argument. Note that the absence
of SOC leads to Qλ = 0 even when ηC,M = −1. (See
Appendix C.)

C. Application to superconducting state in UPt3

We demonstrate the nonsymmorphic-symmetry-protected
line node concretely in the tight-binding model for the
E2u-superconducting state of UPt3 B-phase [85]. The BdG
Hamiltonian is given by

Emm′ss ′ (k) = ξ (k)δm,m′δs,s ′ + amm′ (k)δs,s ′

+ (−1)3−mαg(k) · sss ′δm,m′ , (33a)

�mm′ss ′ (k) = �√
2

[
�a

mm′ss ′ (k) + i�b
mm′ss ′ (k)

]
, (33b)

where m = 1,2 and s =↑ , ↓ are indexes of sublattice and spin,
respectively. �a(k) and �b(k) represent the order parameter in
the superconducting state of a two-dimensional irreducible
representation E2u. Taking into account the local violation
of inversion symmetry, which gives rise to the sublattice-
dependent Zeeman-type SOC [86,87], each term in the normal
Hamiltonian is described as

ξ (k) = 2t

3∑
i=1

cos k‖ · ei + 2tz cos kz − μ, (34a)

a11 = a22 = 0, (34b)

a12(k) = a21(k)∗ = 2t ′ cos
kz

2

3∑
i=1

eik‖·r i , (34c)

g(k) = ẑ
3∑

i=1

sin k‖ · ei , (34d)

with k‖ = (kx,ky,0). As in Fig. 2(a), e1 = (1,0,0), e2 =
(− 1

2 ,
√

3
2 ,0), and e3 = (− 1

2 ,−
√

3
2 ,0) are unit vectors in the

two-dimensional triangular lattice, and r1 = ( 1
2 , 1

2
√

3
, 1

2 ), r2 =
(− 1

2 , 1
2
√

3
, 1

2 ), and r3 = (0, − 1√
3
, 1

2 ) are nonprimitive lattice
vectors in two dimensions. The symmetry-allowed gap
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FIG. 2. (a) Crystal structure of UPt3, where black points indicate
the position of U ions [85]. (b) Fermi surfaces at kz = π from the
tight-binding Hamiltonian (33a) with the parameters (t,tz,t ′,α,μ) =
(1,−4,1,2,12). The red and blue lines represent doubly degenerate
Fermi surfaces around the A point. If α = 0, these Fermi surfaces are
overlapped and cause fourfold degeneracy.

function is constructed from

�a(k) = [δ{px(k)sx − py(k)sy}σ0

+ f(x2−y2)z(k)szσx − dyz(k)szσy]isy, (35a)

�b(k) = [δ{px(k)sx + py(k)sy}σ0

+ fxyz(k)szσx − dxz(k)szσy]isy, (35b)

where sα = (12,s) and σα = (12,σ ) are the identity and Pauli
matrices in the spin and sublattice spaces. The p-wave, f -
wave, and d-wave components of the basis function are

px(k) =
3∑

i=1

ex
i sin k‖ · ei , (36a)

py(k) =
3∑

i=1

e
y

i sin k‖ · ei , (36b)

f(x2−y2)z(k) = − sin
kz

2
Re

[
1

2
eik‖·r1 + 1

2
eik‖·r2 − eik‖·r3

]
,

(36c)

fxyz(k) = −
√

3

2
sin

kz

2
Re[eik‖·r1 − eik‖·r2 ], (36d)

dyz(k) = − sin
kz

2
Im

[
1

2
eik‖·r1 + 1

2
eik‖·r2 − eik‖·r3

]
,

(36e)

dxz(k) = −
√

3

2
sin

kz

2
Im[eik‖·r1 − eik‖·r2 ]. (36f)

As shown in Ref. [85], there exist six stable nodal rings at
the BZ face when parameters are set in such a way that the
Fermi surfaces appear around the A point, and the effect of the
Zeeman-type SOC is included. [See Fig. 2(b).] We point out
in the following that the obtained nodal rings have nontrivial
topological numbers due to nonsymmorphic symmetry.

The symmetries relevant to the stability of the nodal rings
are C = σ0s0τxK , P = σxs0τz, and Ũ (Mxy) = iσ0szτ0, where
τα = (12,τ ) describes the identity and Pauli matrices in the
Nambu space. At this point, the symmetry operators satisfy
{CP,Ũ (Mxy)} = 0, namely, there is no symmetry-protected
line node since Qλ = 0. Following UPt3 having nonsymmor-

1.5
-1.5

-1.5

0

0
0

2

4

ky

kx

kz=π

Number of occuied states with λ=i
1.5

FIG. 3. Number of occupied states with mirror-reflection eigen-
value +i as a function of (kx,ky), which is calculated by numerically
diagonalizing the BdG Hamiltonian (33a) and (33b) with the
parameters (t,tz,t ′,α,μ,�,δ) = (1,−4,1,2,12,0.1,0.04). The red and
blue regions indicate the inside of nodal rings, indicating that they
are protected by the mirror topological number Qλ = ±2.

phic space group P 63/mmc, the BdG Hamiltonian satisfies
Eq. (7) with the nonprimitive lattice vector τ = (0,− 1√

3
, 1

2 ). It
follows that

E(k + G) = VGE(k)V †
G, (37)

�(k + G) = VG�(k)V †
G, (38)

with G = m1b1 + m2b2 + m3b3 (m1,m2,m3 ∈ Z) and

VG =
(

1 0
0 e−iG·τ

)
σ

⊗ s0. (39)

Here, b1 = 4π√
3
(
√

3
2 , 1

2 ,0), b2 = 4π√
3
(0,1,0), and b3 = 2π (0,0,1)

are the RL vectors. Therefore, using Eq. (28), the mirror-
reflection operator at kz = π is

Ũk′
M

(Mxy) = Ṽ2π ẑŨ (Mxy) = iσzszτ0. (40)

Thus, the mirror-reflection operator satisfies
[CP,Ũk′

M
(Mxy)] = 0 at kz = π , which is attributed to

the nontrivial factor system between P and {U (Mxy)| 1
2 ẑ}. To

verify that the nodal rings are protected by the topological
number, we evaluate Q+i in the mirror-invariant plane at
kz = π . In Fig. 3, we show the number of occupied states
with the mirror-reflection eigenvalue +i by numerically
diagonalizing the BdG Hamiltonian. The red and blue regions
indicate the inside of the nodal rings. By calculating Q+i

according to the definition (32), we find that the red and blue
nodal rings have Q+i = −2 and +2, respectively. That is, the
six nodal rings are topologically protected with help from
nonsymmorphic symmetry. It must be noted that the nodal
rings disappear when α = 0, implying that the Zeeman-type
SOC plays an important role in protecting the nodal rings.

134512-7



SHINGO KOBAYASHI, YOUICHI YANASE, AND MASATOSHI SATO PHYSICAL REVIEW B 94, 134512 (2016)

More generally, the heavy fermion superconductor UPt3
exhibits multiple superconducting phases in the field-
temperature phase [6]. The order parameter that covers the
enter range of superconducting phases is described by �(k) =
�[ηa�

a(k) + ηb�
b(k)] with (ηa,ηb) = (1,iη)/

√
1 + η2 (η ∈

R). By tuning a real parameter η, we obtain the A phase
(η = ∞), the B phase (0 < η < ∞), and the C phase (η = 0).
In contrast to the B phase, the A and C phases recover TRS.
Nevertheless, as discussed in Sec. III B, a nonsymmorphic-
symmetry-protected line node is stable independent of TRS.
Thus, the nodal rings are robust for any η, as long as the mirror
reflection symmetry (40) and the Zeeman-type SOC exist.

IV. GENERALIZATION TO OTHER SYSTEMS

Up to this point, we have discussed nonsymmorphic-
symmetry-protected line nodes bearing Norman’s discussion
in mind. An advantage of the topological approach is that one
can generalize the argument to other nodes and other symmetry
classes systematically.

For this purpose, we consider a generic node at k0 described
by the massless Dirac Hamiltonian,

H̃ (k + k0) �
p+1∑
i=1

vikiγi, (41)

where ki’s are momentum on a p-dimensional sphere enclos-
ing the node, the γ matrices satisfy {γi,γj } = 0 (i 
= j ), and
p specifies the transverse dimension of nodes, which we call
the codimension of nodes (Codim. for short). For example,
p = 0, p = 1, and p = 2 represent a gapless superconductor
(a surface node), a line node, and a point node in three-
dimensional momentum space.

For symmetries protecting the node, we consider PHS,
TRS, IS, and the mirror reflection symmetry M . (Without
loss of generality, we assume M2 = −1.) In a manner similar
to Sec. III B, the topological stability of the node depends on
the commutation relation between CP , CT , and M̃ , where
M̃ = diag[M,ηC,MM∗] is the mirror-reflection operator in the
Nambu space. Introducing ηS,M to specify the commutation
relation between S(= C,P,T ) and M̃ as SM̃ = ηS,MM̃S, the
commutation relations between CP , CT , and M̃ are given
by ηCP,M = ηC,MηP,M and ηCT,M = ηC,MηT,M . We label M̃

with these commutation relations as M̃ηCP,M (M̃ηCP,M ,ηCT,M ) for
the time-reversal breaking (invariant) case. In addition, the
parity of the gap function takes either even-parity ([C,P] = 0)
or odd-parity ({C,P} = 0) for each mirror symmetry class.
Solving the Clifford algebra extension problem in terms
of γp+1 systematically [15], we obtain the corresponding
classifying space and the topological number for each Codim.,
as shown in Table I.

Finally, we take into account the influence of the factor
system on the topological classification. Toward that end, we
define a nonsymmorphic mirror operator as the combination of
spatial inversion P and twofold screw symmetries {C2x⊥|τ⊥},
{PC2x⊥ |τ⊥} ≡ {M|τ⊥}, where C2x⊥ is a twofold rotation
operator in terms of the x⊥ axis, and τ⊥ is a nonprimitive lattice
vector along the x⊥ axis (2τ⊥ is a primitive lattice vector). As
discussed in the previous section, only the nontrivial factor
system changes the commutation relation between M̃ and

TABLE I. Classification of nodes under PHS, TRS, IS, and
mirror-reflection symmetry [15]. The first and second columns
represent the symmetry operations and the parity of the gap function.
The third column lists the commutation relation between CP , CT ,
and M̃ , where M̃ηCP,M (M̃ηCP,M ,ηCT,M ) represents the time-reversal
breaking (invariant) case. The fourth column shows the corresponding
classifying spaces. The following columns represent the topological
numbers for each codimension.

Symmetry Parity Mirror Classifying space p = 0 p = 1 p = 2

{CP,M̃} Even M̃+ Rp+3 0 2Z 0
M̃− Rp+1 Z2 Z2 0

Odd M̃+ Rp−1 0 Z Z2

M̃− Rp−3 0 0 0

{CP,CT ,M̃} Even M̃++ Rp+4 2Z 0 0
M̃−+ Rp+2 Z2 0 2Z
M̃+− Rp+3 0 2Z 0
M̃−− Cp+1 0 Z 0

Odd M̃++ Rp−2 0 0 Z
M̃−+ Rp−4 2Z 0 0
M̃+− Cp+3 0 Z 0
M̃−− Rp−3 0 0 0

CP , which causes the change of mirror-reflection symmetry
between the mirror-invariant plane at k⊥ = 0 and at k⊥ = π :

Symmetry k⊥ = 0 k⊥ = π

{CP,M̃} M̃ηCP,M =⇒ M̃−ηCP,M

{CP,CT ,M̃} M̃ηCP,M ,ηCT,M =⇒ M̃−ηCP,M ,ηCT,M

(42)

Comparing Table I with Eq. (42), a nonsymmorphic-
symmetry-protected line node in odd-parity SCs with and
without TRS is classified by

Parity Codim. k⊥ = 0 k⊥ = π

Odd p = 1 M̃− =⇒ M̃+

Odd p = 1 M̃−− =⇒ M̃+−
(43)

A line node in both cases is protected by the Z topological
number on the BZ face and is characterized by Qλ. The E2u

superconducting state of UPt3 B-phase belongs to the first line
in Eq. (43). Furthermore, provided that [M,T ] = [M,P ] = 0
with spin-singlet or spin-triplet SCs in mind, we find two
types of nonsymmorphic-symmetry-protected point nodes in
Table I as follows:

Parity Codim. k⊥ = 0 k⊥ = π

Odd p = 2 M̃− =⇒ M̃+

Even p = 2 M̃++ =⇒ M̃−+
(44)

On the BZ face, a point node in TRS breaking odd-parity
SCs is protected by the Z2 topological number, whereas one
in time-reversal invariant even-parity SCs is protected by
the 2Z topological number. Similarly to the line node, the
nonsymmorphic symmetry plays a crucial role in protecting
these point nodes, because a point node is topologically
unstable in the mirror-invariant plane at k⊥ = 0.

V. SUMMARY

We argued the topological stability of nodes in nonsymmor-
phic SCs, taking into account the influence of the factor system
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on the topological classification. The important point is that
nonsymmorphic symmetry leads to a nontrivial factor system
at BZ faces, which is reflected as the change of the commu-
tation relation between spatial-inversion and mirror-reflection
operators in some cases. Adding a nontrivial factor system in
the topological classification allows us to deal with a node in
nonsymmorphic SCs in the same manner as symmorphic SCs.
Although we focused on the order-2 symmetries in this paper,
Eqs. (13) and (22) are generally satisfied for all space-group
operations, but we need a topological method beyond the
Clifford algebra extension method, which is outside the scope
of this paper.

In the topological approach, we found a nonsymmorphic-
symmetry-protected line (43) and point nodes (44), which can
be considered to be gapless superconducting states analogous
to nonsymmorphic-symmetry-protected topological semimet-
als. Therefore, our findings will enlarge the category of
topological gapless phases and facilitate our understanding
of gapless superconductors with a nonsymmorphic crystal
structure such as UPt3.

We comment briefly on the bulk-boundary correspondence
for non-symmetry-protected line nodes. Usually, a line node
induced surface zero-energy flat band is robust as long as the
line node is protected by nonspatial symmetry CT [20,27].
In contrast, a crystal symmetry supported surface zero-energy
flat band accidentally occurs, so one vanishes by adding crystal
symmetry-breaking perturbations such as the surface Rashba
SOC [28]. In addition, making a surface parallel to a line node
may break nonsymmorphic symmetry. For this reason, we
expect that the surface flat band induced by a non-symmetry-
protected line node may be unstable unless other mechanisms
protect it.
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APPENDIX A: GROUP OPERATION ON c†
k,α

Here, we define the group operation on c
†
k,α . For an element

{g|τ } of a space group G, the group operation is defined by

{g|τ }c†k,α{g|τ }−1 = 1√
N

∑
R

eik·(R+rα )c
†
β

× [D(g)R + �βα + rβ]Uβα(g), (A1)

with �βα = D(g)rα − rβ + τ . If the system is invariant under
G, there exists a BL vector R′ such that R′ = D(g)R + �βα

for an arbitrary {g|τ } ∈ G. Then Eq. (A1) reduces to

{g|τ }c†k,α{g|τ }−1 = e−iD(g)k·τ c†D(g)k,βUβα(g), (A2)

where we use k · r = D(g)k · D(g)r . A similar definition of
the group operation is given in Ref. [75].

APPENDIX B: DERIVATION OF EQ. (21)

The matrix element of the combination of Ũk0 (g1) and
Ũk0 (g2) is described by

[Ũk0 (g1)Ũk0 (g2)]αγ =
∑

β

eiθ(g1,g2)Ũ (g1)αβŨ (g2)βγ , (B1)

with θ (g1,g2) = [D(g1)k0 − k0] · rα + [D(g2)k0 − k0] · rβ .
By the symmetry of the Löwdin orbitals, if U (g1)αβ 
= 0,
there exists a BL vector R′ for the inverse element of {g1|τ 1}
such that D(g1)−1rα − rβ = D(g1)−1τ 1 + Rg1 , where Rg1 :=
R′ − D(g1)−1 R is the BL vector. Using this property, θ (g1,g2)
is rewritten as

θ (g1,g2) = k0 · {D(g1)−1τ 1 − D(g2)−1D(g1)−1τ 1

+D(g2)−1D(g1)−1rα−rα+Rg1−D(g2)−1 Rg1}.
(B2)

Substituting Eq. (B2) into Eq. (B1), we obtain

Ũk0 (g1)Ũk0 (g2) = ωk0
g1,g2

Ũk0 (g1g2), (B3)

where the third and fourth terms in Eq. (B2) become

eik0·{D(g2)−1D(g1)−1 rα−rα}[Ũ (g1)Ũ (g2)]αγ

= ei{D(g1g2)k0−k0}·rα Ũ (g1g2)αγ

= Ũk0 (g1g2)αγ , (B4)

and the fifth and sixth terms in Eq. (B2) vanish such that

eik0[Rg1 −D(g2)−1 Rg1 ] = e−i[D(g2)k0−k0]·Rg1 = 1. (B5)

APPENDIX C: VANISHING OF THE MIRROR
TOPOLOGICAL NUMBER IN THE ABSENCE OF SOC

As shown in Sec. III A, a line node can be unstable in the
absence of SOC even when mirror-odd Cooper pairs are at
the BZ face. Here, we prove this statement from a topological
point of view and show that the instability of a line node
occurs irrespective of TRS. We start from the condition that
{P,U (Mxy)} = {C,Ũ (Mxy)} = 0 and SOC is absent. The ab-
sence of SOC in the normal Hamiltonian allows spin-rotational
symmetry, [eiθn·S ,H (k)] = 0, where S = 1

2 (sx,sy,sz) are the
generators of spin rotation, and eiθn·S represents the spin
rotation about an n axis within 0 � θ < 2π . Without loss
of generality, we can choose θ = π and n ‖ x̂. The spin-
rotation operator anticommutes with the mirror-reflection
operator, {eiπSx ,U (Mxy)} = 0. Then, the combination of P and
eiπSx satisfies [PeiπSx ,U (Mxy)] = 0, leading to nocc,λ(k‖) =
nocc,λ(−k‖) for any k‖ and λ, where k‖ is momentum on the
mirror-invariant plane. [nocc,λ(k‖) is the number of occupied
states with λ at k‖]. Since {C,Ũ (Mxy)} = 0, PHS leads
to nocc,λ(k‖) = Nλ − nocc,λ(−k‖) = Nλ − nocc,λ(k‖), resulting
in nocc,λ(k‖) = Nλ

2 for any k‖. That is, Qλ = 0. The same
argument is applicable to time-reversal invariant odd-parity
SCs. In this case, an inversion-symmetric Fermi surface with
fourfold degeneracy occurs on the mirror-invariant plane. As
a result, the presence of SOC is of significant importance in
stabilizing a nodal ring.
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[80] P.-O. Löwdin, J. Chem. Phys. 18, 365 (1950).
[81] A. Alexandradinata, C. Fang, M. J. Gilbert, and B. A. Bernevig,

Phys. Rev. Lett. 113, 116403 (2014).

[82] C. J. Bradley and A. P. Cracknell, The Mathematical Theory of
Symmetry in Solids (Clarendon, Oxford, 1972).

[83] T. Morimoto and A. Furusaki, Phys. Rev. B 88, 125129 (2013).
[84] T. Morimoto and A. Furusaki, Phys. Rev. B 89, 235127 (2014).
[85] Y. Yanase, arXiv:1606.08563.
[86] M. H. Fischer, F. Loder, and M. Sigrist, Phys. Rev. B 84, 184533

(2011).
[87] D. Maruyama, M. Sigrist, and Y. Yanase, J. Phys. Soc. Jpn. 81,

034702 (2012).

134512-11

http://dx.doi.org/10.1103/PhysRevB.93.195413
http://dx.doi.org/10.1103/PhysRevB.93.195413
http://dx.doi.org/10.1103/PhysRevB.93.195413
http://dx.doi.org/10.1103/PhysRevB.93.195413
http://dx.doi.org/10.1103/PhysRevB.93.020505
http://dx.doi.org/10.1103/PhysRevB.93.020505
http://dx.doi.org/10.1103/PhysRevB.93.020505
http://dx.doi.org/10.1103/PhysRevB.93.020505
http://arxiv.org/abs/arXiv:1603.03435
http://dx.doi.org/10.1063/1.1747632
http://dx.doi.org/10.1063/1.1747632
http://dx.doi.org/10.1063/1.1747632
http://dx.doi.org/10.1063/1.1747632
http://dx.doi.org/10.1103/PhysRevLett.113.116403
http://dx.doi.org/10.1103/PhysRevLett.113.116403
http://dx.doi.org/10.1103/PhysRevLett.113.116403
http://dx.doi.org/10.1103/PhysRevLett.113.116403
http://dx.doi.org/10.1103/PhysRevB.88.125129
http://dx.doi.org/10.1103/PhysRevB.88.125129
http://dx.doi.org/10.1103/PhysRevB.88.125129
http://dx.doi.org/10.1103/PhysRevB.88.125129
http://dx.doi.org/10.1103/PhysRevB.89.235127
http://dx.doi.org/10.1103/PhysRevB.89.235127
http://dx.doi.org/10.1103/PhysRevB.89.235127
http://dx.doi.org/10.1103/PhysRevB.89.235127
http://arxiv.org/abs/arXiv:1606.08563
http://dx.doi.org/10.1103/PhysRevB.84.184533
http://dx.doi.org/10.1103/PhysRevB.84.184533
http://dx.doi.org/10.1103/PhysRevB.84.184533
http://dx.doi.org/10.1103/PhysRevB.84.184533
http://dx.doi.org/10.1143/JPSJ.81.034702
http://dx.doi.org/10.1143/JPSJ.81.034702
http://dx.doi.org/10.1143/JPSJ.81.034702
http://dx.doi.org/10.1143/JPSJ.81.034702



