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We study the spin-resolved spectral properties of the impurity states associated to the presence of magnetic
impurities in two-dimensional as well as one-dimensional systems with Rashba spin-orbit coupling. We focus
on Shiba bound states in superconducting materials, as well as on impurity states in metallic systems. Using a
combination of a numerical 7T-matrix approximation and a direct analytical calculation of the bound-state wave
function, we compute the local density of states (LDOS) together with its Fourier transform (FT). We find that the
FT of the spin-polarized LDOS, a quantity accessible via spin-polarized scanning tunneling microscopy, allows
to accurately extract the strength of the spin-orbit coupling. Also, we confirm that the presence of magnetic
impurities is strictly necessary for such measurement, and that non-spin-polarized experiments cannot have

access to the value of the spin-orbit coupling.
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I. INTRODUCTION

The electronic bands of materials that lack an inversion
center are split by the spin-orbit (SO) coupling. A strong SO
coupling implies that the spin of the electron is tied to to the
direction of its momentum. Materials with strong SO coupling
have been receiving a considerable attention in the past decade
partly because SO is playing an important role for the discovery
of new topological classes of materials [1,2]. Two-dimensional
topological insulators, first predicted in graphene [3], have
been discovered in HgTe/CdTe heterostructures [4] following
a theoretical prediction by Bernevig er al. [5]. They are
characterized by one-dimensional helical edge states where
the spin is locked to the direction of propagation due to the
strong SO coupling. Similar features occur for the surface
states of 3D topological insulators which also have a strong
bulk SO coupling [1]. The spin-to-momentum locking was di-
rectly observed by angle-resolved photoemission spectroscopy
(ARPES) experiments [6,7].

Topological superconductors share many properties with
topological insulators. They possess exotic edge states called
Majorana fermions, particles which are their own antiparti-
cles [1]. Topological superconductivity can be either induced
by the proximity with a standard s-wave superconductor or
be intrinsic. In the former case, Majorana states have thus
been proposed to form in one-dimensional [8,9] and two-
dimensional semiconductors [10,11] with strong SO coupling
when proximitized with an s-wave superconductor, and in
the presence of a Zeeman field. Following this strategy,
many experiments have reported signatures of Majorana
fermions through transport spectroscopy in one dimensional
topological wires [12—16]. However, there are presently only
a few material candidates such as strontium ruthenate [17],
certain heavy-fermion superconductors [18], or some doped
topological insulators such as Cu,Bi;Se; [19], that may host
intrinsic topological superconductivity.

Although SO coupling has been playing an essential role
in the discovery of new topological materials, it is also of
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crucial importance in the physics of spin Hall effect [20],
in spintronics [21] and quantum (spin) computation since it
allows to electrically detect and manipulate spin currents in
confined nanostructures (see Ref. [22] for a recent review).

Based on the prominent role played by SO in the past
decades, it is thus of great interest to be able to evaluate the
SO coupling value in a given material accurately, though in
general this is a very difficult task. Inferences can be made from
ARPES measurements [23-25]; in particular, spin-polarized
ARPES measurements have been used to evaluate the SO cou-
pling in various materials [26-32]. Other possibilities involve
magnetotransport measurements in confined nanostructures:
this technique has been used to measure the SO coupling in
clean carbon nanotubes [33] or in InAs nanowires [34].

Here, we propose a method to measure the magnitude of the
SO coupling directly using spin-polarized scanning tunneling
microscopy (STM) [35], and the Fourier transform (FT) of
the local density of states (LDOS) near magnetic impurities
(FT-STM). The FT-STM technique has been used in the past
in metals, where it helped in mapping the band structure and
the shape and the properties of the Fermi surface [36-43],
as well as in extracting information about the spin properties
of the quasiparticles [44]. More spectacularly, it was used
successfully in high-temperature superconductors (SCs) to
map with high resolution the particular d-wave structure of
the Fermi surface, as well as to investigate the properties of
the pseudogap [45—47].

In this paper, on one hand, we calculate the Fourier
transform of the spin-polarized local density of states (SP
LDOS) of the so-called Shiba bound state [48-51] associated
with a magnetic impurity in a superconductor. Shiba bound
states have been measured experimentally by STM [52-54]
and it has actually been shown that the extent of the Shiba wave
function can reach tens of nanometers in two-dimensional (2D)
superconductors, which allows one to measure the spatial de-
pendence of the LDOS of such states with high resolution [55].
We consider both one- and two-dimensional superconductors
with SO coupling. While two-dimensional systems such as,
e.g., SroRuO4 [17] or NbSe, [55,56], become superconducting
when brought at low temperature, one-dimensional wires such
as InAs and InSb are not superconducting at low temperature.

©2016 American Physical Society


http://dx.doi.org/10.1103/PhysRevB.94.134511

V. KALADZHYAN, P. SIMON, AND C. BENA

In order to see the formation of Shiba states, one would need
to proximitize them by a SC substrate. The formation of Shiba
states in such systems [57,58], as well as in p-wave supercon-
ductors [59,60], has been recently touched upon, but the effect
of the SO coupling on the FT of the SP LDOS in the presence
of magnetic impurities has not previously been analyzed.

On the other hand, we focus on the effects of the spin-orbit
coupling on the impurity states of a classical magnetic impurity
in one- and two-dimensional metallic systems such as Pb [61]
and Bi, as well as InAs and InSb semiconducting wires that
can be also modeled as metals in the energy range that we
consider. We should note that for these systems no bound state
forms at a specific energy, but the impurity is affecting equally
the entire energy spectrum.

By studying the two classes of systems described above,
we show that the SO coupling can directly be read off
from the FT features of the SP LDOS in the vicinity of the
magnetic impurity. We note that such a signature appears
only for magnetic impurities, and only when the system
is investigated using spin-polarized STM measurements, the
non-spin-polarized measurements do not provide information
on the SO, as it has also been previously noted [62]. The
main difference between the SC and metallic systems, beyond
the existence of a bound state in the former case, is that the
spin-polarized Friedel oscillations around the impurity have
additional features in the SC phase, the most important one
being the existence of oscillations with a wavelength exactly
equal to the SO coupling length scale; such oscillations are
not present in the metallic phase. Another difference is the
broadening of the FT features in the superconducting phase
compared to the non-SC phase in which the sole broadening
is due to the quasiparticle lifetime.

We focus on Rashba SO coupling as assumed to be the most
relevant for the systems considered, but we have checked that
our conclusion holds for other types of SO. To obtain the SP
LDOS we use a T-matrix approximation [43,63,64], and we
present both numerical and analytical results which allow us
to obtain a full understanding of the observed features, of the
splittings due to the SO, as well as of the spin-polarization of
the impurity states and of the symmetry of the FT features.

In Sec. II, we present the general model for two- and one-
dimensional cases and the basics of the 7-matrix technique.
In Sec. III, we show our results for the SP LDOS, calculated
both numerically and analytically, for 2D systems, both in the
SC and metallic phase. Section IV is devoted to SP LDOS
of impurity in one-dimensional systems. Our conclusions are
presented in Sec. V. Details of the analytical calculations are
given in the Appendixes.

II. MODEL

We consider an s-wave superconductor with a SC pairing
Ay, and Rashba SO coupling A, for which the Hamiltonian,

written in the Nambu basis ¥, = (pr,l//w,wI,p,—l/pr)T,

is given by
_ (5090
HO n (A‘va()

ASGO
—51,00.

) + Hso. (1)

. 2 . .
The energy spectrum is &, = 2Lm — &p, where ey is the Fermi

energy. The operator pr p creates a particle of spin o = 1,
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of momentum p = (p,,py) in 2D and p = p, in 1D. Below
we set & to unity. The system is considered to lay in the (x,y)
plane in 2D case, whereas in the 1D case we set p, to zero in
the expressions above, and we consider a system lying along
the x axis. The metallic limit is recovered by setting A; = 0.
The Rashba Hamiltonian can be written as

7_(SO = )\(pyax - Pny) 20 (2)

in 2D and simply as Hso = Ap,0, ® T, in 1D. We have
introduced o and 7, the Pauli matrices acting, respectively,
in the spin and the particle-hole subspaces. The unperturbed
retarded Green’s function can be obtained from the above
Hamiltonian via Go(E, p) = [(E + i8)I4 — Ho(p)]~", where
4 is the inverse quasiparticle lifetime.

In what follows, we study what happens when a single
localized impurity is introduced in this system. We consider
magnetic impurities of spin J = (J,J,,J;) described by the
following Hamiltonian:

Himp=J'U®TO'6(r)EV'8(r)s 3

where J is the magnetic strength. We only consider here
classical impurities oriented either along the z axis, J =
(0,0,J;), or along the x axis, J = (J;,0,0). This is justified
provided the Kondo temperature is much smaller than the
superconducting gap [51].

To find the impurity states in the model described above,
we use the T-matrix approximation described in [51,63,64]
and [43]. We also neglect the renormalization of the supercon-
ducting gap because it is mainly local [51,65] and therefore
only introduces minor effects for our purposes. Since the
impurity is localized, the T matrix is given by

d? -
T(E) = [1 —v / ﬁGo(E,p)] V. )

The real-space dependence of the nonpolarized dp(r,E) and
SP LDOS S;(r,E), with i = x,y,z, can be found as

1

Se(r,E) = ——Im[AG» + AG2],
P
1

Sy(I‘,E) = ——RC[AGIZ — AGQ[],
7
1

S,(r,E) = ——Im[AG; — AGp],
P

1
dp(r.E) = —;Im[AGu + AGy],
with
AG(E,r) = Go(E,—1)T(E)Go(E,1),

where AG;; denotes the ijth component of the matrix AG,
and Go(E,r) is the unperturbed retarded Green’s function in
real space, given by the Fourier transform

dp )
Go(E,x) = | ——=Go(E,p)e'’". 5
e = [ ST Go(E.pe )
The FT of the SP LDOS components in momentum space

Sa(p.E) = [dr Si(r,E)e”P", with /i = x,y,z, as well as the
FT of the nonpolarized LDOS §p(p,E) = f dr $p(r,E)e™'?P"
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are given by
S.(p.E) = 4 .o e 6
(P, )—E/m[gu( ap+aEgpl (6
1 dq
Sy(p.E) = E/w[gzl(E,q’P)—glz(E,(LP)], @)
S.p.E) = — [ 99 5. 320 (E 8
Z(pv )_Z/W[(gll( sqsp)_gZZ( 1q’p)]9 ()

] d
80(p.E) = o / (27?)2[§11(E,Q’P)+§22(E,q,P)], ©)

where dq = dq,dq,,

8(E.q.p) = Go(E.q)T(E)Go(E.p + q)

+ Gy(E.p+ QT (E)Gy(E.q),
§(E.q.p) = Go(E.q)T(E)Go(E.p + q)

= Gu(E.p+ QT (E)G(E.q),

and g;;, g;; denote the corresponding components of the
matrices g and g. Note that while the nonpolarized and the SP
LDOS are of course real functions when evaluated in position
space, their Fourier transforms need not be. Sometimes we
get either or both real and imaginary components for the FT,
depending on their corresponding symmetries. In the figures,
we shall indicate each time if we plot the real or the imaginary
component of the FT.

To obtain the FT of the nonpolarized and the SP LDOS,
we first evaluate the momentum integrals in Egs. (4)—(9)
numerically. For this we use a square-lattice version of the
Hamiltonians (1) and (2), where we take the tight-binding
spectrum ZE, = (1 — 2t(cos py + cos p,) with chemical po-
tential ; and hopping parameter 7. We set the lattice constant to
unity. It is also worth noting that all the numerical integrations
are performed over the first Brillouin zone and that we use
dimensionless units by setting t = 1.

Alternatively, as detailed in the Appendixes, we find the
exact form for the nonpolarized and SP LDOS in the continuum
limit by performing the integrals in the FT of the Green’s
functions analytically. Moreover, when considering the SC
systems, the energies E of the Shiba states together with the
corresponding eigenstates for the Shiba wave functions @ at
the origin can be obtained from the corresponding eigenvalue
equation [66]

[Iy — VGo(E,r =0)]P(0) =0. (10)

The spatial dependence of the Shiba state wave function is
determined using

D(r) = Go(E,r)Vo(0). (11

The real-space Green’s function is obtained simply by a
Fourier transform of the unperturbed Green’s function in
momentum space, Go(E, p). The nonpolarized and the SP
LDOS are given by

pE.r) = <I>T(r)<8 > ) () (12)
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and

o

S(E,r) = qﬁ(r)<8 0>®(r), (13)

where we take into account only the hole components of the
wave function, and not the electron ones. This is because
the physical observables are related to only one of the two
components, for example, in a STM measurement one injects
an electron at a given energy and thus have access to the
allowed number of electronic states, not to both the electronic
and hole states simultaneously. The Bogoliubov—de Gennes
Hamiltonian contains the so-called particle-hole redundancy,
and the electron and the hole components can be simply
recovered from each other by overall changes of sign and/or
changing the sign of the energy. Below we compute only the
hole components, but there would have been no qualitative
difference had we computed the electron component.

III. RESULTS FOR TWO-DIMENSIONAL SYSTEMS

A. Real and momentum space dependence
of the 2D Shiba bound states

For a 2D superconductor with SO coupling in the presence
of a magnetic impurity one expects the formation of a single
pair of Shiba states [57,58]. The energies of the particle-hole
symmetric Shiba states [67] are given by (independent of the
direction of the impurity)

PR LN
1,1 — 1+062 S
where o = 7vJ and v = 5-. (See Appendix A for details

of how the energies of the Shiba states are calculated.) Up
to the critical value o, = 1 these energies are ordered the
following way: E; > Ei. As soon as o > «,, energy levels
E| and E; exchange places, making the order the following:
Ei > E;. This corresponds to a change of the ground-state
parity [51,68,69]. For o >> 1 the subgap states approach the
gap edge and eventually merge with the continuum. For the
type of impurities considered here, there is no dependence
of these energies on the SO coupling in the low-energy
approximation, although a weak dependence is introduced
when one takes into account the nonlinear form of the
spectrum. The dependence of energy of the Shiba states on
the impurity strength J is depicted in Fig. 1 where we plot the
total spin of the impurity state S(p = 0) as a function of energy
and impurity strength. Note that the two opposite-energy Shiba
states have opposite spins.

We are interested in studying the spatial structure of the
Shiba states in the presence of magnetic impurities oriented
both perpendicular to the plane, and in plane. This can be done
both in real space and momentum space by calculating the
Fourier transform of the spin-polarized LDOS using the T'-
matrix technique detailed in the previous section. We focus on
the positive-energy Shiba state, noting that its negative-energy
counterpart exhibits a qualitatively similar behavior. In Fig. 2,
we show the real-space dependence of the nonpolarized and
SP LDOS. Each of the panels corresponds to the interference
patterns originating from different types of scattering. Note
that the spin-orbit value cannot be accurately extracted from
these type of measures since the system contains oscillations
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FIG. 1. The averaged SP LDOS induced by an impurity as a
function of the impurity strength for an in-plane magnetic impurity.
The dashed line shows the superconducting gap. A similar result is
obtained when the impurity spin is perpendicular to the plane. Note
that the two Shiba states with opposite energies have opposite spin.
Wesetr =1, u =3,§ =0.01, . =0.5, A, =0.2.

with many different superposing wave vectors. To overcome
this problem, we focus on the FT of these features, as it is
oftentimes done in spatially resolved STM experiments, which
allow for a more accurate separation of the different wave
vectors [36—43]. Thus, in Fig. 3 we focus on the FT of the SP
LDOS for two types of impurities with spin oriented along z
and x axes, respectively.

Note that the SO introduces nonzero spin components in
the directions different from that of the impurity spin. These
components exhibit either twofold or fourfold symmetric
patterns. Also, the SO is affecting strongly the spin component
parallel to the impurity, in particular when the impurity is in
plane, in which case the structure of the SP LDOS around
the impurity is no longer radially symmetric. However, as can
be seen in the bottom panel of Fig. 3, the non-spin-polarized
LDOS is not affected by the presence of SO, preserving a
radially symmetric shape quasi-identical to that obtained in
the absence of SO. Thus, the SO coupling can be measured
only via the spin-polarized components of the LDOS, and not
the non-polarized LDOS.

These results, which are obtained using a numerical
integration of the 7-matrix equations, are also supported
by analytical calculations which help to understand the fine
structure of the FT of the SP LDOS (see Appendixes for
details). These calculations yield for the SP LDOS generated
by a magnetic impurity perpendicular to the plane

5 1\ e 2nr
Si(r)y=+J7 {1+ " " coS ¢,

30 % con =) + 207
X —Z cos r— v sin p;r ¢,
~ p; pF vzpF p)u
) 1 —2psr )
Sy(r) =+J; (1 + ;) sin ¢,
0'1)2 2 U%: .
x Z 7 cos (2pGr — 0) + 20> —L—sin pr ¢,
po F V°pF
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FIG. 2. The real-space dependence of the nonpolarized as well
as of the SP LDOS components for the positive-energy Shiba state,
for a magnetic impurity with J, = 2 (left column) and J, = 2 (right
column). Wetaket =1, u =3, 6§ =0.01, A = 0.5, A, =0.2.

) 1\ e2nr
S.(r)=—-J 1+ 2)

2 2

X {Z v—‘; sin (2pgr — 6) — 207 ;)F
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5 1\ e 2n
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2 2

v v
x{2— + 20?2 2F
mv V2 pr

sin @mvr — 9)}, (14)
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FIG. 3. The FT of the nonpolarized as well as of the SP LDOS
components for the positive-energy Shiba state as a function of mo-
mentum, for a magnetic impurity with J, = 2 (left column) and J, =
2 (right column). We take r =1, u =3,6 =0.01, A =0.5, A; =
0.2. For a z impurity we depict the real part of the FT for §p and for S,
and the imaginary part for and S, and S, whereas for an x impurity we
take the imaginary part only for the S, component. Black two-headed
arrows correspond to the value of 2p, = 4mA (see the analytical
results) and thus allow to extract the SO coupling constant directly
from these strong features in momentum space. The other arrows
correspond to the other important wave vectors that can be observed
in these FTs, as identified with the help of the analytical results.

with

2“2, ifa#1

400, ifa=1. s

tanf = {
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We have introduced ¢/ = ”” , and
PE = —omh+ mu, (16)
Dy = 2m, (17)

ps = /A2 — E7 /v, (18)

withv = Vv% + A? and vp = /2e5/m. Here, p%, p;,and p;
are the different momenta which can be read off from the SP
LDOS. For an in-plane magnetic impurity we have

1 . .
= _Jj(l + 07> {Z 29 [1 4 sin (2p5r — 28)]

s PF

§;(r)

U2 —2psr
2F [cos pyr + sin 2mvr — 28)] ,
F r

+2v?
v

‘; [1 — sin (Zp(}r — 2,3)]

1 2
Sir) = +J§<1 + —) -
2

_ 2\)2%[005 par + sin Qmvr — 2/3)]}
F

e—Zpyr
X

cos 2¢,,

2
Sy(r) = +J§<1 + %) {Z ;—;[1 — sin (2p%r — 28)]

o F

2
-2 5 [cos pyr — sin 2mvr — 0)]}
V°PpF
—2psr
X ¢ sin 2¢,.,
r
S.(r) = —J2<1 - ){ 0)
2 —2psr
+ 42 ;)F sinpxr}e cos ¢y,
VEPF
1 2 2
p(r) = +J§<1 + —2> {4”— + 40’
o muv Vi pr
—2pgr
x sin 2mvr — 9)} , (19)
r

with tan 8 = «.

The S, component is the sum of symmetric part a S} and
an asymmetric part S¢. Note that the features observed in the
FT of the SP LDOS plots are well captured by the analytical
calculations. In particular, we note that the oscillations in the
SP LDOS are dominated by the following four wave vectors:

2pF. P+ pr =2mv and pj — pf = pi =2mA,

which should give rise in the FT to high-intensity features at
these wave vectors (the red arrows in Fig. 3). Indeed, we note
in the numerical results for the FT of the SP LDOS the exis-
tence of four rings, corresponding to 2 p?, p}r + pp =2mv,
and pr — p; = p, having the proper twofold or fourfold
symmetries, consistent with the cos /sin ¢, and cos / sin 2¢,
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FIG. 4. The FT of various SP LDOS components for a Shiba state
as a function of the SO coupling A and of p, (for p, = 0, vertical
cut). Wetaker =1, u =3, 6 =0.01, A, =0.2, J, =2.

dependence of the SP LDOS obtained analytically. For
example, in the x component of the SP LDOS induced by an x
impurity, the 2p}, 2p, and p; rings have a maximum along
x and a minimum along y, while the 2mv ring has a symmetry
corresponding to a rotation by 90°. The y component of the FT
of the SP LDOS has a fourfold symmetry in which we can again
identify the same wave vectors, while the S, component has
a twofold symmetry, and the 2mv vector is absent. Similarly,
for the S, and the S, components of the SP LDOS induced by
a z impurity (these components should be zero in the absence
of the SO coupling), only the 2 p? and p, wave vectors are
present, with similar symmetries, while the S, component
is symmetric. Note also the central peak at p, = p, =0
which is due to the terms independent of position in the SP
LDOS.

The most important observation is that all the components
of the FT of the SP LDOS exhibit a strong feature at wave
vector p,. Thus, an experimental observation of this feature
via spin-polarized STM would allow one to read off directly
the value of the SO coupling. The spin orbit can also be
read off from the distance between the 2p, and 2p_ peaks,
although the intensity of these features is not as strong. This
appears clearly in Fig. 4, in which we plot a horizontal cut
though two of the FT-SP LDOS above as a function of the SO
coupling A.

Note that the only wave vector present in the nonpolarized
LDOS is 2mv, which has only a very weak dependence on
A for not too large values of the SO with respect to the
Fermi velocity, thus it is quasi-impossible to determine the SO
coupling from a measurement without spin resolution. Note
also the typical two-dimensional 1/r decay of the Friedel
oscillations is overlapping in this case with an exponential
decay with wave vector p;.

B. Comparison to the metallic phase

A similar analysis can be performed for impurity states
forming in the vicinity of a magnetic impurity in a metallic
system. Here, the classical magnetic impurity does not lead
to any localized bound states at a specific energy, and the
intensity of the impurity contribution is roughly independent of
energy.

Thus, in Fig. 5 we plot the FT of the impurity contribution
to the LDOS and SP LDOS at a fixed energy E =0.1.
We note that we have similar features to those observed
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FIG. 5. The FT of the impurity contributions to the nonpolarized
and SP LDOS for an energy E = 0.1 and for a magnetic impurity
with J, = 2 (left column) and J, = 2 (right column). We take the
inverse quasiparticle lifetime § = 0.03 andwesetr =1, u =3, A =
0.5, A; = 0. For a z impurity we depict the real part of the FT for
dp and for S, and the imaginary part for S, and S, whereas for an
x impurity we take the imaginary part only for the S, component.
Unlike in the SC case, the strong peaks appearing in the center and
at p; are absent here. The arrows denote the wave vectors of the
observed features as identified from the analytical calculations.

in the SC regime, with the main differences being that the
long-wavelength central features are now absent, and that
the FT peaks are much sharper than in the SC regime. This
behavior can be explained from the analytical expressions of
the nonpolarized and SP LDOS, whose derivation is presented
in Appendix B. The results are presented below for an
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out-of-plane spin impurity:

J  cos¢, V2o
S, (r) ~ v R ZU:G; sin2p,r,
J sing, V2o
Sy(r) ~ T2 > ZG:GZ sin2p,r,
5.0 J 2 Z V2 )
ry~ — - —cos2p,r,
¢ l+a?r & p, p
J 2 1 sin
p(r) ~ Tra? 24011121)—12F ! p8r7
to v \/p%+2mE+E2/v2 d
(20)
while for an x-directed impurity (in plane)
S.(r) ~ - J i 2])2% 1 — cos2¢, COS Pt
+a v r \/sz—i—ZmE—}—Ez/Uz
2
v 1+ cos2¢p,
——————cC082p,r |,
5,0 ~ J  sin2¢, _21)2% COS per

- 2 2
I+a?2 r v \/p%—i—ZmE-i-Ez/Uz

o

2
v

+E < cos2pyr |,
o P

S.(r) ~ —

J  cos¢, V2o

o—=s8in2p,r,

1+Ol2 r Z Do Do
o

J 2 i
pry~———Zapt P

2 2
l+a?2r v \/p%+2mE+E2/v2

with pp =mvp, ps =pp+E/v#0, p.=ps+p =
2(mv + E/v),and v, = v[l —0'2].

Note that these expressions are very similar to those
obtained in the SC regime, except that the wave vectors of
the oscillations now do not include p;. However, this could
still be read off experimentally from the difference between
p— and p . Another important difference between the SC and
non-SC regimes is the presence of the exponentially decaying
term in the expressions describing the LDOS dependence
for the Shiba states in the SC regime. The Shiba states
have an exponential decay for distances larger than the
superconducting coherence length, while the impurity states
in the non-SC regime only decay algebraically as 1/7. In the
Fourier space this is translated into a much larger broadening
of the features corresponding to the Shiba states in the SC
regime with respect to that of the features corresponding to the
impurity contributions in metals. The width of the peaks in the
latter is solely controlled by the inverse quasiparticle lifetime
8 and is generally quite small.

Note also that in both regimes one needs to use the
spin-polarized LDOS and magnetic impurities to be able to
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extract the value of the SO coupling, while the nonpolarized
LDOS is not sensitive to this wave vector. Last but not least,
as described in Appendix B, the LDOS perturbations induced
by a nonmagnetic impurity do not show any direct signature
of the SO coupling (the only contributing wave vector is 2mv
in the metallic regime, while in the SC regime no Shiba state
forms for a nonmagnetic impurity), thus, the only manner to
have access to the SO coupling is via spin-polarized STM in
the presence of magnetic impurities.

IV. ONE-DIMENSIONAL SYSTEMS

While in one-dimensional systems superconductivity is not
intrinsic, a superconducting gap can be opened via proximitiz-
ing them with a superconducting substrate. For such systems
it is thus particularly interesting to study the FT of the SP
LDOS for both the superconducting and nonsuperconducting
regimes, as both these regimes can be achieved experimentally
at low temperature for the same materials.

We consider the Hamiltonian given by Egs. (1)—(3), where
we set p, — 0, and we perform a T-matrix analysis similar to
that described in the previous section for both the SC and non-
SC phases, for different directions of the magnetic impurity.
The wire is considered to be oriented along the x direction,
and the SO coupling is oriented along y [8,9]. We thus expect a
similar and more exotic behavior for impurities directed along
x and z, and a more classical behavior for impurities with the
spin parallel to the direction of the SO, thus oriented along y.

The energies and wave functions of the Shiba states can be
found using the same procedure as for the two-dimensional
systems (see Appendix C). This yields for the energies of the
states
1—o?
1+ o?

The FT of the positive-energy state as a function of
momentum and the SO coupling is presented in Fig. 6 for a SC
(left column) and non-SC state (right column), for an impurity
directed along z. For this situation, the spin of the Shiba state
has two nonzero components, one parallel to the wire and one
parallel to the impurity spin, and these two components are
depicted in Fig. 6. Note that, similar to the two-dimensional
case, there is a split of the FT features increasing linearly
with the SO coupling strength. Also, note that in the non-SC
phase the central feature, whose wave vector is given by p;,
is absent, and that the FT features are broadened in the SC
regime with respect to the non-SC one. Also, same as in the
two-dimensional case, the SO affects the spin-polarized com-
ponents but almost does not change the non-polarized LDOS,
asitcan be seen in Fig. 6 where it appears that the nonpolarized
LDOS FT features do not evolve with the SO coupling.

These results are confirmed by analytical calculations.
Below we give the spin components and the LDOS in the
SC state for an impurity directed along z obtained analytically
(see Appendix C), for the positive-energy Shiba state:

1 + o?

E1=% Ag, where o = J/v.

S.(x) = [2sin pyx + sin(mv|x| + pyx — 260)

— sin@mlx| — pyx — 20)]e 2k,

Sy(x) = 0,
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SC case Non-SC case
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FIG. 6. The FT of various SP LDOS component for a Shiba state
(left column), and for an impurity state at £ = 0.1 (right column),
as a function of the SO coupling A and of momentum p, for an
impurity perpendicular to the wire and directed along z. We set r =
1, u=1. We take A; =0.2, J, =4, § =0.01 in the SC case and
Ay =0, J; =2, § =0.05 in the non-SC case.

1 +a?
S.(x) = — ) [2cos px + cosmu|x| + p,x — 20)
+ cosmv|x| — pux — 20)]e 2RI/,
1 2
p(x) = ——%[1 + cos@mulx| — 20)]e=24/" . (22)

where tan 6 = «. We also present the FT of the SP LDOS for
the non-SC phase for the impurity contribution corresponding
to the energy E (see Appendix D):

o 1
Se(x) =+ 5 ——lcos(pe x| — prx)— cos(pe|x| + prx)],
14+ oo
Sy(x) =0,
o 1. .
S:(x) = +—— —[sin(pe|x|—prx)+ sin(p |x|+psx)],
14+ o’ v
2
px)=— T P COS PeX.

As before, in the expressions above p, = 2(mv + E/v), p) =
2mA.
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Indeed, these calculations confirm our observations, in the
SC state the dominant wave vectors are 2pf =2mv =% p,,
2mv, and p,, while in the non-SC phase only p. £ p, and
2mv.

Similar results are obtained if the impurity is oriented along
x, with the only difference that the x and z components will be
interchanged, up to on overall sign change (see Appendixes C
and D). For impurities parallel to y, and thus to the SO vector,
we expect the SP LDOS to be less exotic, and indeed in this
case the only nonzero component of the impurity SP LDOS is
Sy. In the SC regime we thus find

S:(x) =0,
Sy(x) = —(1 + o®)[1 + cos2mv|x| — 260)]e 217,
S.(x) =0,
p(x) = +(1 + a®)[1 + cosRmu|x| — 20)]e /v,

while in the non-SC regime we have

I .
Sx(x) =0, Sy(X)=+1+a2%SIHPSIXI,
202
S:(x)=0, pkx)= T a2 p SO Pex

We see that S, exhibits features only at the 2mv and corre-
spondingly at the p. wave vectors, same as the nonpolarized
LDOS, thus not allowing for the detection of the SO coupling.

For intermediate directions of the impurity spin, all three
components will be present, with the x and z exhibiting all
the wave vectors, while the y component solely the 2mv, and
with relative intensities given by the relative components of
the impurity spin.

Thus, we conclude that, same as in the 2D case, the SO
can be measured using spin-polarized STM and magnetic
impurities; moreover, in the 1D case one needs to consider
impurities that have a nonzero component perpendicular to
the direction of the SO.

V. CONCLUSIONS

We have analyzed the formation of Shiba states and
impurity states in 1D and 2D superconducting and metallic
systems with Rashba SO coupling. In particular, we have
studied the Fourier transform of the local density of states
of Shiba states in SCs and of the impurity states in metals,
both nonpolarized and spin polarized. We have shown that
the spin-polarized density of states contains information that
allows one to extract experimentally the strength of the SO
coupling. In particular, the features observed in the FT of
the SP LDOS split with a magnitude proportional to the
SO coupling strength. Moreover, the Friedel oscillations in
the SP LDOS in the SC regime show a combination of
wavelengths, out of which the SO length can be read off
directly and nonambiguously. We note that these signatures are
only visible in the spin-polarized quantities and in the presence
of magnetic impurities. For non-spin-polarized measurements,
no such splitting is present and the wave vectors observed in
the FT of the SP LDOS basically do not depend on the SO
coupling. When comparing the results for the SC Shiba states
to the impurity contribution in the metallic state, we find a
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few interesting differences, such as a broadening of the FT
features corresponding to a spatial exponential decay of the
Shiba states compared to the non-SC case. Moreover, the FT
of the SP LDOS in the SC regime exhibits extra features with a
wavelength equal to the SO length which are not present in the
non-SC phase. It would be interesting to generalize our results
to more realistic calculations which may include some specific
lattice characteristics, more realistic material-dependent tight-
binding parameters for the band structure and the SO coupling
values. However, we should note that our results have a fully
general characteristic, independent of the band structure or
other material characteristics, and that the features in the FT of
the nonpolarized LDOS will correspond to split features in the
spin-polarized LDOS, and thus the spin orbit can be measured
unequivocally from the split obtained from the comparison
between the nonpolarized and spin-polarized measurements.
We have checked that up to a rotation in the spin space
our results hold also for other types of SO coupling such as
Dresselhaus.

According to our knowledge, the FI-STM is a well-
established experimental technique which does not deal
with large systematic errors [36—43]. The experimental data
presented, e.g., in Ref. [43] shows that the resolution in the

. o —1
Fourier space (momentum space) reaches 0.05 A, whereas
a typical value of spin-orbit coupling wave vector p; ~

0.15 AA (see, e.g., Ref. [22]), and thus it is sufficient to
resolve the features originating from the spin-orbit coupling.
Moreover, we would like to point that the exponent e~2/s"
defines in the real space how far the impurity-induced states
are extended, and it manifests in the momentum space as
the widening of the ringlike features appearing at particular
momenta. The condition of resolving the spin-orbit is thus
2ps < p», otherwise the widening is large enough to blur the
spin-orbit feature. This condition can be rewritten in a more
explicit way, namely,

1 o Ay A
s— < —.
VI+ G vpp ltater v

For any realistic parameters, the first two factors on the
left side are of the order of unity, and A,/er ~ 1073 for
superconductors. However, for realistic values of the spin-orbit
coupling A, this inequality holds and therefore there should not
be any technical problem with resolving those features.

Our results can be tested using for example materials such
as Pb, Bi, NbSe,, or InAs and InSb wires, which are known to
have a strong SO coupling, using spin-polarized STM which
is nowadays becoming more and more available [35].

Note added. Recently, we became aware of a recent
work [70] focusing on issues similar to some of the subjects
(in particular the real-space Friedel oscillations in the metallic
regime) addressed in our work.
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APPENDIX A: ANALYTICAL CALCULATION OF THE
SHIBA STATES WAVE FUNCTIONS FOR A 2D SYSTEM

We can calculate analytically the nonpolarized and the SP
LDOS for the Shiba states exploiting the model described by
the Hamiltonians in Egs. (1)—(3). All the integrations below
are performed using a linearization around the Fermi energy.
The energies of the Shiba states can be found by solving the
corresponding eigenvalue equation [66]

[I4y — VGo(E,r = 0)]P(0) =0, (AD)

where Go(E,r) is the retarded Green’s function in real
space obtained by a Fourier transform from the re-
tarded Green’s function in momentum space Go(E,p) =
[(E 4+ i8)I4 — Ho( p)]*l, where § is the inverse quasiparticle
lifetime. In all the calculations below we take the limit of
8 — 40, and we specify +i0 only in the cases when it affects
the results. The wave functions of the Shiba states at r = 0 are
given by the eigenfunctions obtained from the equation above.

Their spatial dependence is determined using
D(r) = Go(E,r)V o(0). (A2)

Consequently, the nonpolarized and the SP LDOS are given

by
p(E,r)=<1>*<r>(8 600>d>(r>, (A3)
S(E,r):<I>T(r)<8 2)®(r). (A4)

Thus, in order to find the energies and the wave functions
corresponding to the Shiba states, we need to find the real-
space Green’s function. This is obtained simply by a Fourier
transform of the unperturbed Green’s function in momentum
space, Go(E, p). We start by writing the unperturbed Green’s
function in momentum space, which is given by Go(E, p) =
% ”Zi G{(E,p), where

o 1 1 ioce %
Go(E,P)=——§2+w2(_iaei¢p 1 )

E+& A
®< A‘v E_Sa)’

where w = /A2 — E2, &, = &, + oAp. To obtain its real-
space dependence one needs to perform the Fourier transform

(AS5)

G°(E _ dp o ipr
o(E.r) = WGO(E’PV .

We will have four types of integrals:

Y dp e'Pr
Xo(r) = — Wm, (A6)
. dp &, o™
Xl(r)z_/(br)z—gz—}—a)z’ (AT)
. dp —isoe'sP e'Pr
Ken=- [ G (A8)
- dp —isoes% g, e'Pr
xen=- [ G (A9)
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Since the spectrum is split by SO coupling, there will be two
Fermi momenta which can be found the following way:

p? —oA+ A2+ 2ep/m

_ AD — :O, i
om O TR Pr m

For p > 0 we linearize the spectrum around the Fermi
momenta, thus,

£, ~ <% +m\)(p—pj'r) =32+ 2¢r/m (p — p7)

= v(p — p‘}),
therefore, p = pr + &, /v, where v = Vv + A%. We rewrite
d A d d
4P _my A d&,—qj — vad&,—(p,
Qr)? 27 v 2 27

where v, = V[l — a%], with v = m /2. Due to the symmetry,
all the integrals are zero at r = 0 except for the first one,

J

EX{(r)+ X7 (r)
EX3(+.r) + X5(+.1r)
AXG(r)

A XS (+,1)

GiED) = AXI(=1)
sA&y(—,
AgXG(r)

Thus, we have

Go(Exr=0)=—

EXg(_ﬂr) + Xg-(_5r)
EXG(r)+ X7 (r)
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namely,

X3(0) = —UU% (A10)

All the coordinate dependencies can be calculated using the
formalism introduced in Ref. [60]. Finally, we get

1
X§(r) = —2v, —ImKo[—i(1 +iQ,) pFr]. (A1)
w

X7 (r) = —2v,ReKo[—i(1 +iQ,) pr]. (A12)
1,

XJ(s.x) = 2s0v, —e"*ReK,[—i(1 +iQy)pfr], (Al3)
w

X3(s,r) = —2s0v,""ImK, [—i(1 +iQ,)pFr], (Ald)

where Q; = w/p%v defines the inverse superconducting
decay length, and ps = w/v. Therefore, the Green’s function
can be written as

1. z impurity

The coordinate dependence of the eigenfunctions is given by

(Ep — A)XG(r) + X7 (r)
(E1 — A)XF (+,1) + X (+,1)
—(E1 = A)XG(r) + X7 (r)
—(E1 = A)XS(+,1) + X{(+.1)

J;
oir) =+
i(r) =+ > P

A XS (r) A X3 (—.1)
A X9 A XS
s 2(+,r) s o(r) (A15)
EXg(r)—X‘f(r) EXg(—,r)—Xg(—,r)
EXg(—{—,r)—Xg’(—i—,r) EXg(r)—X‘f(l’)
EGO AJO'Q
e ( N E%). (AL6)
(Ey + A)XS(—.x) + XI(—.1)
/. (Ey + A)XS(r) + X5(r)
D) == Al7
=32 g+ AXS - - xs—m | AP

o=%
(Ey+ A)XG(r) — XT7(r)

Using these expressions we can compute the asymptotic behavior of the nonpolarized and SP LDOS in coordinate space for the

state with positive energy (thus we omit index 1 below):

1 cos (2p%r — 6
S.(r) = +J§<1 + ;){Zmﬁ% +2u
F

o

1 cos (2pr —0) v sin pyr | e 727
S,(r) = +J3<1 + E) {Zavip— 42,2 VE SN PAT

o

1 sin (Zp‘}r —9)
S.(r) = _13<1 + ;) {ng— -

2

2 1 v
p(r)=+J{1+ — 2— +2v
o mv

and p, = 2mA. Performing the Fourier transforms of these expressions we can obtain information

. 2o ifor 1
— (12 !
with tan6 = {+u’ Fo

2 o —2psr
Z%M}e cos ¢y, (A18)
v PF r
5 sin ¢, (A19)
v PF r
v2 cos pyr | e
o 2u2v—§— —, (A20)
F PF
2 o 2 -0 —2psr
2v_§ sin 2muvr )] e (A21)
v PF r

about the main features and symmetries that we observe in momentum space:

1 +oo cos (2p3r — 0 2 i
Sx(p):—i—ZniJZz(l—i-—z) cosqﬁ,,/ dr.ll(pr){zcrv(z#+2v2U_Fsmﬂ]e—2pAr’
o 0 > Pr

— (A22)
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1 +oo cos (2p%r — 6 2 si
Sy(p)=+277fl]zz(l+$> Sin(pr er](pr){ZGvg(Z—i)+2U22—§SII;7ﬂ}ezpsr’ (A23)
0 . F F

1 oo sin (2p%r — 6 2
S:(p) = —271122(1 + E) / ero(pr){Z vg# - 2v2v—FM}82er’ (A24)
0

PFr v pr

vF sin 2mvr — 0) }e—Zmr (A25)

1 +o00
p(p) = +2nJZZ<1 + —2> / ero(pr){Z— + 202
o 0 v? PF

2. x impurity
The coordinate dependence of the eigenfunctions is given by
+(E7 — AD[XE(r) + X3 (—.0)] + X (r) + X{(—.1)
+(ET — AD[XG () + X5 (+.0)] + XT () + X5 (+.1)
—(E1 — A)[X§(r) + X5 (=, 0)] + X (r) + XJ(—.r)
—(Ef — Xo(r)+ X3 (+,0) | + XT(r) + X5 (+,1)
X

®1(r) = +% >

o=%

, (A26)

A9
[
|
+(E1 + A )[ o) — X3 (= )|+ X7 (r) — X5(—,r)
{ (A27)

]
o= 3 —(Ey + A)[XE(r) — X$(+.0)] — X7(0r) + X (+,1)

OIS (B 4 A)[XE () — XS(—D)] = XT0) + XS (=)
—(E1 + A)[XG(r) — X3 (+,1)] + X (r) — XS (+,1)

For the positive-energy state we compute the asymptotic behavior of the nonpolarized and SP LDOS in coordinate space. We
write S, (r) = Si(r) + S¢(r):

1+ sin (2p%r —2 2 in (2 -2 —2p;r
S5(r) = —12(1 4 >{Z 2 PF ﬂ) +2v2v_§cosp,\r + sin 2mour ﬂ)}e ’ (A28)
P v PF r
sm 2 r—2 2 -2 e~ 2PsT
S9(r) = +J2(1 n >IZ 2 Ppr—26) _,, 2”‘; €OS par + sin @mur ﬂ)} cos24,,  (A29)
PF v PF r
— sin (2pr — 2 2 —sin(2 —0) | e2psr
Sy(r) = +12(1 n ){Z 2 ) — 02 L SR LT sin (2mur )}e $in 26, (A30)
’ P v PF r
1 cos (2p%r — 0 2 i —2pr
Sz(r)=—13(1+—2>{220v§# +4v2v—§M}e coS ¢y, (A31)
o = Py V< pp r
1 v2 sin Qmuor — 0) ] e 27"
p(r) = +Jf<1 + —2){4— +4°L ( )} (A32)
(04 v? PF r

with tan 8 = «. Same as before, performing the Fourier transforms of these expressions allows us to obtain information about
the most important features and symmetries we observe in momentum space:

1 Foo 1 +sin (2 -2 2 )
S$(p) = —271]3(1 N 2) / ero(pr){Z 5 (2p5r —2B) oy va cos p;r + sin Qmuvr — 28) }e_szr7 (A33)
o 0

P v? Pr

1 +oo 1 —sin (2p%r — 2 2 2 )
Si(p) = —27113(1 + _2> cos2¢p/ drh(pr){d w2 Crbr = 2) _pypvpcospar 4 sinGmur 20| -z,
o 0 > Pr v PF

(A34)

1 +oo 1 —sin (2p%r —2 2 —sin(2 9
Sy(p) = —271]3(1 + —2> sin2¢p/ erz(pr){ng 2p% B) _ 9,2 VE COS Par sin 2muvr )}eZW,
o 0

P¥ v? PF

o

(A35)

134511-11



V. KALADZHYAN, P. SIMON, AND C. BENA PHYSICAL REVIEW B 94, 134511 (2016)

1 +oo cos (2pgr — 6 2 si
S.(p) = —21i 7214+ = cos¢p/ drJ\(pr) 2Zau§(p—F) 4 42 LESOPAT L g (A36)
o? 0 P v pp
1 +o00 2 2 -0
p(p) = +sz3(1 + —2>/ ero(pr){4— +4v ZUFM} —2pir, (A37)
o 0 v? PFr

APPENDIX B: THE SP LDOS FOR A 2D METALLIC SYSTEM IN THE PRESENCE OF A MAGNETIC IMPURITY

The low-energy Hamiltonian can be written as

iAp—
Hy = §p00 + M(pyox — pr0y) = <_ffp+ EIZ ) (B1)

where &, = % — er. The corresponding spectrum is given by £ = &, £ Ap. The retarded Green’s function reads as

_ 1 E—£&,+i0 iAp_
CEP =, viop - 2( —ikps E—€p+io)' 52)

To compute the eigenvalues for a single localized impurity we calculate

dp E—£&,+i0 1 / 1 0
G E, == 0 == s
olE.r ) Qn)? (E — &, +i0)> — A2p2\0 Z Q)Y E — i;‘g +i0\0 1
where &, =&, + oAp. For p > 0 we linearize the spectrum around Fermi momenta, thus,
p I
o <ZF + ”) (p = P7) = VA2 +2er/m (p = p7) = v(p = PF).

with p%. = m[—o A + v], and thus we rewrite

dp m|:

¢

K], de
GeF = 2 }dsa = vy dt, 5

where v, = v[1 — 0%], with v = m/2m. Thus, we get

dp 1 /dé 1 .
= Vo o . . — UV,
OrY E—& +i0 " E—¢ +i0 "

and, therefore,

1
Go(E.r = 0) = 5 Z(—invg)G) ?) = —inv<(1) (1)) (B3)

Since there is no energy dependence, there will be no impurity-induced states. To find the coordinate dependence of the Green’s
function, we calculate

dp eipr
Xo(r) = B4
=] G E—E 10 B
dp —ise'%r e'Pr
X7 = . B
on= [ G (B5)
Below we use the Sokhotsky formula
1 —731 75(x)
xti0 xR
d eipr d ezprcos(¢,, ér) p +$g/U
X = [ 22 T B fsg Ftbo/o)r]
2m) E—SU—HO 2r E—&, +i0 §U+10 E—-& +i0
Jo|(p%: + & /v)r . o
_ VJ{P/dsg o[(lﬂg_é /v)r] _m/dg(, 8(E—“§U)Jo[(pF+“§c,/v)r]} = o
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We calculate separately the first integral:

+00 : I
P/déajo pgtia/ ) ] :; l uz_lp/'déaSln[(pgi'ga/v)”]

e (PE+Es /v

2 T du 2 T du ~ e i
= —Im —P/dég— = —Im/ —e”’””‘P/dx =&,
b4 /1 Ju? —1 E—-& 7T 1 Aur—1 X
e v cos Lx sin Zx
’P/dx =73/ L dx—iP/ ' dx =0—in = —im.
X X X
Therefore,
)1 /*Oo jeiporu ) T cos porit Yo(pur) 40
= —2Im = — ———du=m o), -
1 1 Vu? —1 0P P
® = 7V, [Yo(por) — iJo(por)].
The second integral is
XU(S".) _ dp —iseiSPr ei.pr / i, /- d¢p —jselSr oiprcos(gp—¢r) _ Seis‘f" . '/.d%'a J][(p‘; + Ea/.v)r]
Q2r)* E — &, +i0 E — &, +i0 E — &, +i0
) J T+ & /v)r
= Semd)r : Vulp/dé(r 1[(p2, _i_ / ) ] — iﬂ/dsu (S(E - Ea)-h[(pg +$d/v)r]} =0Q.
We calculate separately the first integral:
,P/d%_a‘ll pF+§U P/. (pa x/v)r] _iP/dxfo(Pa x/v)r]
E—&, or x(ps — x/v)
Jol(ps 0 Jol(ps Jol(ps
_ __P/dy ol(ps =yl _ [P/dy ol(ps — y)r] P/ o[(p y)r]}
or y(po —¥) 3(per) y -y
9 2 too du [ e (Po—y)ru e (Po—y)ru
= —Im 77/ dy—i—P/ —dyi|
S d(per) T 1 Aur—1 y Po—Y
0 +oo ,
= —2—1111/ — |1 — P
d(por) 1 Au?— 1[ J
) +oo usinpgrud 5 9 /+°° cos parit | 9 Yo(pur)
= — —————du = U=-m7— ot
. Vo1 3(par) 1 3(per) "
=nYi(psr), po #0.
Therefore,
Q= nmve[Y1(por) — iJi(por)].
Finally,
X3 (r) = mwvs[Yo(psr) — iJo(psr)], (B6)
X7 (s.r) = 5" {7v, [Yi(por) — iJi(per)]} = 5" X7 (1), (B7)
where p, = p% + E/v # 0. Thus, the Green’s function for r # 0 can be written as
1 XZ(r) —cre_i¢")~("(r)
GoEry=5> | .0 o). (B8)
2 = oe' " X7 (r) X (r)

Below we compute the 7" matrix for different types of impurities. Impurity potentials take the following forms:

1 0 1 0 0 1
VSC = U(o 1)1 VZ = JZ (O _1)1 VX = Jx(l 0) (B9)
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The corresponding T matrices are

_ U 1 0 _ H,ﬁ 0 _ J —imvJ 1
Toe = 1 +imvU <0 1)’ I. = ( 0 - L= 1+ m2v2J2 1 —imvJ )’ ®10)
For each type of impurity we can compute the SP and nonpolarized LDOS using
AG(E,r) = Go(E,—r)T(E)Go(E,r), (B11D)
1
Sy(E,r) = ——[ImAG2 + ImAG,], (B12)
b4
1
Sy(E,x) = ——[ReAG; — ReAGy], (B13)
bid
1
S,(E,r) = ——[ImAG, — ImAG], (B14)
i
1
Ap(E,r) = ——[ImAG || + ImAGy]. (B15)
bid

1. Asymptotic expansions of Bessel functions

Since the integrals are expressed in terms of Neumann function and Bessel function of the first kind, we give their asymptotic

behavior for x — +00:
2 T 2 T
Jo(x) ~ 4,/ — cos (x——), Ji(x) ~ —,/ — cos (x+—>,
TX 4 X 4
/2 2
Yo(x) ~ — —cos(x+£), Yi(x) ~— —cos(x—z).
TX 4 TX 4

2. Fourier transforms in 2D

+00
FLF()] = 27 / rdo(pr) f(r)dr. (B16)
0

+00

+00
Flcos ¢, f(r)] = 2mi cos qbp/ rJi(pr)f(r)dr, Flsing, f(r)] = 2ni sind)l,/ rJi(pr)f(r)dr, B17)
0 0

400

+00
Flcos2¢, f(r)] = —2m cos 2¢>p/ rh(pr)f(r)dr, Flsin2¢, f(r)] = —2x sin 2¢p/ rJo(pr)f(r)dr. (B18)
0 0

3. z impurity

We denote @ = v J and write the asymptotic expansions of the nonpolarized and SP LDOS components in coordinate space:

J  cos¢, V2o
Se(r) ~ 5 T ;Gp_a sin2p,r, (B19)
J sing, vg .
Sy(r) ~ 5 — ngap—a sin2pgr, (B20)
J 2 V2
S.(r) ~ _m;;;coszpar, (B21)
2 1 . .
o(r) ~ — . 2”_1; sin p r’ (B22)
Ta v \/p%+2mE+E2/v2 r
where p, = 2(mv + E /v). and we get for p, > 0
J +00 VZ
S.(p) ~ +m27ri Cos¢p/0 erl(pr)Xq:ap—i sin2p,r, (B23)
J +00 UZ
Sy(p) ~ +1 5 2w sind)p/O erl(pr);op—‘; sin 2p, r, (B24)
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+00 Vg
Se(p) ~ — oozt fo drJo(pr) ; o cos 2por, (B25)
J U2 1 +o00
o(p) ~ —m&ravz—g / dr Jo(pr)sin p,r. (B26)
o v \/p%+2mE+E2/v2 0
4. x impurity
J 1], COS e v?
Se(r) ~ =1 - +) 2 cos2p,r (B27)
+ao’r v \/p%_}_sz_}_Ez/vz ~ Do
V% COS per v2
+cos2¢, | —2v°— + —=cos2p,r | ¢, (B28)
v \/p%—i-ZmE-i-Ez/vz o Do
J  sin2¢, 2 cos 2
S)(r) ~ = Pl g2tk be +3 Y cos2p,r | (B29)
tot o v \/p§+2mE+E2/v2 o Pe
J cos¢, v
S.(r) ~ — 2 sin2pyr, B30
R iy ;“pa Por (B30)
J a v sin per
or) ~ Tial, vz_}; £ . (B31)
+atr v \/p%+2mE+E2/v2
With the corresponding Fourier transforms
sym asym J oo 2 UIZ’T COS psr 113
Se(p) = SY™(p) 4 S (p) = — 2 drJo(pr)| 2v2 £ +> T cos2p,r | (B32)
1+a2 )y v2 [ 27,2 Po
Py +2mE + E*/v o
J +oo 2 cos 2
— 52 cos 2¢,,/ drJy(pr)| 2v* £ bl ~ 32 cos2p,r | (B33)
Ta 0 v \/sz+2mE+E2/v2 s Po
J +00 2 cos 2
Sy(p) = —ﬁZn sin2¢p/ dr JL(pr) 2v2v—§ Pl - Z Yo cos2psr |, (B34)
+ o 0 v \/p%;‘i‘sz‘i‘Ez/Uz s Po
+00 1)2
S.(p) ~ — 27i cos / erl(pr)Za—" sin2pyr (B35)
) 1+a? " Jo ~ " Po ’
J v2 1 +oo
p(p) ~ =1 S8mav? L / drJo(pr)sin p.r. (B36)
To v \/p,%+2mE+E2/v2 0

APPENDIX C: ANALYTICAL CALCULATION OF THE SHIBA STATES WAVE FUNCTIONS FOR A 1D SYSTEM

The unperturbed Green’s function in momentum space is Go(E, p) = % Y o—s GJ(E,p), where

y _ 1 1 o E+& A
GiEn=-grap (o 1)2("27 5% v

where &, = &, + o Ap. To get the coordinate value one needs to perform the Fourier transform

d .
Gg(E,x)zfﬁGg(E,p)elPX.
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We will have two types of integrals:

dp ePx
XS(X) = —/ E&'z—l——wz’ (C2)
o dp Eﬂeipx
Xl(X)=—/§—§2+w2, (C3)

where ®* = A2 — E2. Since the spectrum is split by SO coupling, there will be two Fermi momenta which can be found the
following way:

p? —oA+ A2+ 2ep/m

_— AD — :07 7 =
om O TEF Pr 1/m

For p > 0 we linearize the spectrum around Fermi momenta, thus,

£, ~ <%+ok)(p py) =vVAr+2ep/m (p— pg) =v(p — p}).

therefore, p = p% + &, /v and we get

Y dp e'P* T dp  elPx T dp e
Xgx)=— [ — =— - 4 — =
21 £2 4+ ? 0 27 &2+ ? 0 2mE2, +w?

+o0 i i§ox/
/ dp e 1 s / T —— )
0o 2mE2+w*  2mv £+’ 2vw

+00 —ipx —iE_ox/v
0 2r &2, 4w 2w v &, tow 2w

—o A+ v].

P 1 [eimlfa)LJrv]x + e*imlakJrv]x]efwlx\/v — —llCOSWlU)C e*iam)nx efa)lx\/v’
2vw v
Xo(x) = — /'dp s =_/+ood_péaeipx +/+md_pﬂ =®
! 21 £2 + w? 0o 2mE+er  Jy 2mE 4+ o? ’
+°°d_P £, e'P* - orix [ ae £, e LS iy P et/
7 E2 1 o 212 2w F ’
0 o
+00 d s —ipx 1 R i —ié_gx/v [ . o
0o 2m&E 4w 2mv &, to 2v
® = _L Sgnx[eim[—ak+v]x _ e—il?z[ak+v]x]e—w\x|/v — lsinmv|x| e—idmkx e—wlx\/u‘
2v v
Finally,
o 11 —iomAix ,—ol|x|/v
X§(x) = ———cosmvx e e , (c4)
vV w
o 1 : —iomAix ,—ol|x|/v
X{(x) = +—sinmv|x| e e (CS5)
v
and
1 ~ EXS(x) + X7 (x) A X (x)
Go(E,x) = 52 <_1.U lf) 2 0 ! 1 ‘ s&g ) ’ (C6)
— ALXG(x) EX§(x) — X (x)
R €0y 0 E

GQ(G X = 0) ﬁ ( o0 o s where € = A_Y (C7)

The eigenvalues and eigenfunctions at x = 0 can be obtained using Eq. (10). The energy levels are

1—ao?
El,i = imAs, where o = J/U (C8)

In case of an impurity along the z axis, the corresponding eigenvectors are

P;0)=(1 0 -1 O)T, P ,00=0 1 0 1 (€9
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and in case of an impurity along the x axis,

=1 1 -1 -1, oO=01 -1 1 -1 (C10)
1. z impurity
+(E7 — A)XG (x) + X7 (x) +io[(Ey 4+ A)X§(x) + X7 (x)]
o il IR o B e by BT
+io[(Ei — ADXS(x) — XS (x)] (E1 + A)XG(x) — XS (x)

Using these expressions we can compute the nonpolarized and SP LDOS in both coordinate and momentum space for the
positive-energy state (omitting the index 1):

2

S (x) = * [2sin X + sin(2mv|x| + pyx — 20) — sinQmv|x| — pyx — 20)]e 2¢KI/P, (C12)
Sy(x) =0, (C13)
Ol2
S.(x)=— [2cos pyx + cosmu|x| + pyx — 20) + cos(Qmu|x| — pyx — 20)]e 2P/, (C14)
2
p(x) = ——2[1 + cos(mulx| — 20)]e~2W 1/, (C15)

where tan 0 = «. We perform the Fourier transform to get the momentum space behavior, exploiting the following “standard”
integrals:

. 2
/672w|x\/veflpxdx =2 5 w/v , (Clé)
p*+ Qo/v)?
. 2 1 1
/cos pix e 2OV eTinx gy — _a)|: > s+ 2 2]f (C17)
v L(p+p)+ Qow/v)>  (p—p)”+ Qow/v)
2 1 1
/smppce 2001/ it g — z—‘“[ . - . 2}, (C18)
(p+p)°+Qo/v)*  (p—p)°+ Qw/v)
. 2 -2
/ sin 2mu|x|e~ 20T gy = p+ Zmy — p— ~mu . (C19)
(p +2mv)2 + Qw/v)?  (p —2mv)? + Qw/v)?
We rewrite these expressions using pf, thus we get
- 2 1 1
/cos pax e 0P emipx gy — _a){ — >+ - > } (C20)
v p+(pr — PP + Qw/v) —(pr — PP + Qo/v)
2 1 1
/sm pix e 20 emipe gy — l—w{ 3 5~ 5 5 } (C21)
v | p+(pr — PP+ Qw/v)*  [p—(pr — PP+ Qw/v)
/sin 2mu|x| e 2R vemirx gy = P+ P+ pr) 5= —(r+pp) - (C22)
[P+ (Pr + PP + Qw/v) [p—(pF+pp) + Cw/v)

For the last two integrals we introduce symbols ) » and Z » (wide tilde signifies that we take the difference, not sum), where
p' € {p — pi, p+ pi}. Thus, we have

/cos(2mv|x| —20)cos pyx e 2 ve=ipY gy

_ 1 — o 2w 1 1
2 ; { [+a? v [(p/ T 2moy + Cofvy | (p = 2moy £ (2w/v>2}

20 [ P+ 2mv p —2mv :“ (©23)

+ 1+a?2 [ (p +2mv)? + Qw/v)? + (p' — 2mv)? + Qw/v)?
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/cos(2mv|x| — 260)sin pyx e 2/vemiPx gy

_ 1 S(1 -2 1 n 1
T2 ~ 1+a2 v | (p+2mv)2+ Qw/v)?  (p —2mv)? + Qw/v)?

2 ' 4+2 =2
n o p +2mv n p muv ' (C24)
1+ a2 (p +2mv)? + Qw/v):  (p' —2mv)? + Qw/v)?

We rewrite these expressions using pfﬁ, thus we get

/cos(va|x| — 20) cos px e 20XI/ve=ipx gy

1-d’w [ 1 N 1 }
L+ v (pH2ppP + Qu/v?  (p—2pp) + Qo/v)?

L [ p+2pf p—2pr }
L+e2[(p+2p})* + Qw/v?  (p—2pp) + Qo/v)>

N 1 —o? g|: 1 N 1 :|
I+a?v | (p+2pp)P+Qw/v?  (p—2p5)*+ Qow/v)?

+2p7 —2pt
+ - 2|: p— 2 pF 2 + p-‘r 2 pF 2i|’ (CZS)
L+ [ (p+2pp) + Qw/v)*  (p—2pr) + (Qw/v)

/Cos(2mv|x| — 26) sin pyx o 20X/v p=ipx g

l{ l—d?w [ 1 4 1 :|
il l+e? v (p+2pH) 4+ Qw/v)?  (p—2pp) + Qu/v)

L [ p+2pf N p—2pg “
1+a? [ (p+2pf)2 + Qu/v):  (p—2pp) + Quw/v)?

_l{l—azw[ 1 N 1 ]
i 1+a? v (p+2p)2+Quw/v)?  (p—2pH)? + Quw/v)?

a p+2pp p—2p} } }
. C26
3 + a? [(p +2pp)P + Qw/v)?  (p—2pf)*+ Qw/v)? (€20

Using the formula cos? y = (1 + cos 2y)/2, we can write the momentum-space expressions for the nonpolarized and SP LDOS
components:

1 1
S(p)=i(l+ 29{ - }
P =) A\ ot s — PP+ Qo/v?  [p— (pr — PP + Qoo

N 1{ 1—a? QI: 1 N 1 ]
il 2 vl(p+2pfP+Qw/v?  (p—2pp)?*+ Qow/v)?

+0_t[ p+2p5 p—2p; “
2L(p+ 20} 0 + QoofvP | (p—2p;) + Qofv)

B 1{ 1 —a? gl: 1 . 1 ]
il 2 vl(p+2pr)?+Qw/v?  (p—2pf)?+ Qw/v)?

g[ p+2pp p—2pf } } 27
2L(p42pp)* + Qw/v)®  (p —2pp)* + Qw/v)? ]]

1 1
Sz =—(1+ 2 g{ + }
B = = e N\ £ (s — PP+ Colv? | p=(rr = PP+ Qaojo)?
2

|l -« (£|: 1 n 1 i|
2 vl(p+2ppP+Qo/v?  (p—2pp)* + Qw/v)?
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-3 —

o [ p+2pf p—2p }
(P +2pH)*+ Qw/v):  (p—2pp)* + Qw/v)?

B 1 — a2 g|: 1 n 1 i|
2 vl(p+2pp)?+QRow/v)*  (p—2pf)?+ Qw/v)

_ g|: pP+2pp pP— 2p; i| (C28)
2L(p+2pp) + Qow/v)*  (p—2pfP + Qw/v? ]
( )—(1—{—012){ 2w/v +|: /v 4 /v ]}
P P2+ Qo2 " LIp+(pp + PP +Co/v? | (p—(pp + PP + QejvP?
a{ Pt (pi +pp) B P- (pi +pp) } €29
[P+ (pr + PP+ Qo/0)  [p—(pr + ppIP + Cofv?
2. x impurity
(I +io)[(Ef — ADXJ(x) + XT(x)] —(1 —io)[(E1 + A)XT(x) + X5 (x)]
1 —io)[(E; — A)XE X 1 +io)[(E) + A)XE X
¢T(x):+£2 ( ltlf)[( i )X5(x) + XS (x)] ’ <1>1(x)=+£2 ( —Hi‘)[( 14+ ADXG(x) + XT(x)]
2~ —(14io)[(Ef — ADXJ(x) — X (x)] 2~ —(1—io)[(El + A)XJ(x) — X (x)]
—(1 —io)[(Ei — ADXT(x) — X (x)] (14 io)[(Ey + ADX{(x) — XT(x)]
(C30)

Using these expressions we can compute the nonpolarized and SP LDOS in both coordinate and momentum space. We perform
the calculation for the positive-energy state, and we find, omitting index 1,

Se(x) = L4 [2cos p,x + cos(2mu|x| + pyx — 20) + cos(2mu|x| — prx — 20)]e 2XI/Y, (C31)
S,(x) =0, (C32)

S.(x) = — 1+o® [2sin pyx + sinQmuv|x| + p,x — 20) — sinmuv|x| — px — 20)]e >V, (C33)
p(x) = (1 4+ o®)[1 + cos(2mv|x| — 20)]e 21/, (C34)

where tan & = . Momentum-space dependence can be derived from the z-impurity expressions since everything coincides up
to coefficients.
3. y impurity

a- a)[(E; —A)XG(x) + Xf(x)] —(1+ a)[(E1 + A)XG(x) + X‘l’(x)]
() +% Z i(1 —o)[(Ei — ADXS(x) + XS (x)] o) — +ﬁ Z i(1+0)[(E + ADXS(x) + X7 (x)]
~ | —(1 —0)[(E1 — ApDXG(x) — X ()] 2 &~ —(1+0)[(E)+ ADXJ(x) — XT(x)]
—i(1 = o)[(E7 — A)XF(x) — X7 (x)] i1+ 0)[(E + A)XG(x) — X7 (x)]
(C35)
after summation over o':
H(ET — A) Xy (x) + X (0)] —[(E1 + A)X§ (x) + XT ()]
i) = +1, i[(E1 — As)XS_(X) + Xf_(X)] i) =+, i[(Er+ AS)XS;(X) + Xt(X)] . (C36)
—[(E1 — A Xy (x) — X1 (x)] —[(E1 + A)Xy (x) — X (x)]
—i[(Ei — A Xy (x) — X (x)] i[(E1 + A)X§(x) — X ()]
Using these expressions we can compute the nonpolarized and SP LDOS in coordinate space:
Se(x) =0, (C37)
Sy(x) = —(1 4+ o®)[1 + cos2mv|x| — 260)]e 21", (C38)
S.(x) =0, (C39)
p(x) = +(1 + &®)[1 + cosmuv|x| — 20)]e 2KV, (C40)
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APPENDIX D: THE SP LDOS FOR A NONSUPERCONDUCTING ONE-DIMENSIONAL SYSTEM
IN THE PRESENCE OF A MAGNETIC IMPURITY

The low-energy Hamiltonian in the non-SC regime can be written as

£ iAp

Hy = EpUO + )\(Pyax - pny) = (—iip Sp , (D1)

where £, = £~ — ¢r. The corresponding spectrum is given by £ = £, &= Ap and the retarded Green’s function reads as

1 E—-§&,+1i0 iAp
Go(E,p) = L ). D2
o(E.p) (E —&,+1i0)> — p2< —IiAp E—§,+i0 (D2)
To compute the eigenvalues for a single localized impurity we calculate
dp E—-§,+1i0 / 1 0

Gy(Ex=0)= | — , D3
olE,x =0) /2n(E—§p+iO)2—A2p2 Z 2w E—E, +i0 s(,+lo 0 1 (D3)

where &, = £, + oAp. For p > 0 we linearize the spectrum around the Fermi momenta, thus,

6o~ (25 o) (0 12 = VT (= ) = ol 79)

where pf = m[—o A + v], and thus we get

dp 1 1/ d&, +[ dé_, R
27 E — sg+zo 2nv|) E—& +i0 E—&,4+i0] v

' . .
Go(Ex=0)=3 )" <—’;) (é ?) - —%(é ?) (D4)

Since there is no energy dependence, there will be no impurity-induced states. The Green’s function coordinate dependence is
given by the following expression:

This leads to

i 1 o
Gy(E, E . . D5
oE.x) = /2nE §g+zo<—w 1) ©5)
To find the coordinate dependence of the Green’s function we calculate
Xg(x) / <" (D6)
X) = e —
0 27 E — &, +i0

1. Integral calculation

Below we use the Sokhotsky formula — +10 P}lc —imd(x):
d ipx 1 i&sx/v _— —i& sx/v
Xgwy= [ P |k /dsa—" . +e*‘PFX/ds_a—e .
2 E—&, +i0 2mv E—-& +i0 E—-&,+i0
We compute explicitly only one of the integrals in the brackets since the other one can be computed in the similar fashion:
eibox/v plox/v
f dég —— E_E +i 0= / f;} s —im / d&,8(E — £,)e'"V = —im(1 + sgnx)e' E*/Y.
Finally, we have
o E —iomAx
Xo(x) = ——exp mv+ x| |e , D7)
and the Green’s function can be written as
1 1 i0\ v
Go(E,x) = 7 Z <—ia 1 >Xo (). (D8)

Below we compute the T matrix for different types of impurities. Impurity potentials take the following forms:

1 0 1 0 0 1
VSC = U(O 1)1 VZ = JZ (O _1)1 VX = Jx(l 0) (D9)
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The corresponding T matrices are

U 1 0 = 0 J —iJ /v 1
To= —— N R , o= —— o). D10
T 1 +iUv (0 1) : ( 0 —=7 1+J202\ 1 —iJ /v (D10)

For each type of impurity we can compute the nonpolarized and SP LDOS using Egs. (B11) and (B15) where we replace r by
x. By taking the Fourier transforms of the expressions above we get the the momentum-space dependence. Below we denote
o=J/v.

2. z impurity

o 1
Sy(x) = +1 5 ——[cos(pelx| — pax) — cos(pelx| + prx)], (D1D)
+ o
Sy(x) =0, (D12)
o 1 . .
S:(x) =+ 1 5 ——[sin(pe|x| — prx) + sin(pe|x| + pax)], (D13)
+ o
()= -2 (D14)
= — — Cos ,
P 1+a?mv pet

where we denote p, = 2(mv + E/v), p, = 2mA. After taking the Fourier transform we get

o i 1 1 1 1
S:(p) =+ — ~ ~ + : (D15)
l+a?7v|p+pe+pr. P+Pe—Pr P—DPet+Di P~ De— Pirl
Sy(p) =0, (D16)
S(py = +—2 1T 1 N 1 1 1 T D17
A Y nv ptpetp  ptpe—p P—petpm P—pe—pi)
2
1
p(p)=— 1 5 —[8(p — pe) +8(p + po)l. (D18)
+acv
3. x impurity
o 1 . .
Se(x) = +ﬁ—[sm(psIXI — piXx) + sin(pe|x| + pix)], (D19)
+a* v
S,(x) =0, (D20)
o 1
S.(x) =— ] 5 ——[cos(pelx| — prx) — cos(pelx| + prx)l, (D21)
+ac v
(x) 200 1 s (D22)
X) = ————— ——COS PgX.
P 1+a?mv p

We do not give the Fourier transform for these expressions since they coincide with the ones for a z impurity if we exchange S,
and S, and change the overall sign.

4. y impurity

Se(x) = S:(x) =0, (D23)

20 1 .
Sy(x) = +]—i——a2_v s p£|x|, (D24)

202
px)=— T COS PeX. (D25)
The corresponding Fourier transform is
S.(p) = 200 1|: 1 1 ] (D26)
yp—1+a27_[v p+pe p—rpel
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