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Drude weight in hard-core boson systems: Possibility of a finite-temperature ideal conductor
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We calculate the Drude weight in the superfluid (SF) and supersolid (SS) phases of the hard-core boson (HCB)
model on a square lattice using stochastic series expansion (SSE). We demonstrate from our numerical calculations
that the normal phase of HCBs in two dimensions can be an ideal conductor with dissipationless transport. In
two dimensions, when the ground state is a SF, the superfluid stiffness drops to zero with a Kosterlitz-Thouless
type transition at TKT. The Drude weight, though is equal to the stiffness below TKT, surprisingly, stays finite even
for a range of temperatures above TKT indicating the nondissipative transport in the normal state of this system.
In contrast to this, in a three-dimensional SF phase, where the superfluid stiffness goes to zero continuously
via a second-order phase transition at Tc, the Drude weight goes to zero at Tc, as expected. We also calculated
the Drude weight in a two-dimensional SS phase, where the charge density wave (CDW) order coexists with
superfluidity. For the SS phase we studied, superfluidity is lost via a Kosterlitz-Thouless transition at TKT and the
transition temperature for the CDW order is larger than TKT. In striped SS phase where the CDW order breaks
the rotational symmetry of the lattice, the system behaves like an ideal conductor for a range of temperatures
above TKT along the lattice direction parallel to the stripes, while along the direction perpendicular to the stripes
it behaves like an insulator for all T > TKT. In contrast to this, in the star-SS phase, the Drude weight along both
lattice directions goes to zero along with the superfluid stiffness and for T > TKT we have the finite temperature
phase of a CDW insulator.
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I. INTRODUCTION

The superfluid phase of bosons is a canonical quantum fluid
just like the Fermi liquid phase of fermions. One of the frontiers
of quantum condensed matter physics is to explore quantum
phases of bosons in two dimensions that are not superfluids.
Lattice models of interacting bosons in two dimensions, such
as the Bose-Hubbard model, which have been studied in the
past, primarily as models for Josephson junction arrays [1]
and in the context of optical lattice experiments [2] and
hard-core bosons, which have been studied in the context
of the pseudogap phase of high-Tc superconductors [3], are
known to have insulating and superfluid phases [4,5]. In some
cases, the coexistence of charge density wave (CDW) order and
superfluidity, which is known as the supersolid (SS) phase, is
also seen [5–11]. The most challenging phase, which is rarely
seen, is a gapless, compressible “Bose-metal” phase, which
breaks no symmetry whatsoever. There are very few examples
of studies [12–15] where the “Bose-metal” phase has been
realized.

Following Scalapino et al. [16], a superfluid (SF) phase
is the one in which both superfluid stiffness ρs and the Drude
weight D are nonzero. In an insulating phase, e.g., in the CDW
ordered phase, both ρs = D = 0. Here, D is the delta function
part of the charge conductivity σ (ω) = Dδ(ω) + σreg(ω) and
ρs is given by the curvature of the thermodynamic limit
of the free energy (∼ d2F/dφ2) with respect to a twist
in boundary conditions (φ). Conventionally, in a charged
superfluid or a superconductor, D remains nonzero not only at
zero temperature but for all temperatures below the transition
temperature and is believed to be zero for temperatures above
the transition temperature. In contrast to this, in a metal only
at T = 0, the Drude weight is nonzero. With increase in
temperature, the δ(ω) peak in the conductivity gets broadened
due to thermal fluctuations resulting in zero Drude weight. In
this context, it is interesting to consider noninteracting Bose

gas in one and two dimensions. In this case, at any finite
temperature, ρs = 0 but since the current operator commutes
with the Hamiltonian, the Drude weight remains finite at finite
temperature. Therefore noninteracting bosons in one and two
dimensions at finite temperature are “trivial” examples of ideal
conductors [17]. In this paper, we explore the possibility of
having a dissipationless ideal conductor of interacting bosons
where ρs goes to zero at certain transition temperature but
D remains nonzero for a range of temperatures above the
transition temperature.

To be specific, in this paper, we study the Drude weight in
a model of hard-core bosons (HCB), with nearest- and next-
nearest-neighbor hopping and repulsion terms, on 2D square
and cubic lattices. The phase diagram for this model of HCBs
has been studied for a large range of parameters [4,5,8,9,11],
but to the best of our knowledge, the Drude weight has not
been calculated. We calculate the Drude weight in the SF,
insulating, and the SS phases of this model using the stochastic
series expansion method [18,19]. We demonstrate from our
numerical calculations that the normal phase of HCBs in two
dimensions can be an ideal conductor with dissipationless
transport for a range of temperature near TKT. Before going to
the details of the paper, we summarize our main results below.

In the two-dimensional case, for the SF ground state, the
superfluid stiffness drops to zero in the thermodynamic limit
via a Kosterlitz-Thouless [20] type transition at TKT [4,21,22].
We show that though the Drude weight is equal to the stiffness
below TKT, as expected, surprisingly, it remains finite even for
a range of temperatures above TKT indicating the presence of
an ideal Bose conductor with nondissipative transport in the
normal phase of this two-dimensional SF. On the other hand,
in three dimensions, where the superfluidity is accompanied
by the appearance of a true long-range order and the superfluid
stiffness goes to zero via a continuous transition [23,24] at Tc,
the Drude weight also goes to zero at Tc.
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We also calculated the Drude weight in SS phases on
a 2D square lattice. In spite of the long-range Ising order
coexisting with superfluidity, ρs drops to zero at TKT via
a Kosterlitz-Thouless type transition. One of the SS phases
we studied has striped CDW order. In this case, along the
direction perpendicular to the stripes (see Fig. 13) D = ρs

at all temperatures due to a spectral gap in the system and
both D and ρs are zero above TKT. Along the lattice direction
parallel to the stripes, D remains finite even for T > TKT near
TKT. Therefore, for a range of temperature above TKT, the
system is an ideal conductor along the direction parallel to
the stripes, while it is a finite temperature insulator along the
direction perpendicular to the stripes for all T > TKT. In the
other SS phases we have studied, the CDW order exists in both
lattice directions. Therefore along both directions, D = ρs at
all temperatures, and both quantities go to zero simultaneously
at TKT.

The rest of this paper is organized as follows. In Sec. I, we
present details of the model and the method used. Section II
describes in detail the benchmarks on the code for the
calculation of the Drude weight showing comparison with
earlier published results and with exact diagonalization results
on small system sizes. Section III describes the results in the
CDW and the SF phases on a 2D square lattice followed up by
our results for the SF phase on a 3D cubic lattice in Sec. IV.
In Sec. V, we present results for the SS phases on a 2D square
lattice. We end this paper with conclusions and discussions on
our work.

II. MODEL AND METHOD

We study hard-core bosons on a square lattice described by
the following Hamiltonian:

H = −t
∑
<ij>

(c†i cj + c
†
j ci) − t ′

∑
<<ij>>

(c†i cj + c
†
j ci)

+V1

∑
<ij>

ninj + V2

∑
<<ij>>

ninj − μ
∑

i

ni . (1)

Here, t is the hopping amplitude from site i to its nearest-
neighbor site, μ is the chemical potential, t ′ is the next-nearest-
neighbor hopping amplitude, and V1/V2, are the nearest-
neighbor and next-neighbor repulsion terms, respectively. This
model can be mapped onto the S = 1

2 spin model using

the exact mapping S
†
i = c

†
i and Sz

i = ni − 1/2. In the spin
language, one gets the extended XXZ model:

H = −t
∑
<ij>

(S†
i S

−
j + S

†
j S

−
i ) − t ′

∑
<<ij>>

(S†
i S

−
j + S

†
j S

−
i )

+V1

∑
<ij>

Sz
i S

z
j + V2

∑
<<ij>>

Sz
i S

z
j − h

∑
i

Sz
i , (2)

where h = μ − 2V1 − 2V2. This model has been studied
earlier extensively using stochastic series expansion. With
only nearest-neighbor terms, this model is known to have an
SF phase and an insulating phase with a CDW order. The
quantum phase transition from SF to CDW phase can be
attained either by tuning the repulsion term or the chemical
potential [4,5]. The finite temperature phase diagram for this
model has also been studied [4]. Upon increasing temperature,

the superfluid stiffness drops to zero with a Kosterlitz-Thouless
(KT) type transition at TKT, just like in the model with only
nearest-neighbor hopping for the hard-core bosons [21,22]. On
the other hand, in three dimensions, the superfluid transition
is accompanied by the appearance of true long-range order
and the superfluid stiffness goes to zero with a continuous
transition [23,24]. The full model with next-neighbor inter-
actions is known to have exotic supersolid phases [8–11]. In
this paper, we study transport properties, mainly the Drude
weight in the charge conductivity, of all these phases at finite
temperature using SSE with a directed loop update [18]. Below,
we describe how the Drude weight and superfluid stiffness can
be calculated within linear response theory (Kubo formula)
using SSE.

Drude weight and superfluid stiffness

Superfluid stiffness (ρs) is given by the curvature of the
thermodynamic limit of the free energy (π/Nd2F/dφ2) with
respect to a twist in boundary conditions (φ). To evaluate it
within SSE, we use the Kubo formula representation of this
quantity [16]:

ρs = 〈−Kx〉 − Re�xx(qx = 0,qy → 0,iωm = 0)

= 〈W 2〉
β

. (3)

Here, 〈−Kx〉 is the kinetic energy, �xx(�q,iωm) is the current
current correlation function, and 〈W 2〉 is the winding number.
Note that in this work, we will calculate and present results for
the superfluid stiffness ρs , which is related to the superfluid
density ns as ρs = 2tns .

For the model with nearest- and next-nearest-neighbor
hopping, Kx and the current operator Jx are given by

Kx = −t
∑

i

(c†i ci+x̂ + c
†
i+x̂ci)

− t ′
∑

i

(c†i ci+x̂±ŷ + c
†
i+x̂±ŷci), (4)

Jx(q = 0) = it
∑

i

(c†i ci+x̂ − c
†
i+x̂ ci)

+ it ′
∑

i

(c†i ci+x̂±ŷ − c
†
i+x̂±ŷci). (5)

Here, x̂ and ŷ denote unit vectors along the X and Y axes of
the lattice, respectively.

The Drude weight D is obtained by taking the transport
limit of the Kubo formula [16,25], namely,

D = 〈−Kx〉 − �xx(qx = 0,qy = 0,ω → 0). (6)

Here, �xx is the current-current response function

�xx(�q,iωm) =
∫ β

0
dτeiωmτ 〈J x(�q,τ )J x(−�q,0)〉 (7)

and ωm = 2πmT is the Matsubara frequency where m is any
integer.

To evaluate this expression within SSE, let us use the sym-
bol H+

b for c
†
bcb+x̂ . Then �xx(τ ) is nothing but the imaginary-

time (τ ) ordered average of the product 〈Hσ1
b1

(τ )Hσ2
b2

(τ =
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0)〉 where b1 and b2 are bond indices and σ1,2 = ± [26].
Within SSE, the time ordered average of any two such local
operators [19] can be represented as follows:〈
H

σ2
b2

(τ )Hσ1
b1

(0)
〉

=
∑

k

∑
n,m

(τ−β)n(−τm)
n!m! < �k

∣∣HnH
σ2
b2

HmH
σ1
b1

∣∣�k >W

Z

=
〈

ns−2∑
m=0

(β − τ )n(τm)

βn

(n − 1)!

(n − m − 2)!m!
N

σ1σ2
b1b2

(m)

〉
W

,

(8)

where we have summations over n and m coming out from
the Taylor expansion of e(−β+τ )H and e−βH and N

σ1σ2
b1,b2

(m) is
the number of times such a combination with m nonidentity
operators in between, appears in the operator sequence in
SSE. The Fourier transform of Eq. (8) from τ to Matsubara
frequency ωm yields

−1

β

∑
σ1,σ2=±

σ1σ2

∑
m

F 1
1(m + 1,ns ; 2iπn)Nσ1σ2

b1b2
(m), (9)

where F 1
1 is the confluent hypergeometric function of first

order [26].
After calculating the current-current correlation function

�xx(q,iωn) this way within SSE, one calculates the Drude
weight using Eq. (6). The analytical continuation of the
current-current correlation function �, given in Eq. (7),
is valid in the continuous upper complex plane, including
the imaginary axis at frequencies different from Matsubara
frequencies. One can therefore take the limit ω → 0 for �xx

either along the real axis, or purely on the imaginary axis, even
at finite temperature. Here, we extrapolate the imaginary axis
data to obtain the Drude weight without carrying out analytic
continuation. This method has earlier been used extensively
for calculation of Drude weights in 1D systems [26,27]. In
order to carry out the extrapolation to ωn → 0, we fit real
part of �xx(iωn) versus n with polynomial and Lorentzian
functions. The reason of choosing the Lorentzian is that
the current-current correlation function �xx(iωn) is a well-
behaved function on the imaginary axis being the sum of
Lorentz curves:

�xx(iωn) =
∑

j

cj

�j

ω2
n + �2

j

. (10)

We approximate it by a finite series

�xx(iωn) = a

ω2
n + b2

+ c

ω2
n + d2

(11)

and determine the constants a, b, c, and d. This method,
as explained in Ref. [27], is a well-known method for
extrapolation of current-current correlation functions and has
been extensively used for determining Drude weight at finite
temperature for 1D systems. In many cases, a single Lorentzian
a/(b2 + ω2

n) provides a good fit to the data. Details of the
comparison of the polynomial and Lorentzian fits for various
data sets are shown in Appendix A.

0x100

2x10-1

4x10-1

6x10-1

<-Kx> - Λxx(q = 0 , wn)

L = 100
V = 2 , β = 10
V = 2 , β = 20

 0

 0.25

 0.5

 0  2  4  6  8  10
n

<-Kx> - Λxx(q = 0 , wn)

L = 100
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FIG. 1. Results for 1D t-V1 model for V1 = 2t and 3t . The
bottom panel shows the result for V1 = 3t , where limωn→0[〈−Kx〉 −
�xx(iωn)] → 0, while this limit gives a nonzero value of D for
V1 = 2t as shown in the top panel.

III. BENCHMARKING THE CODE

We first calculated the Drude weight for the t-V1 model
on a 1D chain using SSE and compared our results with the
existing literature [26]. For the t-V1 model, there is a critical
point (V1c/t = 2) below which the system is a SF at T = 0. For
V1 > 2t , the system is an insulator with a CDW order. Though
ρs is zero at any finite temperature in this 1D system, the Drude
weight is finite even at finite temperatures for V1 � 2t [26].
In the CDW phase, for V1 > 2t , the Drude weight is zero in
the thermodynamic limit at any temperature. Figure 1 shows
the response function 〈−Kx〉 − �xx(q = 0,ωn) vs Matsubara
frequency for two values of V1. For V1 = 2t , ρs is zero
for T = 0.1t (though for β = 20, for L = 100, ρs is still
nonzero but will tend to zero upon increasing the system
size) but for nonzero ωn the response function has finite
value. The extrapolation of 〈−Kx〉 − �xx(iωn) to ωn → 0
gives a nonzero Drude weight for this case. On the other
hand, for V1 = 3t , as shown in the bottom panel of Fig. 1, the
extrapolated value of 〈−Kx〉 − �xx(q = 0,ωn) goes to zero
and also matches with its value at ωn = 0, implying a zero
value for the Drude weight and the stiffness. These results are
consistent with published results in Ref. [26] and provide a
test to our Drude weight code at low temperature.

Getting reliable Drude weight at higher temperatures, due
to the increase in the minimum value of ωm, is difficult using
this method. In order to have an idea about the maximum
range of temperatures up to which the extrapolation works,
we cross-checked our SSE data against exact diagonalization
(ED) results for small system sizes. By calculating the Kubo
formula exactly for a small system size in ED where no
extrapolation is required to obtain the Drude weight, we
could estimate errors in the corresponding SSE calculation of
the Drude weight, which requires extrapolation in Matsubara
frequency. In exact diagonalization, using the eigenvalues and
the eigenvectors, one can calculate the Drude weight from the
Lehmann representation of the Kubo formula and one arrives
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FIG. 2. Comparison of the Drude weight calculated within SSE
and ED for small system size in different phases. (a) shows D vs T

plots for the results obtained on a 4 × 4 lattice for the SF phase in
XXZ model. (b) shows the results for the SF in the XY model on a
4 × 4 lattice. (c) and (d) shows comparison on a 4 × 2 lattice for the
low TKT SF phase and the SS-I phase, respectively. Please note that
in all the phases, DSSE − DED � 0.01 for T � 0.8 − 1 in units of t .

at the following expressions [25,27]:

D(T ) = − < Kx > − 2

L

En �=Em∑
n,m

pn

Em − En

| < n|Jx(0)|m > |2.

(12)

Here, |n〉 is the eigenvector of the Hamiltonian with eigenvalue
En, i.e., H |n〉 = En|n〉 and pn = exp(−βEn)/Z with Z being
the partition function. Superfluid stiffness can be calculated as

ρs(T ) = − < Kx > − 2

L

En �=Em∑
n,m

pn

Em − En

| < n|Jx(0)|m > |2

− β

L

En=Em∑
n,m

Pn| < n|Jx(0)|m > |2. (13)

As shown in Fig. 2, in all the phases, for T/t � 0.8 − 1.0, D

within SSE and ED calculation matches very well.
In the following sections, we present results for ρs and D

obtained within SSE for various phases realizable in the model
in Eq. (1). Details of error in calculation of various physical
quantities within SSE are tabulated in Appendix B for different
phases studied. The relative error in a physical quantity A is
defined as �A = δA

〈A〉 , where δA is the standard deviation in
A and 〈A〉 is the average value of A. For the kinetic energy
〈−Kx〉, �Kx lies between 10−2% to 0.1%. The relative error
in the superfluid stiffness �ρs , for various parameters studied,
is in the range 0.5% to 10% and the corresponding error in the
response function 〈−Kx〉 − �xx(iωn), which is used to obtain
the Drude weight, is in the range 0.1% to 10%.

 0

 0.1

 0.2

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6
T

S(π,π)

D

L=16

L=20

L=24

L=28

L=32

FIG. 3. Structure factor S(π,π ) and the Drude weight D vs T ,
for various system sizes, in the CDW phase. In an insulator, D should
be zero at all temperatures. From our SSE calculation, D � 0.01 for
T � 1.0t . This gives an idea about the maximum range of temperature
up to which our SSE results for D are reliable. Note that error bars for
D and S(π,π ) are smaller than the point sizes used (see Appendix B).

IV. RESULTS IN 2D

In this section, we describe our results for various phases
seen in the HCB model in Eq. (1). In order to have an idea
about the maximum range of temperature up to which our
Drude weight calculation is reliable, we first present our
results for the CDW phase followed up by details of other
phases.

A. Drude weight in the CDW Phase

A staggered charge order appears at half-filling in the
ground state of model in Eq. (1) for V1 = 3t and h = 0
with no next-nearest-neighbor hopping and repulsion [4].
In terms of the spin model, this phase is equivalent to the
antiferromagnetically ordered phase. In terms of bosons, this is
a CDW insulator having a gap in the single-particle excitation
spectrum. Therefore both superfluid stiffness and the Drude
weight must be zero at all temperatures [16].

Figure 3 shows the structure factor S(π,π ) =∑
i,j (−1)i+j 〈Sz(i)Sz(j )〉, which represents the staggered

checkerboard charge order in this system, and the Drude
weight D versus T for various system sizes. The CDW
order parameter reduces with increase in temperature and
goes to zero continuously at a transition temperature of
Tc = 1.5t = 0.5V1 [4]. The Drude weight is indeed zero
(D � 0.01) up to T � 1.0t within our SSE calculations.
Hence we can say that our results are up to expectations
for temperatures below 1.0t , which is also consistent
with benchmarking of our SSE data against ED for
small system sizes. Detailed plots of the current-current
correlation function �xx(iωn) versus ωn are shown in
Fig. 4, along with the kinetic energy values for various
temperatures. Notice that for all temperatures shown in
Fig. 4, limωn→0 �xx(iωn) = �xx(ωn = 0), which implies that
D = ρs . Also the extrapolated value of �xx(iωn) is equal to
〈−Kx〉, implying that both D and ρs are zero in the insulating
CDW phase.
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FIG. 4. Extrapolation plots for �xx(iωn) vs n at various tem-
peratures in the CDW phase. Note that the extrapolated value of
�xx(iωn) is equal to its value at ωn = 0, implying that ρs = D.
Further, �xx(iωn = 0) = 〈−Kx〉, which means both D and ρs are
zero in the CDW phase. Note that error bars are smaller than the
point sizes used (see Appendix B).

B. Superfluid phase

The generic model in Eq. (1) shows a superfluid ground state
for a wide range of parameters [4,5,8,9]. The SF phase survives
at finite temperature up to TKT where ρs goes to zero with a
universal drop, of a Kosterlitz-Thouless type transition [20], in
the thermodynamic limit. For T 	 TKT, where the linear spin
wave approximation holds well, ρs ∼ D ∼ 〈−Kx〉 because
the current-current correlation function is vanishingly small.
But how the Drude weight behaves at higher temperatures is
not known. Our numerical calculation, the results of which
are presented in detail below, shows that in all the SF phases,
D = ρs for T < TKT and for T > TKT, D starts deviating from
ρs . For T � TKT, though ρs → 0 in the thermodynamic limit,
D stays finite even in the thermodynamic limit for a large
range of temperatures beyond TKT. This implies that for a
range of temperatures, the normal phase in this 2D system has
dissipationless transport. Note that at very high temperatures,
D must go to zero but the temperature at which D goes to zero
can not be estimated within our numerical method because the
results above Tmax = 1.0t are not reliable from our calculation.

In order to further confirm our observation about nonzero
Drude weight above TKT, we analyze the SF phase not only
in the pure XY model (TKT = 0.68t) but we also looked for
the SF phases with a lower TKT because our extrapolation
method of evaluating the Drude weight is less erroneous at
lower temperatures. Below, we present in detail the results for
all the SF phases we have studied.

1. XY model

First, we study the simplest model with only the nearest-
neighbor hopping term for hard-core bosons. All other cou-
plings in Eq. (1) are set to zero in this case. In the spin language,
this maps to the pure quantum XY model, which has been
rigorously studied using SSE [4,5,24] and is known to have
a Kosterlitz-Thouless type transition at TKT = 0.68t [21,22].

 0

 0.1
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FIG. 5. ρs and D vs T for the quantum XY model. The Drude
weight D remains nonzero above TKT and shows almost no change
with the system size. The inset shows the kinetic energy 〈−Kx〉, the
Drude weight(D), and superfluid stiffness (ρs) vs T for L = 32. Note
that the error bars for D, 〈−Kx〉, and ρs are smaller than the point
sizes used (see Appendix B).

Figure 5 shows the plot of the superfluid stiffness ρs , the Drude
weight D, and the kinetic energy 〈−Kx〉 vs temperature (T )
for various system sizes. We see that for T < TKT, ρs ∼ D

both being bounded from above by 〈−Kx〉. For T > TKT,
though ρs goes to zero in the thermodynamic limit, D shows
a much slower decrease with T . Further, D does not show any
significant system size dependence and remains nonzero even
in the thermodynamic limit, which implies that the normal
phase of this system is an ideal conductor for a range of
temperature above TKT.

Detailed plots for the current-current correlation function
�xx(iωn) vs ωn are shown in Fig. 6. For T 	 TKT, deep in the
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FIG. 6. Extrapolation plots for �xx(iωn) vs n at various temper-
atures for XY model for L = 24. Note that the extrapolated value of
�xx(iωn) is equal to its value at ωn = 0 at low temperatures, which
implies that ρs = D ∼ 〈−Kx〉 at low T . However, for higher tem-
perature values, limn→0 �xx(iωn) �= �xx(ωn = 0) �= 〈−Kx〉, which
means that D �= ρs and both of these quantities are different from
〈−Kx〉. Note that the error bars are smaller than the point sizes used
(see Appendix B).
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and the superfluid stiffness (ρs) vs T for L = 32. Note that the error
bars for D, 〈−Kx〉, and ρs are smaller than the point sizes used (see
Appendix B).

SF phase, limωn→0 �xx(iωn) ∼ �xx(ωn = 0) 	 〈−Kx〉, and
thus D ∼ ρs , both being nonzero. As T increases, still being in
the SF phase, limωn→0 �xx(iωn) < �xx(ωn = 0), making D >

ρs . Same trend for D continues for T > TKT where �xx(ωn =
0) → 〈−Kx〉 making ρs → 0 in the thermodynamic limit.
Note that TKT = 0.68t for this phase, which is very close to the
Tmax = 1.0t within which we can get reliable Drude weight.
In the following sections, we present results for the SF phases
with lower values of TKT.

2. XXZ model

We study another SF phase that is the ground state of
the XXZ model with t = 1, V1 = 3, and h = 6. Here the
system shows a KT-type transition at TKT = 0.47t , which
was concluded from the conventional logarithmic scaling
behavior [4] of the transition temperature. In Fig. 7, we show
our finite temperature results for ρs and D for this phase. It
can be clearly seen that at temperatures higher than TKT, the
Drude weight remains nonzero and shows a slow decreasing
behavior with T much like the kinetic energy. Also the system
size dependence for D is much weaker compared to that of ρs

implying a nonzero D even in the thermodynamic limit for a
range of temperatures T > TKT.

3. Superfluid phase with much lower TKT

We extended our analysis for another superfluid phase,
having a much lower transition temperature. We choose
various parameters in the Hamiltonian of Eq. (1) to be
t = 0.9, t ′ = 0.1, V1 = 1.0, V2 = 4.5, and h = 14.0 where
the system exhibits a superfluid ground state [8]. As shown
in Fig. 8, the superfluidity is lost via a Kosterlitz-Thouless
type transition at TKT = 0.17t . This phase is realized at a
particle density of n = 0.93, which means holes, the carriers
of superfluidity, have very low density 0.07 here. At this
low density, neither the hard-core constraint nor the effect
of nearest- or next-nearest-neighbor repulsion are significant.
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FIG. 8. ρs and D vs T evaluated for the low TKT SF phase (t =
0.9, t ′ = 0.1, V1 = 1, V2 = 4.5, and h = 14.0). Results are shown
for 2D square lattices of various lengths (L). Inset shows the kinetic
energy 〈−Kx〉, the Drude weight D, and the superfluid stiffness (ρs)
vs T for L = 32. Note that the error bars in D, 〈−Kx〉, and ρs are
smaller than the point sizes used.

Hence the system is in close proximity to an ideal Bose gas
in 2D. This is reflected in the low value of TKT and the
Drude weight data shown in Fig. 8, which is very close to
the behavior of an ideal Bose gas in 2D for which ρs is zero
at any finite T , while the Drude weight D is nonzero being
equal to 〈−Kx〉 [17]. As shown in the inset, for all T studied,
D ∼ 〈−Kx〉 for this low-density phase.

As shown in Fig. 8, the Drude weight is equal to ρs for
T < TKT but stays nonzero for T > TKT without showing any
significant system size dependence. Note that since TKT for
this system is much smaller than the maximum T limit within
which our extrapolation errors are under control, our analysis
for D above TKT (up to T = 0.5t) is very reliable and supports
our proposal of the normal phase being an ideal conductor for
a range of temperatures above TKT.

After a detailed demonstration of the results for the 2D SF
phase, we come to the question why the Drude weight remains
nonzero even above TKT where the superfluid stiffness drops
to zero in the thermodynamic limit? We propose the following
explanation for this observation. There are basically two types
of excitations possible in this system, namely, the spin wave
excitations and the vortex excitations. This is well known for
the corresponding classical model [20] and vortex excitations
have also been observed in hard-core bosons [28]. At very
low temperature, spin wave excitations are present while the
vortex-antivortex pairs are bound, having effectively no vortex
excitations. In this regime, D ∼ ρs ∼ 〈−Kx〉. As T increases,
more spin waves are excited and start interacting with each
other. For T � TKT, due to unbound vortices, ρs drops to zero.
However, somehow, D is not suppressed by the presence of
vortices. One reason for it might be that the vortices near TKT

are ballistic. This hypothesis is made in the original paper by
Kosterlitz and Thouless [20]. Another reason might be that the
Drude weight, which is obtained from the long-wavelength
limit, before taking ω → 0 limit, of the Kubo formula, does
not feel the presence of vortices, which are local excitations
though it might be affected by interaction between spin waves
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FIG. 9. Temperature dependence of S(π,π,π ) and D for the
CDW ordered phase in three dimensions for L = 10. D � 0.01 for
T < 2t .

and vortices. This picture, which is only our speculation and
is not supported currently by any analytical calculation, can
be confirmed by studying the SF phase of HCB’s in three
dimensions, where the system has true long range order and it
undergoes a continuous transition (instead of the KT transition)
from the SF phase to the normal phase, having spin waves as
the only relevant excitations. With this motivation, we study
the quantum XY model on a cubic lattice in the following
section and compare results with the 2D case.

V. RESULTS IN THREE DIMENSIONS

Before presenting our results for the SF phase, we first study
the CDW ordered phase in 3D realized for t = 1.0,V1 = 3.0 in
Eq. (1) keeping all other couplings to be zero. This will help us
in estimating the error bars in the calculation of D and also in
finding the maximum temperature up to which the calculation
of the Drude weight is reliable for this system. Figure 9 shows
the structure factor S(π,π,π ) and the Drude weight D versus
T . It is seen clearly that D � 0.01 for T � 2.2t . Note that in
units of bandwidth W , which is 4t for the square lattice and 6t

for the cubic lattice, the range of T up to which we get reliable
results for D is roughly the same in two and three dimensions.

Now we discuss our results for the quantum XY model
in 3D. The temperature dependence of ρs and D for various
cubes of length L, obtained from SSE is shown in Fig. 10.
Note that the phase transition in the 3D XY model is in the
3D O(2) class, where the superfluid stiffness goes to zero via
a continuous transition at Tc. For this universality class, the
superfluid stiffness near the transition temperature for T < Tc

behaves as ρs ∼ (Tc − T )(d−2)ν with ν = 0.66 [23,24]. From
the scaling of our SSE data in Fig. 10, we found Tc = 2.058t ±
0.01t , which is close to the value reported earlier [24]. For
very low temperature, D = ρs = 〈−Kx〉. This is the regime
where the linear spin wave theory works well. As T increases,
a deviation from the linear spin wave theory occurs due to
the enhanced interaction between spin waves, which is not
incorporated in the linear spin wave theory. As a result, D

starts deviating from ρs . In order to see whether D goes to
zero at Tc or not, we did fitting of the Drude weight data and
found that D ∼ (Tc − T )0.187 close to Tc as shown in the inset
of Fig. 10. Therefore, for a 3D XY model, D goes to zero at
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FIG. 10. Temperature dependence of ρs and D for a quantum
XY model in three dimensions. ρs satisfies the scaling form (Tc −
T )ν with ν = 0.66 and Tc ∼ 2.058t ± 0.01t . The Drude weight D

satisfies the scaling form D ∼ (Tc − T )0.187 near Tc implying that D

goes to zero along with ρs at Tc. Linear spin wave results, within
which ρs = D = 〈−Kx〉, are shown for comparison. Inset shows the
fits for D and ρs near Tc on the logarithmic scale.

Tc along with ρs though the critical exponents for D are very
different from that of ρs . This is in clear contrast to the 2D
case, where D remains nonzero for a large range of T above
TKT. This numerical observation is consistent with our intuitive
picture that the Drude weight D is governed primarily by the
spin wave excitations and not by the vortex excitations. Before
closing the section on results, below, we present our results for
an interesting, exotic phase, namely the supersolid phase.

VI. SUPERSOLID PHASE IN 2D

Finally, we turn our attention towards the supersolid phase
defined to be a homogeneous mixture of the superfluid and the
CDW phase. In this section, we present results for two types
of supersolid phases, which can be realized in the model in
Eq. (1).

A. Supersolid-1

We choose the parameters for the Hamiltonian in Eq. (1) to
be t = 0.9, t ′ = 0.1, V1 = 4.5, V2 = 4.5, and h = 9.0, where
the average density for bosons is 2/3 and a striped SS phase
has been reported [8]. The finite temperature phase diagram for
this system has not been studied earlier though a similar striped
SS phase realized for an almost identical set of parameters has
been analyzed at finite temperature [11]. We first study the
structure factors corresponding to various charge orderings in
this system.

We calculated the structure factor S(Q) =∑
i,j exp(iQ (ri − rj ))〈Sz(i)Sz(j )〉 for the ordering wave

vector Q along the symmetry directions, namely, (π,0), (0,π ),
and (π,π ). Within SSE, it is not possible to calculate S(π,0) or
S(0,π ) separately, but one calculates S+ = S(π,0) + S(0,π )
and S− = |S(π,0) − S(0,π )|. We found that in the ground
state the CDW order breaks the rotational symmetry of the
lattice. There is no order along the (π,π ) ordering wave vector
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FIG. 11. Structure factors for the CDW order in the SS-I phase.
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panel shows the scaling behavior indicating Tc ∼ 0.7t . Note that both
S+ and S− are nonzero, as shown in the inset, and of the same strength
at all temperatures. This implies the presence of a stripe CDW order
either along x or y direction. Note that the error bars for the structure
factor are smaller than the point size used (see Appendix B).

and S+ ∼ S−, which implies stripe ordering in a system with
only one of S(π,0) or S(0,π ) being nonzero. With increase in
temperature T , both S± remain constant to certain extent for
low T and then start decreasing with T as shown in the left
panel of Fig. 11. We noticed a slight increase in S+ before it
starts decreasing with T , which might be due to the presence
of a small competing order like S(π,π ) 	 S±, although very
small yet nonzero in finite size systems. To get an estimate
of the transition temperature Tc at which the CDW order is
lost due to thermal fluctuations, we did scaling (shown in the
right panel of Fig. 11) of S± assuming that the system belongs
to the 2D Ising class [11] and undergoes a second-order
transition. The estimated value for the transition temperature
is Tc ∼ 0.7t .

This system also has a nonzero superfluid stiffness as shown
in Fig. 12. Since the charge order breaks the rotation symmetry,
the superfluid stiffness along x and y directions of the lattice
are different, that is, ρs,x �= ρs,y . The rotation symmetry is
broken randomly in different SSE runs, that is, either S(π,0)
or S(0,π ) dominates and the superfluid flows only through the
channels left open by the solid order. Therefore we calculate
the superfluid densities parallel (ρs,‖) and perpendicular (ρs,⊥)
to the stripe direction as shown schematically in Fig. 13.
ρs,‖(ρs,⊥) is calculated for each configuration from the winding
numbers in either the x (y) or y (x) direction depending on
whether S(0,π ) is larger or smaller than S(π,0) [29]. Similarly,
we calculated the Drude weight parallel D‖ and perpendicular
D⊥ to the stripe direction from the ω → 0 limit of the
response function 〈−K‖,⊥〉 − �‖,⊥(iωn). Here, 〈−K‖〉 − �‖
is calculated for each configuration from 〈−Kx〉 − �xx or
〈−Ky〉 − �yy depending upon whether S(0,π ) is larger or
smaller than S(π,0).

For a similar striped SS phase, superfluidity has been shown
to be lost via a Kosterlitz-Thouless type transition [11] in spite
of the coexisting long-range Ising-type charge order. It was
shown that intersection values of ρs(T �) = 2T �

π
for different
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FIG. 12. SSI phase. (Left) ρs,‖ and D‖ vs T for various system
sizes. The behavior is very similar to that of a 2D SF phase where ρs

drops to zero at TKT while D remains nonzero for a range of T above
TKT. Note that ρs‖ ∼ 〈−K‖〉 at low T . (Right) ρs,⊥ and D⊥ vs T . Even
at very low T , ρs,⊥ �= 〈−K⊥〉 due to the coexisting CDW order along
this direction. ρs,⊥ = D⊥ at all temperatures and D⊥ goes to zero at
TKT along with ρs,⊥. Note that 〈−K‖,⊥〉 has been shown for L = 16.
The error bars for all quantities are smaller than the point sizes used
(see Appendix B).

system sizes follow the logarithmic correction T � = TKT[1 +
1/(2 ln(L/L0)]. This indicates weak coupling between XY
field and the Ising order because for a situation where the
two fields are strongly interacting, the nature of the transition
is expected to change [6]. From Fig. 12, the KT transition
temperature for the SF order is estimated to be around TKT ∼
0.28t .

The left panel in Fig. 12 shows ρs,‖ and D‖ vs T for various
system sizes and the right panel shows the corresponding data
for the perpendicular components. For the direction parallel
to the stripes, the system behaves very similar to the 2D SF.
For T 	 TKT, |(D‖∼ρs,‖)−〈−K‖〉|

〈−K‖〉 � 6%, which is consistent with
the linear spin wave approximation within which ρs ∼ D ∼
〈−Kx〉 (due to vanishingly small contribution from �). But
in the direction perpendicular to the stripes, the response is
far from the linear spin wave approximation even at the lowest
temperatures, which is reflected in |(D⊥=ρs,⊥)−〈−K⊥〉|

〈−K⊥〉 ∼ 48% for
T 	 TKT. As we increase T above TKT, D‖ shows a very slow
decrease with T following 〈−K‖〉 and remains nonzero even

FIG. 13. Schematic figure to show possible stripe CDW order in
the SS-I phase and the direction of SF flow in each case.

134508-8



DRUDE WEIGHT IN HARD-CORE BOSON SYSTEMS: . . . PHYSICAL REVIEW B 94, 134508 (2016)

 0
 

 0.08
 

 0.16
 

 0.24
 

 0.32

 0  1  2  3  4

Λ
||,

⊥
(w

n)

n

(a) T=0.2t ⊥
<-K⊥>

||
<-K||>

 0
 

 0.08
 

 0.16
 

 0.24
 

 0.32

 0  1  2  3  4

Λ
||,

 ⊥
(w

n)

n

(b) T=0.3t ⊥
<-K⊥>

||
<-K||>

 0
 

 0.08
 

 0.16
 

 0.24
 

 0.32

 0  1  2  3  4

Λ
||,

⊥
(w

n)

n

(c) T=0.4t ⊥
<-K⊥>

||
<-K||>

 0
 

 0.08
 

 0.16
 

 0.24
 

 0  1  2  3  4

Λ
||,

 ⊥
(w

n)

n

(d) T=0.5t ⊥
<-K⊥>

||
<-K||>

FIG. 14. Extrapolation plots for �(iωn) in the direction parallel
and perpendicular to the stripes, at various temperatures for L = 16 in
the SS-I phase. At low T , the extrapolated value of �‖,⊥(iωn) is equal
to its value at ωn = 0, and thus ρs,‖ = D‖ and ρs⊥ = D⊥, both being
different from the value of the corresponding kinetic energy 〈−K‖,⊥〉.
At higher temperature, limn→0 �‖(iωn) �= �‖(iωn = 0), which means
that D‖ �= ρs,‖. However, limn→0 �⊥(iωn) = �⊥(iωn = 0) and thus
D⊥ = ρs,⊥ even at higher T values. Note that the error bars for
the response functions are smaller than the point sizes used (see
Appendix B).

when ρs,‖ has dropped to zero at TKT, in complete analogy with
other 2D SF phases. However, D⊥ remains equal to ρ⊥ even
at higher temperatures and goes to zero at TKT along with ρ⊥.
This can be understood in terms of the theorem from Scalapino
et al. [16], which states that in a system with a nonzero
spectral gap ρs = D. Since in the striped SS phase, CDW
order breaks the rotation symmetry (in the thermodynamic
limit), the spectral gap must be anisotropic being nonzero
along the direction in which CDW order exists.

Detailed plots of the current-current correlation function
�(iωn) in support of this observation are shown in Fig. 14.
Notice that limωn→0 �⊥(iωn) = �⊥(ωn = 0) at all tempera-
tures while limωn→0 �‖(iωn) < �‖(ωn = 0) for T > TKT.

Therefore, in the normal phase of this anisotropic SS-I
phase, along the direction parallel to the stripes, the system
behaves like an ideal conductor for a range of temperatures
above TKT, while it behaves like an insulator along the direction
perpendicular to the stripes for all T > TKT.

B. Supersolid-II

Another SS phase can be realized in the model of Eq. (1)
for the set of parameters t = 0.9, t ′ = 0.1, V1 = 4.5, V2 =
4.5, and h = 11.5, as reported in Ref. [8]. This is a quarter
empty star SS phase, which has a ground state characterized
by nonzero S(π,π ) and S+ shown as a function of T in
Fig. 15 for various system sizes. At T = 0, there is a weak
anisotropy in the CDW order as it is clear from the very
small values of S− compared to that of S+. Though S(π,π )
and S+ decrease with increasing T , the anisotropy parameter
S− increases with T showing its maximum around T = 0.5t ,
though with increasing L, S− prominently decreases as shown
in the bottom panel of Fig. 15. To see whether the CDW
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FIG. 15. Structure factors for the SS-II phase as a function of
T for various system sizes. Top and bottom panels on the left side
show S± vs T , respectively, while the top right panel shows S(π,π )
vs T for various system sizes. Binder cumulants for S+ are shown
in the bottom right panel, which shows a transition temperature of
Tcdw ∼ 0.75t . Note that the error bars for various structure factors are
smaller than the point sizes used (see Appendix B).

to normal phase transition is continuous, we calculated the

fourth-order Binder cumulant U (S+) = 1 − <O+4
>

3<O+2>2 , where

O+ = 1
N

∑
i Sz(i)[exp(iπxi) + exp(iπyi)] is the order param-

eter corresponding to the structure factor S+. Here, (xi,yi) are
coordinates of site i. As shown in the right bottom panel of
Fig. 15, data for different system sizes cross each other at
Tc = 0.75t .

After characterizing the CDW order in this phase, we
show the finite temperature results for the superfluid stiff-
ness in Fig. 16. Just like in the SS-I phase, here also we
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FIG. 16. Left panel shows ρs,‖ vs T , for the SS-II phase for
various system sizes. The point at which the ρs,‖ vs T curve crosses
2T/π gives T �. Right panel shows T � vs L, which follows the
function T � = TKT[1 + 1/(2 ln(L/L0))] and gives the KT transition
temperature to be TKT = 0.146t .
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〈−K‖,⊥〉 has been shown for L = 16. At all values of T , ρs = D along
both directions. However, even at low temperature, D‖,⊥ �= 〈−K‖,⊥〉
due to the coexisting CDW order in this system. Both ρs,‖/⊥ and D‖/⊥
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sizes used (see Appendix B).

calculate ρs‖ and ρs,⊥ for different configuration from the
winding numbers in x and y directions depending on whether
S(0,π ) is larger or smaller than S(π,0). Plotting ρs,‖ as
a function of T , the intersection values of ρs‖(T �) = 2T �

π

for different system sizes follow the logarithmic correction
T � = TKT[1 + 1/(2 ln(L/L0))] as shown in the right panel of
Fig. 16 giving TKT = 0.146t . The KT nature of the transition
again indicates weak coupling between the XY field and the
Ising order because for a situation where the two fields are
strongly interacting, the nature of the transition is expected
to change [6]. We expect the same physics to hold for the
superfluid order along the perpendicular direction.

Finally, we calculate the Drude weight D‖ and D⊥ just
like in the SS-I phase. As shown in Fig. 17, D‖ = ρs,‖
and D⊥ = ρs,⊥ at all values of T . This happens because
limωn→0 �‖,⊥(iωn) = �‖,⊥(ωn = 0) at all temperatures as
shown in Fig. 18. However, even at very low T due to the
coexisting CDW order, ρs,‖ �= 〈−K‖〉 and the same is true
for the perpendicular component. With increase in T , the
anisotropy in the CDW order increases and it is reflected in
the values of ρs,‖ and ρs,⊥ being slightly different. Along both
directions, both D and ρs drop to zero in the thermodynamic
limit for T � TKT. Therefore the normal phase of the SS-II
phase is not an ideal conductor.

VII. CONCLUSIONS AND DISCUSSIONS

We calculated the finite temperature Drude weight for the
superfluid and the supersolid phases realized in a system
of hard-core bosons. The Drude weight and the superfluid
stiffness can be obtained from different limits of the Kubo
formula. Generally in a metal, ρs = 0 while D �= 0 at zero
temperature. In an insulator, both ρs and D are zero while
in a superfluid ρs = D �= 0 at zero temperature. At any
temperature below the transition temperature of the superfluid,
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FIG. 18. Extrapolation plots for �‖,⊥(iωn) vs n at various
temperatures in the SS-II phase for L = 16. For all values of T ,
the extrapolated value of �‖,⊥(iωn) is equal to its value at ωn = 0,
implying that ρs = D along both directions. At low T , both are
different from the value of the corresponding kinetic energy 〈−K‖,⊥〉.
For T > TKT, the extrapolated values of �‖,⊥(iωn) start approaching
〈−K‖,⊥〉. Hence both, the stiffness ρs and D are zero for T > TKT.
Note that the error bars are smaller than the point sizes used (see
Appendix B).

D remains nonzero resulting in nondissipative transport and is
believed, conventionally, to go to zero for temperatures above
the transition temperature. The question we are asking is, in a
SF or a SS phase, are these two quantities always equal at all
temperatures or can they differ from each other? Is it possible
to have a dissipationless ideal conductor of interacting bosons
where ρs is zero but D is nonzero? In the extended XXZ model
of Eq. (1), we calculated the ρs and D using SSE. We found
that in 2D, in a superfluid phase, at very low temperatures
ρs = D = 〈−Kx〉. As T increases, D starts deviating from ρs .
Above TKT, ρs drops to zero in the thermodynamic limit, but D
remains nonzero, decreasing much slowly with T compared to
ρs , for a range of temperatures above TKT. Thus for a range of
temperatures, the normal phase of a superfluid in this system is
an ideal conductor. We confirmed this interesting observation
by analyzing various SF phases, specially those for which TKT

is small so that our calculation of D is reliable. What is the
temperature at which D will go to zero can not be determined
from our method because the extrapolation error becomes large
with T .

Although we do not have full microscopic explanation for
this surprising observation, we speculate that it is related to the
nature of the Kosterlitz-Thouless transition. Vortex excitations
suppress ρs making it to drop to zero at TKT, but these
excitations do not have a significant effect on D. Therefore D

remains nonzero even above TKT and is basically governed by
spin waves only. We further provide support to this speculation
by studying the quantum XY model in three dimensions. In
the 3D quantum XY model, spin waves are the only relevant
excitations that make ρs to go to zero continuously at Tc. From
our calculation, we saw that D obtained from SSE follows the
scaling form (Tc − T )0.187 and goes to zero at Tc along with ρs .
Thus though the normal phase of a 2D SF is an ideal conductor

134508-10



DRUDE WEIGHT IN HARD-CORE BOSON SYSTEMS: . . . PHYSICAL REVIEW B 94, 134508 (2016)

for a range of temperatures, it is not true for the normal phase
of a 3D SF.

We also studied the exotic supersolid phases in 2D where
there is a coexistence of the superfluidity and the CDW order.
In the SS-I phase, there is a striped CDW order which breaks
the rotational symmetry. Here in the normal phase, for a range
of temperatures above TKT, the system is an ideal conductor
along the direction parallel to the stripes. However, along the
direction perpendicular to the stripes, the system is an insulator
for all T > TKT. In the other SS phase we studied, there is a
CDW order along both directions. In this case, we saw that
D = ρs along both directions and both drop to zero at TKT due
to the coexisting CDW order. Thus the normal phase of this
SS is not an ideal conductor.

There are deeper questions to be answered in this context,
like what makes the Drude weight nonzero in the normal phase
of a 2D SF? Typically, in a metal, Drude weight vanishes at
finite temperature because the delta function part in σ gets
broadened due to thermal fluctuations. Exceptions are inte-
grable or near integrable one-dimensional systems [26,27,30]
where the Drude weight can remain finite even at finite
temperature either due to conserved currents in the system
or a part of the current operator has a finite overlap with one of
the local conserved quantities, though recently there have been
numerical studies on one-dimensional nonintegrable systems,
where the current operator has overlap with nontrivial quasilo-
cal conserved quantities, showing nonzero Drude weight [31].
The system we studied is far from being integrable. In an SF
phase, D is expected to be nonzero at finite temperatures below
the transition temperature. In our results, we found surprisingly
that even for a range of temperatures above the transition
temperature, D remains nonzero in a 2D SF. Therefore it
will be interesting to find out what is the temperature scale
at which the Drude weight goes to zero in this 2D SF. It will
also be useful to do a vortex dynamic study to understand
why vortices can not suppress the Drude weight to zero at
TKT and to calculate the Drude weight for other models (e.g.,
Bose Hubbard model) in two and three dimensions to see if the
normal phase in 2D has dissipationless transport above TKT.
These are questions for future work.
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APPENDIX A

In this Appendix, we provide details about the fitting of
current-current correlation function �xx(iωn). In Fig. 19, we
have shown four different fits using following functions:

f 1(x) = a + b ∗ x + c ∗ x2, (A1)

f 2(x) = a + b ∗ x + c ∗ x2 + d ∗ x3, (A2)

f 3(x) = a/(b + x2), (A3)

f 4(x) = a/(b + x2) + c/(d + x2). (A4)
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FIG. 19. < −Kx > −�xx(iωn) vs n for the CDW and the SF
phases for L = 16 at various temperatures. For the SS-I and SS-II
phase, 〈−K‖〉 − �‖(iωn) has been shown. (Top) Results for the CDW
phase where D must be zero at any value of temperature. Here, the
Lorentzian provides the best fit to the data and also the physically
correct value of D = 0. The polynomial fit at low T in fact gives a
negative value of D. Similarly, in the SF phase shown in the bottom
most left panel, the polynomial fit gives an unphysical uprise in
〈−Kx〉 − �xx(iωn) near n = 0 and hence is not acceptable.

Note that as we know 〈−Kx〉, in functions f 1 and f 2, a =
〈−Kx〉. We first look at the fits for the CDW insulating phase
where the answer is known to be D = 0 at all temperatures. As
shown in the top panel of Fig. 19, the Lorentzian provides the
best fit of the data obtained from SSE. At T = 0.5t , both f 3(x)
and f 4(x) are equally good fits while polynomial functions
result in a negative value of D. At T = 1.0t , f 4(x) provides
the best fit and again the polynomial fits result in negative
values of the Drude weight.

In the middle panel of Fig. 19, results for the SS phase
are shown. At T = 0.5t , f 4(x) provides the best fit. At T =
1.2t , also f 4(x) works well. In the bottom most panel of
Fig. 19, results for the SF phase are shown in the left figure.
Here the polynomial fit of degree 3 gives unphysical uprise in
〈−Kx〉 − �xx(iωn) in the small ωn regime while a polynomial
of degree 2 gives a result very close to what one gets from two
Lorentzian fits.

APPENDIX B

In this Appendix, we provide error estimates in the
calculation of various physical quantities using SSE. For a
physical quantity A, we provide tables below for its average
value and the standard deviation δA obtained from SSE
for L = 16 at various temperatures and in different phases
studied.

Kinetic energy and superfluid stiffness. The table below
shows the error in the calculation of the kinetic energy δK and
the superfluid density δρs within SSE at various temperatures
for XY, SS-I, and SS-II phases. For the SS-I and SS-II phases,
the error in the calculation of < −K‖ > and ρs,‖ has been
shown.
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Phase Temperature (T) 〈−Kx〉 δKx ρs δρs

XY 0.4 0.5463 4.09 × 10−5 0.5359 0.0029
0.6 0.5379 5.45 × 10−5 0.5216 0.0020
0.8 0.5101 9.65 × 10−5 0.4064 0.0041
1.0 0.4450 1.02 × 10−4 0.1051 0.0019
1.2 0.3852 1.08 × 10−4 0.0078 0.0003

Phase Temperature (T) −〈K‖〉 δK ρs,‖ δρs

SS-I 0.2 0.3090 1.17 × 10−4 0.2916 0.0018
0.4 0.2891 1.35 × 10−4 0.1554 0.0009
0.6 0.2475 2.18 × 10−4 0.0136 0.0002
0.8 0.2206 1.92 × 10−4 0.0012 0.00005
1.0 0.2042 1.88 × 10−4 0.0001 0.00001

Phase Temperature(T) 〈−K‖〉 δK ρs,‖ δρs

SS-II 0.2 0.2494 3.23 × 10−4 0.1459 0.001
0.4 0.2393 2.62 × 10−4 0.0418 0.0003
0.6 0.2295 2.78 × 10−4 0.0069 0.0001
0.8 0.2205 1.99 × 10−4 0.0010 0.00004
1.0 0.2111 1.24 × 10−4 0.0002 0.00002

Error estimates for 〈−Kx〉 − �xx(iωn). Below, we give the
error estimates (within parenthesis) for the response function
〈−Kx〉 − �xx(iωn) obtained from SSE calculations for various
values of T and n. Again, for the SS-I and SS-II phases, the re-
sponse function in the direction parallel to the stripes is shown.

Error estimates for the structure factor. Here we give details
of the error in the calculation of the structure factors in the
CDW and the SS phases. In the table below, for each case, the
average value of the structure factor is given followed by the
error in its calculation within parentheses.

Phase: SS-II
T n = 1 n = 2 n = 3

0.2 0.1649(8.53 × 10−4) 0.1819(6.76 × 10−4) 0.1973(1.13 × 10−3)
0.4 0.1682(7.69 × 10−4) 0.1985(6.23 × 10−4) 0.2141(9.40 × 10−4)
0.6 0.1735(6.24 × 10−4) 0.2024(6.32 × 10−4) 0.2141(7.99 × 10−4)

Phase: SS-I
T n = 1 n = 2 n = 3
0.2 0.2934(6.78 × 10−3) 0.2935(1.62 × 10−3) 0.2942(1.02 × 10−3)
0.4 0.2654(7.32 × 10−4) 0.2736(1.05 × 10−3) 0.2785(1.00 × 10−3)
0.6 0.2131(1.07 × 10−3) 0.2293(6.91 × 10−4) 0.2360(5.06 × 10−4)
Phase: SF in XY
T n = 1 n = 2 n = 3
0.6 0.5287(7.23 × 10−4) 0.5331(3.66 × 10−4) 0.5346(5.02 × 10−4)
1.0 0.4310(8.17 × 10−4) 0.4403(5.18 × 10−4) 0.4435(6.30 × 10−4)
Phase: SF in XXZ
T n = 1 n = 2 n = 3
0.4 0.3837(8.92 × 10−4) 0.3854(5.35 × 10−4) 0.3888(6.00 × 10−4)
0.8 0.3058(5.58 × 10−4) 0.3210(3.38 × 10−4) 0.3266(8.22 × 10−4)
Phase: CDW
T n = 1 n = 2 n = 3
0.4 0.0196(1.97 × 10−6) 0.0617(6.49 × 10−5) 0.1032(1.12 × 10−4)
0.8 0.0631(8.71 × 10−5) 0.1358(1.19 × 10−4) 0.1751(2.12 × 10−4)
1.2 0.1185(1.73 × 10−4) 0.1858(1.98 × 10−4) 0.2102(2.46 × 10−4)
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Phase: CDW
T S(π,π )

0.4 0.1963(1.22 × 10−5)
0.8 0.1945(2.13 × 10−5)
1.2 0.1742(4.48 × 10−5)
1.6 0.0576(6.16 × 10−4)

Phase: SS-I
T S(π,π ) S+ S−

0.2 0.0010(3.26 × 10−6) 0.0764(2.85 × 10−5) 0.0730(1.36 × 10−4)
0.4 0.0011(1.10 × 10−5) 0.0783(2.86 × 10−5) 0.0735(2.53 × 10−4)
0.6 0.0013(2.01 × 10−5) 0.0793(7.19 × 10−5) 0.0707(5.90 × 10−4)
0.8 0.0014(2.04 × 10−4) 0.0737(1.12 × 10−4) 0.0606(8.53 × 10−4)
Phase: SS-II
T S(π,π ) S+ S−
0.2 0.0116(1.58 × 10−4) 0.0642(5.54 × 10−5) 0.0212(3.90 × 10−4)
0.4 0.0077(1.36 × 10−4) 0.0608(5.06 × 10−5) 0.0328(3.53 × 10−4)
0.6 0.0052(1.16 × 10−4) 0.0570(5.10 × 10−5) 0.0354(3.42 × 10−4)
0.8 0.0034(6.85 × 10−5) 0.0491(8.43 × 10−5) 0.0313(2.56 × 10−4)
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