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We present a self-consistent local mean-field analysis of core-shell nanoparticles with ferromagnetic materials
but with antiferromagnetic interface exchange coupling. The importance of this type of structure for a variety of
applications, including biomedical applications and magnetic recording, has been emphasized in recent studies of
core-shell nanoparticles of iron and manganese oxides. We develop theoretical results for a different combination
of materials that also have antiferromagnetic coupling, namely nanoparticles composed of Fe and Gd, and show
how the magnetic properties depend on temperature and applied field. We examine results for the case where Gd
is the core material and Fe is the shell and vice versa, as well as the results for an Fe/Gd alloy. We find that the
size of the core (typically 4–5 nm in diameter) and shell (typically < 2 nm wide) and the combined size of the
nanoparticle all affect the magnetic behavior of the system. As the temperature is varied, the particles go through
multiple phases, including one where the core magnetic moment is aligned with an external field, one where the
shell magnetic moment is aligned with an external field, and one where the core and shell magnetic moments
are in a canted state (occurring for fields larger than 2 kOe). In addition, we calculate the net magnetic moment
versus temperature for the various structures and show that the compensation temperature (where the net magnetic
moments of the Fe and Gd nearly cancel) depends on all the material parameters—the core radius, the shell radius,
and the magnetic field. We also examine the thermal stability of these structures and show that the nanoparticles
can effectively be ferromagnetic at both low and high temperatures and show superparamagnetic-like behavior
in the 200–300 K range.
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I. INTRODUCTION

Magnetic nanoparticles and heterostructures have received
significant attention [1–5] due to the need for various material
properties not found in homogeneous materials. Already
a number of these heterostructures are seen in electronic
devices, hard drives, MRI contrast agents, and a number
of biomedical applications [6–8]. Bimagnetic nanoparticles
have so far been shown to allow for flexibility in remnant
magnetization, coercive field, compensation temperature [9],
exchange bias [10] and net magnetization [11]. Bimagnetic
nanoparticles, typically where one magnetic material com-
prises the homogeneous core and a second magnetic material
acts as a spherical shell, may allow for large-scale production
without the limitations of thin films.

A number of bimagnetic nanoparticles have already been
fabricated. However, until recently all bimagnetic nanoparti-
cles were restricted to ferromagnetic (FM) coupling between
the core and shell materials or coupling between a ferromagnet
and antiferromagnet. Novel behavior between the core and
shell coupling directions has been found for various structures
including a homogeneous sphere [12] and hard-soft core-
shell nanoparticles [13] and layered structures [14]. The
antiferromagnetic (AFM) interface coupled nanoparticles have
been produced both with a hard magnetic material as the core
and a soft magnetic material as the shell and also vice versa.
These two types of nanoparticles show a variety of different
behaviors from one another.

Similar structures have been analyzed theoretically be-
fore [15–17] including layered structures with AFM interface
coupling [18] and cubic structures using an Ising model [19].
However, the change to a spherical geometry changes the
number and type of boundaries for cells, especially at the

surface of the structure. The addition of these boundaries
has a large effect on the transition of the magnetization with
temperature. The use of an Ising model requires spins to be
parallel or antiparallel with the external field, meaning a canted
state between spins is neglected. Another recent study has
used a fast Monte Carlo method to look at dipole interactions
between nanoparticles with AFM interactions [20].

The use of materials that have AFM interfacial coupling
could lead to new effects or enhancements of desired effects in
nanoparticles. This type of structure allows multiple transitions
between states as temperature changes and in turn has novel
magnetization characteristics. The bimagnetic structure allows
for a compensation temperature, a temperature where the net
magnetic moment is zero due to the antialignment of the
core and shell, and the different temperature dependencies
of the constituent materials. We find that the compensation
temperature can be altered from 0 to above 300 K by changing
the radius of the core in a bimagnetic core-shell nanoparticle.
In addition, the slope of the magnetization vs temperature
can be made to increase, decrease, or remain approximately
constant over more than 400 K by appropriately selecting the
size and material for the core and shell. We also find that these
core-shell particles can be made to have larger or smaller
thermal stabilities at a variety of temperatures.

In this paper we use a self-consistent local mean-field
theory to analyze the behavior of two AFM-coupled FM
materials. As an example we choose Fe and Gd because
these materials have been well characterized in layered
structures, and have very different Curie temperatures, leading
to interesting thermal behavior for the nanoparticle. As has
been recently emphasized [21], the self-consistent mean-field
approach is an efficient way to gain physical insight into
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FIG. 1. A sample geometry and the associated discretization of
the core-shell nanoparticle.

complex problems. We analyze the thermal-averaged magnetic
moment on each atom as well as the total thermally dependent
magnetic moment for the structure. The results provide a range
of interesting behavior which can be controlled by particle size,
applied field, temperature, and shell thickness.

II. THEORY

A sample geometry for the calculations is shown in Fig. 1.
Each cell contains a single Fe atom, a single Gd atom, or is
empty. The cell structure is simple cubic. The total spin in each
cell is either S = 3.5 for Gd or S = 1 for Fe.

The equilibrium structure is calculated in the following way.
First, one assigns values for the spin magnitude and orientation
in each cell. Then one picks a cell n at random and finds the
effective magnetic field acting on that cell,

�H (n) = �Hex(n) + H0ẑ. (1)

This field is composed of the exchange field and the external
field. We have neglected anisotropy and dipolar fields because
these are typically much smaller than the exchange field.
For example the magnetocrystalline anisotropy field for Fe
is roughly 300 Oe and Gd is 100 Oe. Similarly the dipole field
for the Gd atom at a neighboring site is the exchange field and
is found by summing over nearest-neighbor cells:

�Hex(n) = 1

gμB

∑
m=nn

Jnm〈�S(m)〉, (2)

where 〈�S(m)〉 is the thermal-averaged spin at the nearest-
neighbor site m. The values of the effective exchange constants
may be estimated from the Curie temperatures of the two
materials and are given by the formula [22]

J = 3kBTC

zS(S + 1)
, (3)

where TC is the Curie temperature, g is the Lande g factor, μB

is the Bohr magneton, kB is the Boltzmann constant, and z is
the number of nearest neighbors; z = 6 in our model, which
is appropriate for a simple cubic system. For Fe TC = 1043 K
and for Gd TC = 292 K. This gives JFe/kB = 260.75 K and
JGd/kB = 9.3 K. There is an antiferromagnetic interface ex-
change, as well, with a magnitude in between the two exchange
constants above. We choose Ji/kB = −100.0 K. Here both the
Fe and interface exchange are large in magnitude compared to
the Gd exchange, consistent with previous phenomenological

models and experimental studies of the interaction between
transition metals and rare-earth intermetallics [9,23]. We
note that recent ab initio calculations validate our model
in showing that the Fe-Gd exchange coupling is large and
antiferromagnetic [24].

The magnetic moment in cell n is then aligned with the
direction of the effective magnetic field acting on it, which
lowers the energy of the system. In addition, the thermal-
averaged magnitude of the spin at site n is found using the
Brillouin function [22],

〈S(n,T )〉 = S(n)

[
2S(n) + 1

2S(n)
coth

(
2S(n) + 1

2S(n)
X

)

− 1

2S(n)
coth

(
X

2S(n)

)]
(4)

and

X = gμB
�S(n) · �H (n)/kBT , (5)

where T is the temperature.
Another site is chosen at random and the process is

repeated until all spins are in a self-consistent state in terms
of their orientation and thermal magnitude. The total magnetic
moment of the nanoparticle, in the direction of the applied
field, is found by

mtot =
∑

n

gμB〈Sz(n)〉, (6)

where S is the spin of Gd or Fe.
Multiple simulations with different starting orientations

should be considered to ensure that an energy minimum for
the system is found. The number of iterations per cell to find
an equilibrium depends on the starting orientations as well as
how near the system is to a phase transition. We have found
that even near phase transitions 2 × 104 iterations per cell is
typically sufficient for accurate results.

We note that this is a simplified model in terms of the spatial
coordination and structure. Bulk Fe stacks in the bcc structure
and bulk Gd in the hcp structure, but we treat both as simple
cubic in this analysis. Of course a real nanoparticle with a
spherical core-shell geometry may have voids, interdiffusion
at the interfaces, and stacking defects and is unlikely to have the
perfect bulk structure. This helps motivate our simple model,
which will contain the key elements of the overall magnetic
structure of the nanoparticle. The system is discretized with
the side length of a cell of 0.228 nm, the nearest-neighbor
distance for Fe.

The Brillouin function is appropriate for calculating the
thermal-averaged moment of an individual spin in the local
field produced primarily by exchange interactions. In this
case a quantum mechanical calculation is appropriate. To
calculate the alignment of the total magnetic moment for the
structure with an external field the situation is different. Here
thousands of atoms are considered and a classical calculation is
appropriate. For this we use the Langevin function. In the limit
when S → ∞ the Brillouin function becomes the Langevin
function, given by [25]

m(T )Langevin = mtot

[
coth(X) − 1

X

]
. (7)
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In this case,

X = mtotH0

kBT
, (8)

the applied magnetic field is used instead of the applied
field plus the exchange field. Also, mtot is the sum of the
thermal-averaged magnetic moment in each cell, found by
using the Brillouin function. Using the Langevin function
we can evaluate the total magnetic moment and determine
for which sizes and shell thicknesses the ensemble becomes
nonmagnetic. The Langevin function allows us to model the
behavior of the nanoparticle as a function of temperature due
to classical effects, resulting from changes to the structure as
a whole rather than individual spins.

III. RESULTS

We analyze results for a variety of core-shell nanoparticles
using Fe and Gd spherical layers. As noted earlier, these
materials are both ferromagnetic, but at the interface between
the two materials there is an AFM exchange coupling. Al-
though the numerical outcomes for the magnetic configuration
and mtot(T ) are specific to these materials, the size of the
particle, and the layering pattern, the general behavior of an
AFM coupled system can be seen in our examples below.
We also compare the results for mtot(T ) between the core-
shell structures and alloy structures with similar elemental
compositions.

A. Core-shell configurations

There are three distinct magnetic configurations in the core-
shell structure:

(1) Where Fe is aligned with the external field and Gd
is either antiparallel to the external field or negligible in
magnitude. This is referred to as the the Fe-aligned state.

(2) Where Gd is aligned with the external field and Fe is
antiparallel. This is called the Gd-aligned state.

(3) A state where Fe and Gd are both partially aligned with
the external field, called the canted state. In our geometry the
external field is along the z axis, so in the canted state the
Fe and Gd magnetic moments would both have components
along the z axis but would also have components along another
direction with opposite signs. For example Fe would have a +x

component and Gd would have a −x component. The canted
state is facilitated by the relatively small exchange field present
in Gd. The AFM interface exchange forces the Gd atoms near
the interface to align antiparallel to the external field, but there
is a twist in the direction of the Gd moments as the distance
from the interface is increased.

Typical configurations and a typical curve showing mag-
netic moment as a function of temperature are shown in
Fig. 2. Here the particle has a Gd core with a radius of
21 cells and an Fe shell with a thickness of 10 cells and
an applied field of 2 kOe. The three states are shown in
Figs. 2(a)–2(c). The nonmonotonic behavior of the magnetic
moment vs temperature (m vs T ) curve in Fig. 2(d) is due to
the transition from one state to another. For smaller applied
fields there is a compensation point near “b”. For larger applied
fields the canted state dominates near “b” and persists through

FIG. 2. In (a)–(c) are schematics showing the component of
the thermal-averaged magnitude of the magnetic moment along a
representative line of atoms through the center of the nanoparticle. In
(a) we see the Gd-aligned state at 0 K, in (b) the canted state at 230 K,
and in (c) the Fe-aligned state at 500 K where the Gd moments away
from the interface go to zero magnitude. The radius of the particle
is 31 atoms and the radius of the core is 21 atoms. (d) shows the
magnetic moment vs temperature for the core-shell nanoparticle with
a radius of 31 cells and a core radius of 21 cells. The applied field
is 2 kOe, large enough to force the system into a canted state around
220 K. The locations of the states are marked with (a), (b), and (c) on
the graph.

a large temperature range. For a large enough applied field,
around 5 kOe, the nanoparticle is canted even at 0 K. For
applied fields less than 2 kOe there is a transition from the
Fe-aligned state to the Gd-aligned state, or vice versa, at the
compensation temperature.

Surface effects are also evident in Figs. 2(b) and 2(c). Here
the thermal-averaged magnitude of the magnetic moment of
the outermost layer of Fe is decreased below 50% of the
adjacent inner layers. This effect is more readily seen at higher
temperatures. This can be explained by noticing that the value
of X in Eq. (5) decreases as the effective field decreases,
and, due to the self-consistent calculation, the effective fields
on the outermost layer are small because of the reduced
number of nearest neighbors. Similar effects are seen at lower
temperatures when Gd is in the shell and Fe is in the core.

When the number of Fe cells is large the particle is in the Fe-
aligned state at 0 K and remains in this state as T is increased.
In contrast, if there are enough Gd cells the system is in the
Gd-aligned state at 0 K and then transitions to Fe-aligned at
higher temperatures. Figure 3 shows m vs T curves for a variety
of core radii while the outer radius of the nanoparticle remains
constant at 31 cells. In Fig. 3(a) all of the nanoparticles have
an Fe core. Except for the core radius = 30 these particles have
enough Gd to begin in the Gd-aligned state, and then transition
to the Fe-aligned state above the compensation temperature.
The particle with a core radius = 30 is in the Fe-aligned state at
all temperatures, but shows an increase in magnetic moment
as T is increased. However, in Fig. 3(b) the particles with
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FIG. 3. A plot of m vs T for (a) Fe-core and Gd-shell nanoparticle
and (b) Gd-core and Fe-shell nanoparticle. In both graphs the outer
radius of the shell is kept constant at 31 atoms and the core radius is
varied from 15 to 30 atoms. The applied field is H0 = 1 kOe.

small core radii, core radius = 15 and 18, have enough Fe to
maintain the Fe-aligned state for all temperatures. For all of the
nanoparticles in the Gd-aligned state at 0 K the compensation
temperature is closer to 0 K for particles containing less Gd.
However, for nanoparticles in the Fe-aligned state at 0 K, the
compensation temperature does not vary significantly but the
magnitude of the 0 K magnetic moment increases for larger
volume fractions of Fe. The compensation temperature can
be tailored by adjusting the size of the core and changing
the volume fractions of Fe and Gd. Likewise, at any given
temperature the magnetic moment or the slope of m vs T can
be tailored by a similar process.

Another interesting feature of these nanoparticles is that
one can arrange to have a magnetic moment that increases,
decreases, or remains nearly constant over a wide temperature
range. For example, for an Fe core of radius 30 cells and
Gd shell with thickness 1 cell [see Fig. 3(a)] at an applied
field of 1 kOe the total moment of the particle increases with
increasing temperature. This is because the Gd has a lower

Curie temperature, so the thermal magnitude of the Gd moment
decreases more quickly with increasing temperature compared
to the Fe. In addition, the Gd is antialigned with the external
field, so decreases in the magnitude of the Gd moment increase
the total moment. However, as the temperature increases, the
Fe, which is aligned with the external field, also decreases
in magnitude. This has the effect of decreasing the total
moment of the particle. These two effects can nearly cancel
out leaving the particle with a constant magnetic moment
through a temperature range determined by the volume
fraction of the Fe and Gd. One can see a similar behavior
in Fig. 3(b) as well for some compositions at temperatures
above 300 K. However, a similarly sized nanoparticle of pure
Fe shows a nearly constant magnetic moment between 0
and 400 K, decreasing by 0.08 × 10−15 emu at an applied
field of 2 kOe.

Figure 4 shows an m vs T plot comparing alloyed particles
with volume fractions of 33%, 45%, and 66% Gd to core-shell
(Gd-Fe) nanoparticles with similar volume fractions of Gd
and Fe. For the alloy, there are a larger number of Fe and Gd
atoms interacting antiferromagnetically. Because Ji is large
compared to JGd this leads to high-temperature stabilization
of the Gd magnetic moment. This stabilization moves the
compensation temperature higher for the alloy compared to the
core-shell particle. However, for the core-shell nanoparticles
the thermal stabilization of the Gd due to the AFM interaction
primarily takes place at the interface between the core and
shell. Due to this, the rest of the Gd moments rapidly decrease
above the Gd Curie temperature and a magnetization due
to the Fe is evident above the compensation temperature.
Thus, the core-shell nanoparticles in some cases can have a
larger thermal-averaged moment, compared to alloys, above

FIG. 4. An m vs T plot for a Gd-core and Fe-shell nanoparticle
compared to an alloyed nanoparticle. The alloyed particle and core-
shell nanoparticles have approximately the same volume fraction
of Gd, 33%, 45%, and 66% for the black, red, and green curves,
respectively. The solid lines are the alloyed particles and the dashed
lines are the core-shell nanoparticles. The nanoparticles all have a
radius of 31 atoms and the applied field is H0 = 1 kOe.
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the compensation temperature because there is no longer
a significant cancellation from the antialigned Gd and Fe
moments (see the 33% case in Fig. 4).

B. Superparamagnetic-like behavior

Superparamagnetism is the effect where the thermal energy
becomes large enough to compete with the anisotropy energy
for a given system. At this point fluctuations due to thermal
energy cause a change in the orientation of the magnetic
particle which occurs on a time scale shorter than the repetition
time between measurements of the system. In this case the
time-averaged measure of the magnetization decreases to
0. Our calculations have neglected anisotropy and instead
consider the competition between Zeeman energy and thermal

FIG. 5. In (a) an m vs T plot for an Fe-core and Gd-shell
nanoparticle is shown. In (b) an m vs T plot for a Gd-core and Fe-shell
nanoparticle is shown. Both graphs show the Langevin moment,
as dashed curves, and the total thermal-averaged moment, as solid
curves, for a variety of applied fields. All particles have a radius of
31 atoms and a core radius of 27 atoms.

energy. While this is not a true measure of superparamag-
netism for magnetic particles, it does give some information
about the thermal stability of a structured nanoparticle.
Below we use the term “superparamagnetic-like” behavior
to determine the thermal stability for different core-shell
configurations.

To explore the superparamagnetic-like behavior of core-
shell nanoparticles we use the Langevin function, which
accounts for thermal fluctuations acting on a global scale,
rather than a local scale as the Brillouin function does. The total
thermal-averaged moment found from the Brillouin function
(solid curves) and the Langevin moment (dashed curves) are
compared in Fig. 5(a) for an Fe-Gd core-shell particle of radius
31 atoms where the shell is 4 atoms thick. Similarly, in Fig. 5(b)
a Gd-Fe core-shell particle is shown. In both Figs. 5(a) and 5(b)

FIG. 6. In (a) an m vs T plot for an Fe-core and Gd-shell
nanoparticle is shown. In (b) an m vs T plot for a Gd-core and Fe-shell
nanoparticle is shown. Both graphs show the Langevin moment,
as dashed curves, and the total thermal-averaged moment, as solid
curves, for a variety of radii of nanoparticles. All particles have a
similar ratio of core to total volume, approximately 40%. The applied
field is 2 kOe. At this field a canted state is evident in (b) for the
radius = 27 atom curve.
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FIG. 7. In (a) a comparison for calculations done using a simple
cubic lattice (black) and a body-centered cubic lattice (blue) where
the structure is a Gd core of radius 7 atoms and an Fe shell with
thickness 4 atoms in a 2 kOe applied field. In (b) a comparison of
two identical spherical core-shell structures except where the interface
exchange parameter has been changed from Ji/kB = −100 K (black)
to Ji/kB = −200 K (red). Here the Fe core has a radius of 27 atoms,
the Gd shell has a thickness of 4 atoms, and there is a 2 kOe applied

the curves for applied fields ranging from 50 Oe to 30 kOe are
shown.

For both core-shell particles there is a significant low-
temperature magnetic moment even for small applied fields.
The superparamagnetic-like effect becomes easily noticeable
for applied fields less than H0 = 1 kOe. Especially for the
H0 = 0.05 kOe applied field case shown in in Fig. 5(a),
we notice decreased thermal stability in the 200–300 K range
where the Fe and Gd moments nearly cancel. For larger applied
fields we see large magnetic moments for these particles which
are approximately 15 nm in diameter. In the case of the Fe-Gd
nanoparticle there is still a noticeable Langevin moment above
the compensation temperature for H0 = 50 Oe while for the
Gd-Fe nanoparticle there is not.

Decreasing the size of the nanoparticles tends to make
them thermally unstable with respect to alignment with the
external field and move them into the superparamagnetic
regime. We explore whether this is an important issue for
smaller nanoparticles in Fig. 6. In Figs. 6(a) and 6(b) we
compare the magnetic moments of Fe-Gd and Gd-Fe core-shell
nanoparticles, respectively. The external applied field is 2 kOe
and the core is approximately 40% of the total volume for all
sizes of nanoparticles. In both figures we see that the Langevin
moment does not vary considerably from the thermal-averaged
moment except above 400 K. At an applied field of 2 kOe
we see the presence of the canted state in Fig. 6(b) for
nanoparticle radii larger that 23. This is apparent because the
total thermal-averaged magnetic moment does not go to zero
in the transition from the Gd-aligned state to the Fe-aligned
state. However, for smaller sizes the Gd core is too small
and the Gd exchange field, compared to the applied field, is
too large to allow a canted state. The magnetic moment is
seen to rapidly diminish as the size is decreased due to the
antialignment of the core and shell along with the increased
ratio of surface spins to volume spins. For the sizes considered
here, we see that the particles tend to be thermally stable,
without a large difference between the Brillouin and Langevin
moments. However real structures are likely to have voids and
other imperfections leading to a reduced magnetization and
thermal stability and superparamagnetism is likely to be an
issue for those structures.

We now discuss the validity of some of our assumptions.
(1) We have assumed a simple cubic lattice for both the

Fe and Gd. We can test this assumption by comparing results
from a calculation done with a simple cubic (sc) lattice to those
using a body-centered cubic (bcc) lattice. We find qualitatively
similar results using both lattice types for a variety of different
sizes of nanoparticles. An example of this is shown in Fig. 7(a)
for a structure with a Gd core (radius 7 atoms) and an Fe shell
(thickness 4 atoms) with an applied field of H0 = 2 kOe. The
ratio of Gd atoms to Fe atoms is 34.8% for the bcc structure and
34.1% for the sc structure. Qualitatively all the behaviors seen

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
field. In (c) a comparison between a calculation with only exchange
interactions and a Zeeman interaction (black) and a calculation with
exchange, Zeeman, and dipole-dipole interactions between all atoms
(red). The Gd core has a radius of 11 atoms and an Fe shell thickness
of 4 atoms in a 5 kOe applied field.
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in the results for the simple cubic structure are also found in the
bcc structure. The disparity in the quantitative results is due to
the differences in the discrete structure at the Gd/Fe interface
and for the Fe atoms at the outer surface. This similarity of
results remains appropriate for larger structures as well where
one finds canted states for both lattice types. We conclude that
although the quantitative values do change somewhat with
lattice type, all the important qualitative features are present in
both lattices. In calculations compared to experimental results,
one generally has to introduce some tunable parameters that
take this and other features into account. For example, the
magnetic properties for both Fe and Gd in thin films and at
interfaces are often different from their bulk values [26–28]
and vary with the manufacturing technique.

(2) In our calculations we have neglected magnetocrys-
talline anisotropy. For single crystals, both Gd and Fe display a
fairly small bulk anisotropy [29,30], below about 300 Oe, and
the interface anisotropy has been estimated to be zero [26].
In previous calculations good agreement with experimental
results has been found for polycrystalline thin films of Fe using
a magnetocrystalline anisotropy ranging from 0 to 50 Oe [31]
and neglecting any anisotropy in Gd. All of these values are
generally small compared to the exchange and applied fields
used in this paper.

(3) We have used a value of Ji/kB = −100 K instead of the
Ji/kB = −200 K as in Ref. [9]. Figure 7(b) shows calculations
comparing these two values of the interface exchange and very
similar behavior is seen. Here the Fe core has a radius of 27
atoms, the Gd shell has a thickness of 4 atoms, and there is a
2 kOe applied field.

(4) We have assumed that the dipolar interactions are
negligible in our structures. We have performed a calculation
including dipolar interactions for a small structure, where a
canted state is present. We chose this structure because we
presumed that a canted state would be the most sensitive
to dipolar fields while still being a small structure which is
not too computationally demanding. This is compared to a
similar calculation neglecting dipolar interactions, shown in
Fig. 7(c). We again see the results are nearly identical. For this
calculation the Gd core has a radius of 11 atoms, the Fe shell
has a thickness of 4 atoms, and a 5 kOe applied field is present.

IV. CONCLUSION

We have used self-consistent local mean-field theory to
model bimagnetic nanoparticles with AFM coupling at the
interface. For spherical geometries we see that there are
both surface effects and interface effects and multiple stable
states. We have shown a core-shell particle which transitions
between Fe-aligned, Gd-aligned, and canted states using a
representative line of spins through the center of the particle.
In addition, we have found that the compensation temperature
of the particle can be varied over greater than a 300 K range
by combinations of changing the volume ratio of the core and
shell materials and by changing the applied field. The slope of
the m vs T curves can also be made to increase, decrease, or
remain approximately constant over a range of several hundred
kelvins with this technique.

To contrast the interface-specific effects due to the AFM
coupling between these two materials we compared a core-
shell nanoparticle with an alloyed particle of the same size
and volume fraction of material. We found that particles in
a core-shell configuration can have a larger high-temperature
magnetic moment than alloyed particles. For most alloyed
particles there is no compensation temperature while a much
richer behavior is seen in the bimagnetic particles.

The presence of a compensation temperature that can
be tailored to specific temperatures suggests this type of
nanoparticle could be used in a variety of applications. One
such application would be as a contrast agent for MRI where
the temperature range of interest is near the compensation
temperature of nanoparticles. The nanoparticle creates a
tunable dipole field, by varying the temperature or applied
magnetic field, that acts on the nearby spins, changing the MRI
signal. Analysis of the MRI signal will then yield information
about local environment such as temperature measurements.

We also investigated the thermal stability of the nanopar-
ticles and find that even at low applied fields (2 kOe) and
with ideal nanoparticles with a radius of 7 atoms there is
an appreciable magnetic moment which persists above the
compensation temperature for Fe-Gd core-shell nanoparticles.
We find that as the size of the nanoparticle is decreased the
applied field necessary to induce a canted state increases.

[1] V. Markovich, R. Puzniak, D. Mogilyansky, X. Wu, K. Suzuki,
I. Fita, A. Wisniewski, S. Chen, and G. Gorodetsky, J. Phys.
Chem. C 115, 1582 (2011).

[2] T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Notzold,
S. Mahrlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blugel,
M. Wolf, I. Radu, P. M. Oppeneer, and M. Munzenberg,
Nat. Nanotechnol. 8, 256 (2013).

[3] Q. Song and Z. J. Zhang, J. Am. Chem. Soc. 134, 10182 (2012).
[4] E. Lima, E. L. Winkler, D. Tobia, H. E. Troiani, R. D. Zysler,

Elisabetta Agostinelli, and Dino Fiorani, Chem. Mater. 24, 512
(2012).

[5] M. Charilaou and F. Hellman, Phys. Rev. B 87, 184433 (2013).
[6] Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson,

J. Phys. D: Appl. Phys. 36, R167 (2003).

[7] K. M. Krishnan, IEEE Trans. Magn. 46, 2523 (2010).
[8] J. H. Hankiewicz, Z. Celinski, K. F. Stupic, N. R. Anderson, and

R. E. Camley, Nat. Commun. 7, 12415 (2016).
[9] M. Sajieddine, Ph. Bauer, K. Cherifi, C. Dufour, G. Marchal,

and R. E. Camley, Phys. Rev. B 49, 8815 (1994).
[10] Y. Hu and A. Du, J. Appl. Phys. 110, 033908 (2011).
[11] R. E. Camley and D. R. Tilley, Phys. Rev. B 37, 3413 (1988).
[12] K. L. Krycka, R. A. Booth, C. R. Hogg, Y. Ijiri, J. A. Borchers,

W. C. Chen, S. M. Watson, M. Laver, T. R. Gentile, L. R. Dedon,
S. Harris, J. J. Rhyne, and S. A. Majetich, Phys. Rev. Lett. 104,
207203 (2010).
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