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Effects of interactions on the relaxation processes in magnetic nanostructures
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Controlling the relaxation of magnetization in magnetic nanostructures is key to optimizing magnetic storage
device performance. This relaxation is governed by both intrinsic and extrinsic relaxation mechanisms and with
the latter strongly dependent on the interactions between the nanostructures. In the present work we investigate
laser induced magnetization dynamics in a broadband optical resonance type experiment revealing the role of
interactions between nanostructures on the relaxation processes of granular magnetic structures. The results
are corroborated by constructing a temperature dependent numerical micromagnetic model of magnetization
dynamics based on the Landau-Lifshitz-Bloch equation. The model predicts a strong dependence of damping on
the key material properties of coupled granular nanostructures in good agreement with the experimental data. We
show that the intergranular, magnetostatic and exchange interactions provide a large extrinsic contribution to the
damping. Finally we show that the mechanism can be attributed to an increase in spin-wave degeneracy with the
ferromagnetic resonance mode as revealed by semianalytical spin-wave calculations.
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I. INTRODUCTION

Over the past few decades the demand for information
storage has increased at unprecedented rates. This has driven
forward huge advances in the areal density of hard disk
drives (HDD) based on magnetic storage. These increases
have led to hard drive (granular) media containing much
smaller grains located in smaller areas. In an ideal scenario
the ability to control the magnetic orientation of individual
grains would be possible without the effects of interactions
between them. However, in structured magnetic materials at
the nanoscale this ideal can never be reached. In reality the
nanostructures are coupled. This coupling can arise from a
number of mechanisms: the long-ranged dipole-dipole field,
direct exchange between grains through magnetic impurities
across the interstitial region [1], or via superexchange via
oxides in the interstitial boundary layer. The role of inter-
actions in relaxation processes in magnetic materials has long
been studied [2–6], though it is often very difficult to determine
individual mechanisms by which the system relaxes.

The key measurable quantity that governs the relaxation
of the magnetization is the effective damping. This parameter
determines the dynamics of the magnetization after an external
stimulus and, importantly for granular magnetic media, it
governs the speed at which a bit can be reversed. A large value
of damping is desirable to speed up the writing process and
reduce transition noise in perpendicular magnetic recording
(PMR) and to reduce the dc noise arising from backswitching
during the heat assisted magnetic recording (HAMR) process.
Although its effect on recording performance is significant, the

*lja503@york.ac.uk
†thomas.ostler@ulg.ac.be

origin of damping is poorly understood. Mo et al. [6] carried
out a detailed analysis of FMR data on CoCrPt perpendicular
media, concluding that the intrinsic damping from magnon-
electron scattering was as low as 0.004, over an order of
magnitude smaller than the values usually obtained for the total
damping. Mo et al. ascribe the major contribution to the damp-
ing as arising from inhomogeneity line broadening and grain
boundary two-magnon scattering. However, another extrinsic
candidate contribution to damping arises from the effects of
intergranular interactions. In the present work we investigate
the effects of magnetostatic and exchange interactions on the
effective damping of perpendicular media. It is shown that
the interactions give rise to an increase in damping which is
due to the presence of long-ranged dipole-dipole spin wave
modes. The introduction of exchange interaction results in a
stiffening of the magnetization and a consequent reduction in
damping, demonstrated experimentally for a series of CoCrPt
granular media, and verified by micromagnetic modeling. We
furthermore use a simplified model of spin waves [2] to show
that the interplay between the magnetostatic interactions and
intergranular exchange determines the number of spin-wave
modes with finite k vectors that share the k = 0 (ferromagnetic
resonance) frequency (the degeneracy), which is well known
to affect the damping [2].

II. EXPERIMENTAL RESULTS

To determine the damping from the numerical model and
experimentally we use an optical ferromagnetic resonance
(FMR) method. In an optical FMR experiment, a magnetic
field is used to force the magnetic moments away from
their equilibrium. An optical pulse is applied, heating the
sample, and thus leading to a new equilibrium position for the
magnetization. The initial/new equilibrium configuration
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FIG. 1. Hysteresis loops for the series of CoPt with variable
exchange. Increasing exchange leads to increasingly square loops
as expected.

arises due to the minimization of the competing anisotropy,
exchange, demagnetizing and Zeeman energies at the start-
ing/final temperature. The rapid increase in temperature caused
by the laser induces precession of those moments around a
new position due to thermally induced changes in the energy
contributions. The resulting dynamics can then be analyzed
to determine effective parameters governing the relaxation
process. This technique has been applied to a wide range of
materials and structures [7–10]. In particular optical FMR is
the preferred method for measuring the damping and resonance
frequencies in materials with a strong magnetocrystalline
anisotropy [11], due to the high fields required to drive the
system to resonance in a typical ferromagnetic resonance
experiment [12]. Interestingly, the two methods were shown to
give the same values of the damping by Clinton and co-workers
in Ref. [7].

We have carried out measurements on a series of CoPt
perpendicular media in which the exchange coupling was
varied by changing the oxygen content in the intergranular
layers. The applied field is applied perpendicular to the sample
plane (in the z direction). The variation of the exchange
coupling is immediately apparent in the measured hysteresis
loops as shown in Fig. 1, where it can be seen that increasing
oxygen content gives rise to increasingly sheared loops as the
intergranular exchange is reduced, due to the distribution of
switching fields and the fact that the reduced exchange leads
to a less coherent reversal mechanism.

From the hysteresis properties we determine the exchange
field using N ∗ 4πMs − Hint, where N is a demagnetizing
factor, usually anywhere between 0.75 and 0.85 [13], and Hint

is the mean interaction field measured using FORC [14].
We have carried out measurements of the effective damping

constant using the optically pumped FMR technique [15] in
order to investigate the dependence of the effective damping
constant on the exchange. The magnetic moments are forced
away from the equilibrium position using a 0.8 kOe field at a
45◦ angle from the out of plane anisotropy axis. A 10.8 mW
laser is used to heat the media and excite the magnetization into
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FIG. 2. Example of a time resolved magnetization trace deter-
mined experimentally. Also shown in the inset is an example of the
fit to data that was used to extract the damping, where the raw data is
shown as points and fitted function is shown as a line.

precession. An example of the time resolved magnetization
data obtained is given in Fig. 2 which includes an example
(inset) of the fit to the data that was used to determine the
damping of the system.

The results are shown in Fig. 3, which shows the de-
pendence of the measured Gilbert damping constant on the
exchange field. The values of the damping are calculated by
fitting the transverse magnetization components to a decaying
oscillating function, my(t) = A cos(ωt) exp(−t/τ ), where the
fitting parameters are A, the amplitude, ω, the resonance
frequency, and τ , the relaxation rate. The damping is then
α = 1/τω.

A nonmonotonic dependence of α on Hex is clear. In
order to interpret the experiments in terms of the intergranular
interactions we have also measured the zero field cluster size
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FIG. 3. Dependence of the measured Gilbert damping constant on
the exchange field. A nonmonotonic dependence of α on Hex is clear.
(Inset) Variation of the cluster size with exchange field determined
using the method given in Ref. [13] and described in the text.
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using the method of Nemoto et al. [13]. The results are given
in the inset of Fig. 3. Importantly, it is found that for the sample
with the highest exchange coupling there is a large increase in
the correlation length. This is consistent with the form of the
hysteresis loop shown in Fig. 1, where the sample exhibits a
very square loop consistent with magnetization by nucleation
and propagation of quasidomains.

III. NUMERICAL MODEL

To corroborate the effects of increasing intergranular
exchange we have constructed a dynamic numerical model
of granular media using the Landau-Lifshitz-Bloch (LLB)
equation [16] combined with a Voronoi construction of the
grains typical for magnetic recording media. The interactions
between the grains are calculated based on the interaction
distances and lengths between the grains and included into the
LLB model, both of which we describe in the following.

A. Landau-Lifshitz-Bloch model

The LLB equation of motion describes the time evolution of
a magnetic macrospin. The equation allows for longitudinal re-
laxation of the magnetization, and was derived by Garanin [16]
within a mean field approximation from the classical Fokker-
Planck equation for atomic spins interacting with a heat bath.
Models based on the resulting expressions have been shown to
be consistent with atomistic spin dynamics simulations [17],
as well as comparisons with experimental observations, for
example, in laser induced demagnetization [18] and domain
wall mobility measurements in yttrium iron garnet crystals
close to the Curie point [19] (Tc). The equation is similar
to the Landau-Lifshitz-Gilbert (LLG) equation [20], with
precessional and relaxation terms, but with an extra term that
deals with changes in the magnitude of the magnetization:

ṁi = −γ
[
mi × Heff

i

] + γα‖
m2

i

(
mi · Heff

i

)
mi

− γα⊥
m2

i

[
mi × [

mi × Heff
i

]]
, (1)

where mi is a spin polarization. The spin polarization tends
towards equilibrium, me, which is a temperature dependent
input parameter (discussed below). α‖ and α⊥ are dimen-
sionless longitudinal and transverse damping parameters. γ

is the gyromagnetic ratio taken to be the free electron value.
The LLB equation is valid for finite temperatures and even
above Tc, though the damping parameters and effective fields
are different below and above Tc. For the transverse damping
parameter,

α⊥ =
{

λ
(
1 − T

3Tc

)
, T < Tc,

λ 2T
3Tc

, T � Tc,
(2)

and, for the longitudinal,

α‖ = λ
2T

3Tc
for all T . (3)

For a single macrospin free energy density f is given by

fi = −Ms(0)B · mi + Ms(0)

2χ̃⊥

(
m2

i,x + m2
i,y

)
+ Ms(0)

8χ̃i,‖m2
i,e

(
m2

i − m2
i,e

)2 − Ms(0)2
∑
j,i �=j

ViVj

× 3(mi · eij )(mj · eij ) − mi · mj

r3
ij

, (4)

and the effective fields, Heff
i = − 1

M0
s

δf

δmi
are given by [16]:

Heff
i = B + HA,i + 1

2χ̃i,‖

(
1 − m2

i

m2
i,e

)
mi + He,i + Hdip,i,

(5)

where B represents an external magnetic field, Hdip,i is the
dipolar field, and HA,i = −(mx

i ex
i + m

y

i ey

i )/χ̃⊥ an anisotropy
field. Ms(0) is the saturation magnetization (magnetization
at 0 K); Vi represents the volume of grain i. Here, the
susceptibilities χ̃l are defined by χ̃l = ∂ml/∂Hl . He is the
(intergranular) exchange field, which we assume is based on
the contact area between the grains, arising from the Voronoi
construction, as discussed below. In these equations, λ is a
microscopic parameter which characterizes the coupling of
the individual, atomistic spins with the heat bath (the intrinsic
damping). We choose the value of λ to be 0.05 for this work. It
is worth pointing out that we expect the results and conclusions
presented here to be qualitatively the same for all values of the
damping. The calculation of the dipolar field is truncated at
eight grain diameters to reduce the N2 calculation over all
pairwise interactions. The long-ranged contribution is then
treated within a mean-field approximation.

For application of the LLB equation one has to know the
spontaneous equilibrium magnetization me(T ), the perpendic-
ular [χ̃⊥(T )], and parallel [χ̃‖(T )] susceptibilities beforehand.
In this work, the input functions are based on that of Ref. [17]
for FePt and scaled to give the correct Curie temperature. For
the transverse susceptibility (that determines the anisotropy)
the function is scaled to give an anisotropy constant of
13.5 × 106 erg/cc. The functions are scaled in the same
manner as that of Ref. [21]:

Ms(T ) = Ms(0)

MFePt
s (0)

MFePt
s

(
T FePt

C

TC
T

)
, (6)

χ‖(T ) = Ms(0)

MFePt
s (0)

χFePt
‖

(
T FePt

C

TC
T

)
, (7)

χ⊥(T ) = Ms(0)

2K(0)
χFePt

⊥

(
T FePt

C

TC
T

)
. (8)

B. Granular model

The model of the magnetic nanostructures is based on a
Voronoi construction which creates structures and grain size
dispersions similar to those produced in magnetic hard disk
drives (see Fig. 4). The seed points for the Voronoi algorithm
are based on a 2D hexagonal structure with the points moved
by a random value, linearly, to generate structural disorder.
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FIG. 4. Schematic of the setup of the simulations. The anisotropy
is perpendicular to the plane with the applied field at an angle θ to
the plane. The magnetization equilibrates to M before the laser pulse
is applied. The laser pulse results in relaxation of the magnetization
by precession to the new orientation, M

′
.

This results in a log-normal distribution of grain volumes, Vi ,
as seen experimentally. The average grain diameter in our
numerical simulations is 8 nm with a thickness of 8 nm.
The standard deviation in the grain diameter is 2.63 nm. In
the present work we assume no dispersion in the anisotropy
easy axes of the grains and we numerically simulate a system
approximately 700 nm × 700 nm laterally, corresponding to
7558 grains. Furthermore, we do not assume a spatial variation
of the anisotropy strength per grain, though the Voronoi
construction gives a volume distribution giving rise to a
variation of energy barrier, KV . This means that to first order
the extrinsic contributions, from anisotropy, to the damping
are zero [2].

The IGE is formulated on the basis of the contact area
between grains as was implemented in Ref. [22]. Considering
neighboring grains k and l, the exchange energy between them
can be written

Ekl
exch = −NklJkl ŝk · ŝl , (9)

where Nkl is the number of atoms in the contact area between
(k,l). Assuming a film of uniform thickness t , Nkl = Lklt/a

2,
where Lkl is the contact length between the grains and a is
the lattice constant. The exchange field on grain k due to l is
therefore

Hkl
e = −∂Ekl

exch

∂μk

= LklJkl

a2MsAk

ŝl . (10)

Ak is the area of the face of grain k in the plane of thin film and
Lkl is the contact length between grains k and l. In addition,
we allow for some dispersion in the Jkl by generating a normal
distribution with a given width. We now write Eq. (10) in
terms of reduced parameters (relative to the median values
Lm,Am,Jm)

Hkl
e = Hexch

(
Jkl

Jm

)(
Lkl

Lm

)(
Am

Ak

)
ŝl , (11)

where Hexch = JmLm/(a2MsAm). In practice Hexch is set by
the requirement that the average exchange at saturation has
a certain value H sat

exch, which is the more accessible value

-30 -20 -10 0 10 20 30
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

M
z/M

s

Applied Field (kOe)

6 kOe
4 kOe
2 kOe
0 kOe

FIG. 5. Numerically calculated hysteresis curves for a range of
intergranular exchange constants in good qualitative agreement with
the experimental hysteresis loops (Fig. 1).

experimentally, that is

H sat
exch = N−1Hexch

∑
k

∑
l∈n.n

(
Jkl

Jm

)(
Lkl

Lm

)(
Am

Ak

)
. (12)

We have verified that the model gives consistent static
results by initially simulating hysteresis loops for a range of in-
tergranular exchange. Qualitatively Fig. 5 shows increasingly
square loops with increasing intergranular exchange.

There are some expected quantitative differences between
the experimental and numerically determined loops that
primarily arise from the fact that the Landau-Lifshitz-Bloch
equation is integrated numerically as a function of time;
however, the total simulation time is orders of magnitude
lower than those measured experimentally. Furthermore, the
numerical simulations do not take into account the detailed
variations in the experimental structure, saturation magneti-
zation, anisotropy, or grain size variations. Not taking these
specific aspects into account allows us to use the numerical
model to interpret the experimental results without these extra
degrees of freedom.

During the simulations of optically induced FMR we apply
a magnetic field in the x-z plane at an angle θ which we take to
be at 45◦ from the z axis of magnitude 10 kOe. The anisotropy
is assumed to be uniaxial and points out of the plane of the
sample. The large angle at which we apply the field gives
rise to large amplitude precession giving excellent fits to the
magnetization (discussed below). Even in the presence of the
field at 45◦, the large anisotropy ensures that the magnetization
lies strongly out of plane. In our optical FMR approach we
assume a square pulse in temperature rising from ambient to
600 K for 400 ps, returning to ambient after the pulse. In a
real optical FMR experiment on the picosecond time scale
the laser generates a hot electron distribution that can reach
temperatures of thousands of kelvin [23]. Subsequently, the
hot electrons reach a quasiequilibrium state with the phonons
at the same temperature. Depending on the relaxation time of
the magnetic system the spin system will reach equilibrium
with this quasiequilibrium at around 0.1–1 ps [24], though this
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FIG. 6. Example of the transverse magnetization dynamics after
a heat pulse (points) with a fit to the dynamics (lines). (Inset) Example
of the longitudinal magnetization dynamics after a pulse.

can be considerably longer for pure rare earth metals [25].
For metallic ferromagnets, the changes in the magnitude of
the magnetization occur on a much faster time scale than
the resulting precession (see inset of Fig. 6); thus we probe the
dynamics at the temperature after the pulse. Experimentally the
long cooling time to the initial temperature occurs by transfer
of energy out of the magnetic material to the substrate and the
surroundings via phonon processes on the nanosecond time
scale.

Using the LLB model, we have investigated the effects of
varying the saturation magnetization and IGE on the damping
of our granular material after excitation with a heat pulse. As
discussed above, the change in temperature alters the equilib-
rium position, which causes the magnetization to precess back
the initial state. An example of the resulting dynamics within
the LLB model is shown in Fig. 6 (points). On the picosecond
time scale the magnetization is quickly reduced, in agreement
with experimental [26–28] and numerical results [28–30] so
that the quenching and recovery of the anisotropy field is much
faster than the time scale of the precessional dynamics.

Using the numerical model we first calculate the damping
as a function of the saturation magnetization, as presented in
Fig. 7, for a range of values of the IGE. The values for the
damping are calculated as with the experimental data.

Figure 7 shows a strong variation and a subtle combination
of contributions from magnetostatic and exchange interac-
tions. Consider first the case H sat

exch = 0. From Fig. 7 it can
be seen that there is a very strong dependence of effective
damping on Ms , specifically an increase of around a factor of
2.5 for Ms values around those of Co and Fe. For low values
of Ms the damping for all values of IGE converge to the value
of the input damping due to the very low contribution from the
demagnetizing fields.

The variation of damping with IGE, determined nu-
merically, is shown in Fig. 8 and is consistent with the
experimentally observed decrease (Fig. 3) in damping with
increasing intergranular exchange. For low values of the
saturation magnetization the value of the damping shows very
little variation and remains close to the value for the intrinsic
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FIG. 7. Damping as a function of saturation magnetization for a
range of values of the intergranular exchange, H sat

exch.

damping used for the calculations. For larger values of Ms

there is a much larger variation with IGE where there is a
strong interplay between the demagnetizing energy and the
IGE.

Overall, the numerical simulations are consistent with
the experimental data for small exchange fields, where the
effective damping is seen to decrease with Hex . However,
the model does not reproduce the increase in damping for
the sample with the largest exchange (see Fig. 3). This is
likely related to the dramatic increase in the measured cluster
size for this particular sample as shown in the inset of Fig. 3.
For this sample, the oxide concentration was reduced to zero,
and it is possible that the determined exchange field is an
underestimate. The large cluster size and the form of the
hysteresis loop for this sample is indicative of a change to a
nucleation/propagation mechanism, which is not observed in
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the value of the damping varies very little and remains around the
value of the input damping parameter. As Ms increases, the variation
with intergranular exchange becomes much greater as the interplay
between the demagnetizing fields and exchange becomes important.
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magnetization. There is clearly a direct correlation between the
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the model calculations for values of Hex up to 5 kOe. For a very
strongly exchange coupled sample it is likely that additional
damping mechanisms will arise from interaction of the domain
walls with defects and impurities resulting in the increase in
Gilbert damping at large exchange fields.

IV. SEMIANALYTICAL SPIN-WAVE MODEL

So far we have presented numerical and experimental
results that show good agreement on the effects of interactions
on the damping in granular media; however, the underlying
mechanism remains somewhat ambiguous. In the following we
ascribe the reduction in damping due to increasing intergran-
ular exchange as arising from a reduction in the degeneracy of
finite k vectors with the frequency of the k = 0 (ferromagnetic
resonance) mode (see schematic inset of Fig. 9). In general,
the presence of defects, inhomogeneities, boundaries, etc.
can act as scattering centers leading to the energy transfer
from the uniform magnetization precession into degenerate
spin-wave modes. A reduction in this degeneracy reduces the
number of possible spin-wave modes that can be scattered
to or from. The process involves the annihilation of a
zero-wave-number magnon and the creation of a nonzero-
wave-number magnon. The consequence of this process is
that the magnetization precession undergoes rapid relaxation
(damping) [31]. Reducing this degeneracy will then result in
a reduced damping. We conclude that the reduction of two-
magnon scattering processes is dominating the reduction in
damping due to increased intergranular exchange. To elucidate
this we follow the method of McMichael [2,3,32]. In the
present work we only briefly outline the method of determining
the frequencies of the spin-wave modes. In Refs. [2,3,32] the
Landau-Lifshitz-Gilbert equation is linearized. The resulting
linearized components of the magnetization and fields are
written in Fourier space through

b(r) =
∫

dk
(2π )2

b(k) exp(ik · r), (13)

where b represents the magnetization or the fields. The effec-
tive field has contributions from the Zeeman, demagnetizing,
anisotropy, and exchange terms and is written in terms of a
sum over the magnetization multiplied with a kernel, G, and is
translationally invariant. Due to the r − r′ term, on-site terms
would be represented by delta functions multiplied by a scalar.
The Fourier components of the field are then written:

Heff(r) =
∫

dr′G(r − r′)m(r′), (14)

The Fourier component of this field are then, H(k) =
−hkm(k), where hk are the elements of the normalized
stiffness tensor:

hθθ,k = M0
s

−1
[Hi + Dk2 + M0

s (1 − Nk) sin2(θk)], (15a)

hφφ,k = M0
s

−1
[Hi + Dk2 + M0

s Nk cos2(φ)]

+M0
s (1 − Nk) sin2(φ) cos2(θk), (15b)

hθφ,k = M0
s

−1[
M0

s (1 − Nk) cos(θk) sin(θk) sin(φ)
]
, (15c)

hφθ,k = hθφ,k, (15d)

where Dk2 = (2A/μ0Ms)k2 is the exchange field for a spin
wave with wave vector k, assuming that the wavelengths
of interest are much larger than the lattice spacing. A is
the exchange stiffness and Hi = B cos(φ − φH ) − (M0

s −
Hk) sin2(φ) is the “internal field” consisting of the component
of the following: the applied field B (at an angle φH to the
plane) parallel to the magnetization, which is at an angle, φ, to
the plane, the static part of the demagnetization field, and the
anisotropy field Hk . The k-dependent demagnetization factor
for a film of thickness d is given by

Nk = 1 − e−kd

kd
. (16)

The susceptibility tensor, χk(ω), can be obtained from the
linearized LLG equations of motion. For an applied field with
spatial frequency k and angular frequency ω, the transverse
susceptibility tensor is given by

χk(ω) = 1

Zk

[
hφφ,k + iαω

ωM
−hθφ,k + iαω

ωM

−hφθ,k − iαω
ωM

hθθ,k + iαω
ωM

]
, (17a)

Zk = hθθ,khφφ,k − hθφ,khφθ,k − (1 + α2)
( ω

ωM

)2

+ iα
( ω

ωM

)
(hθθ,k + hφφ,k), (17b)

where ωM = γM0
s . The dispersion relation is obtained by

noting that | Zk | is minimum and the susceptibility is in
resonance when

ω = ωk = ωM√
1 + α2

[hθθ,khφφ,k − hθφ,khφθ,k]1/2. (18)

To make a consistent comparison between the LLB nu-
merical model and the spin-wave model we use the values
of Ms , anisotropy, thickness (d), applied field, and applied
field angle that are the same in both cases. Furthermore, the
angles of the magnetization (φ) from the film plane are taken
directly from the numerical simulations at equilibrium after
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the pulse (from the end of the numerical simulation). Using
the physical parameters that enter into the LLB model we
have calculated the spin-wave properties of the numerically
simulated samples using Eqs. (15)–(18) and determined the
degeneracy of those modes with the k = 0 mode. This plays an
important role in the damping arising from inhomogeneities [2]
due to nonuniformities that are present in granular media. We
note that the value of the exchange stiffness that enters into
the equations is in the correct range [4] for granular media
but it is not trivial to relate the intergranular exchange field
in the LLB with the long-wavelength exchange, A, used in
the spin-wave model. We note here that the presented form of
the semianalytical spin-wave model does not take into account
inhomogeneous line broadening effects, and thus contains con-
tributions only from inhomogeneities which arise in the LLB
model from the distribution of the grain volumes. The results
of the semianalytical spin-wave model are shown in Fig. 9 and
show a decreasing trend with increasing exchange stiffness.

We can conclude that the two-magnon scattering process is
the leading term in our reduction in damping with intergranular
exchange and is strongly affected by the interactions due to
intergranular exchange and the demagnetizing fields. This is
supported by the fact that the LLB model does not include
any specific detail about the grain boundaries or dispersions
in the anisotropy axes or on-site magnitudes, though does take
into account different demagnetizing fields, size distribution,
etc., so there is inevitably a distribution in the cone angle of
the macrospins. Therefore, scattering with impurities cannot
occur. The role of grain-to-grain scattering due to slight
dispersions in the anisotropy axes is zero in our LLB model
as we assume perfectly aligned anisotropy axes. Similarly,
we assume that our grains are uniform single macrospins
and therefore grain-boundary scattering cannot contribute to
this two-magnon scattering process. In terms of a macrospin
picture, the decreased damping can be explained by a stiffening
of the system resulting in a more coherent precession so that
demagnetizing effects become less important and the system
as a whole acts more like a single macrospin.

V. CONCLUSION

In summary we have carried out an investigation of
the effects of intergranular interactions on the effective
damping constant of perpendicular media. Experiments show
a nonmonotonic variation of the damping with increasing

exchange strength. Contributions to the experimental damping
constant due to inhomogeneous line broadening cannot be
ruled out, however, these are expected to be consistent
between samples; the major effect of reducing the thickness
of the grain boundaries is the variation in the exchange
coupling as shown in the hysteresis behavior. We have
constructed a realistic model of granular media using the
Landau-Lifshitz-Bloch model. By simulating the optical FMR
technique to probe relaxation processes we have determined
how the damping is affected by the key parameters governing
the interactions (exchange and saturation magnetization).
The model calculations show a decrease of effective damping
with increasing exchange, consistent with the experimental
data for small exchange. It is argued that the increase in
damping for the largest exchange field, arising in a film without
exchange coupling, is due to the onset of a different reversal
mechanisms involving domain nucleation and propagation.
For practical perpendicular recording media, which are more
exchange decoupled, the decrease in damping with exchange
strength predicted by the model calculations is the most likely
scenario. Further investigations of the phenomenon using spin-
wave theory provide further insight and ascribe the reduction
in damping due to increasing intergranular exchange as arising
from a reduction in the degeneracy of finite k vectors with the
frequency of the k = 0 (ferromagnetic resonance) mode. These
calculations show a direct correlation between the degeneracy
and the damping shown by the numerical model with a
similar trend for fixed exchange stiffness and varying Ms . Our
numerical calculations do not include extrinsic contributions
to damping due to variations in on-site quantities, such as
anisotropy or saturation magnetization; thus we have shown
that it is possible to describe the decrease in damping with
intergranular exchange based on the effects of intergranular
exchange and demagnetizing fields; thus we conclude that
their contribution is large.
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Föhlisch, T. A. Ostler, J. Mentink, R. Evans, R. W. Chantrell,
A. Tsukamoto, A. Itoh, A. Kirilyuk, A. Kimel, and T. Rasing,
SPIN 05, 1550004 (2015).

[25] B. Koopmans, G. Malinowski, F. Dalla Longa, D. Steiauf, M.
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