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Geometric orbital susceptibility: Quantum metric without Berry curvature
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The orbital magnetic susceptibility of an electron gas in a periodic potential depends not only on the zero
field energy spectrum but also on the geometric structure of cell-periodic Bloch states which encodes interband
effects. In addition to the Berry curvature, we explicitly relate the orbital susceptibility of two-band models to a
quantum metric tensor defining a distance in Hilbert space. Within a simple tight-binding model allowing for a
tunable Bloch geometry, we show that interband effects are essential even in the absence of Berry curvature. We
also show that for a flat band model, the quantum metric gives rise to a very strong orbital paramagnetism.
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I. INTRODUCTION

The orbital susceptibility [1] measures the response of
a time reversal invariant electronic system to an external
magnetic field B and is defined as the second derivative of
the grand potential. Although being a thermodynamic quantity
obtained in a perturbative limit (B → 0), its evaluation is not
simple, since it has been known for a long time that it depends
not only on the zero-field band energy spectrum [2,3] but also
on the wave functions which encode interband effects [4–11].

One well-known quantity which describes interband effects
is the Berry curvature [12]. For example, it enters—together
with the orbital magnetic moment—in the expression of the
magnetization, the first derivative of the grand potential with
respect to the magnetic field [13–15]. It also appears in
the expression of the susceptibility, but other geometrical
quantities are expected since the susceptibility is a second
derivative with respect to the magnetic field [7,16]. Here we
explicitly relate the susceptibility to the quantum geometric
tensor introduced by M.V. Berry, whose imaginary part is the
Berry curvature and whose real part is the so-called quantum
metric tensor [17,18]. The main goal of this paper is to show
the central role played by this metric tensor on the structure of
the orbital susceptibility.

Until recently the metric tensor was considered as a theo-
retical object useful to characterize the localization properties
of Wannier functions in band insulators [19,20]. However
few recent works have suggested different physical properties
such as current noise and superfluid weight that depend on
the quantum metric in an essential way [21–23]. Moreover,
in artificial crystals made of cold atoms, a full reciprocal
space map of the quantum metric should be accessible via
Stückelberg interferometry [24].

In a recent paper, we derived a general formula for the
orbital susceptibility within a tight-binding picture (restricted
here to d = 2 dimensions) [25]:

χorb(μ,T ) = −μ0e
2

12�2

�m

πS

∫ ∞

−∞
nF(E)Tr X̂ dE , (1)
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where the operator X̂ is written in terms of the zero-field
Green function ĝ and of the derivatives ∂x and ∂y of the Bloch
Hamiltonian ĥ(k) with respect to the components kx and ky of
the wave vector:

X̂ = ĝ ∂2
x ĥ ĝ ∂2

y ĥ − ĝ ∂2
xyĥ ĝ ∂2

xyĥ + 2([ĝ ∂xĥ,ĝ ∂yĥ])2 . (2)

Moreover, the orbital susceptibility was shown to satisfy a
general sum rule over the full bandwidth [26–28]:∫

χorb(μ,T ) dμ = 0 . (3)

Although Eq. (1) is complete (checked against numerical
calculations for various models [25]), it hides many subtle
effects that we wish to discuss here in the simplest context of
two-band models.

The outline of this paper is as follows: Section II presents
the quantum geometric properties that characterize the cell-
periodic Bloch states |uα(k)〉 of a given energy band εα(k).
In particular, in addition to the well-known Berry curvature
tensor �αij we also introduce the quantum metric tensor gαij

as a measure of the distance between Bloch states. Section III
presents a general formula for the orbital susceptibility χorb of
two-band models. It is shown that, in contrast to the intraband
Landau-Peierls contributions χLP which depends only on
the energy band spectrum, the interband contribution χinter

crucially depends on the quantum geometry of Bloch states.
More precisely χinter may be decomposed in three contributions
χinter = χ� + χg + χ̃g where χ� depends only on the Berry
curvature whereas χg and χ̃g depend only on the quantum
metric. Details of the derivation are given in Appendix A.
In Sec. IV we present explicit calculations of the different
orbital susceptibility contributions for particular models that
were designed in order to highlight the physics hidden in the
three interband geometric contributions. Section V provides
a more heuristic derivation and also suggests a possible
qualitative interpretation for each of the three interband
geometric contributions. In particular χ� is interpreted as a
measure of the k-space fluctuations of the spontaneous orbital
magnetization whereas χg and χ̃g are interpreted as field
induced effects resulting from the field induced horizontal
and vertical positional shifts [29]. Appendix B provides more
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details on these positional shifts. In Sec. VI we explain how
our formulation compares with previous works; more precisely
we discuss Blount’s formula [7] and also the more recent
susceptibility formula obtained by Gao et al. [16]. The paper
ends with a conclusion and perspectives.

II. GEOMETRY: QUANTUM METRIC AND BERRY
CURVATURE

In order to describe the evolution of a cell-periodic Bloch
state |uα(k)〉 under the variation of a vector parameter k, M.V.
Berry introduced the quantum geometric tensor Tα:

Tαij (k) = 〈∂iuα|1 − Pα|∂juα〉 , (4)

where Pα(k) = |uα〉〈uα| is the projector on the band α of
energy εα(k). The imaginary (antisymmetric) part of Tαij is
nothing but the Berry curvature tensor: �αij (k) = −2 Im Tαij .
The real (symmetric) part, named the quantum metric tensor
gαij , characterizes a distance in Hilbert space, defined as [18]:

ds2
α ≡ 1 − |〈uα(k)|uα(k + dk)〉|2 . (5)

Expanding the k dependence of the wave functions to second
order, the tensor gαij is defined as

ds2
α = gαij dki dkj with gαij (k) = Re Tαij . (6)

The curvature and quantum metric tensors have the k-space
periodicity of the reciprocal lattice even if the Bloch states
|uα〉 do not have it. Moreover, they stay invariant upon
a Berry gauge transformation |uα〉 → eiϕα (k)|uα〉. Systems
with time reversal symmetry verify �αij (−k) = −�αij (k)
and gαij (−k) = gαij (k). Centrosymmetric systems verify
�αij (−k) = �αij (k). In the following, to simplify further
notations, the k dependence of quantities will be explicitly
written only in their definitions.

We now restrict to two-band models. The k-space Hamil-
tonian matrix can be written as

ĥ(k) = ε0(k)1 + h(k) · σ = ε0(k)1 + ε(k)n(k) · σ , (7)

where σ is the vector of Pauli matrices, and n(k) is a
three-dimensional unit vector depending on the d-dimensional
vector k. The Hamiltonian matrix has two eigenvalues εα(k) =
ε0(k) + αε(k) with corresponding projectors Pα(k) = 1

2 (1 +
αn · σ ) where α = ±. In that situation, the Berry curvature and
metric tensor components verify �αij ≡ α�ij and gαij ≡ gij

with

�ij (k) = 1
2 ( ∂in × ∂j n) · n , gij (k) = 1

4 ∂in · ∂j n, (8)

where each component of the curvature tensor verifies the
identity

�2
ij = 4

(
giigjj − g2

ij

)
. (9)

In other words, for each vector k, the quantum metric
determines the modulus of the Berry curvature but not its k
dependent sign. In this paper we consider more specifically the
case of d = 2. In that situation the Berry curvature tensor has
a single nonvanishing component � = �xy , and the quantum
metric tensor g is a 2 × 2 symmetric matrix with the three
elements gxx,gyy,gxy . In addition to the covariant metric tensor
gij (k), it is convenient to further introduce a contravariant

metric tensor gij through the identity gikgkj = det(g)δi
j such

that

(gxx,gyy,gxy) ≡ (gyy,gxx,−gxy). (10)

The identity (9) can then be rewritten as

�2 = 4 det g = 4gijg
ij . (11)

The quantum geometric tensor of each band can then be written
as

Tα(k) = Tr g

2
(1 + τ α · σ ) (12)

with the unit vector

τα(k) ≡ 1

Tr g
(2gxy,α�,gxx − gyy). (13)

For systems with time reversal symmetry the vector τα(k) has
the same symmetry properties as n(k). Note that in artificial
crystals made of cold atoms, a full reciprocal space map of
the quantum metric tensor Tα(k) should be accessible via
Stückelberg interferometry [24].

III. ORBITAL SUSCEPTIBILITY FOR TWO-BAND
MODELS

We now analyze the different contributions to the orbital
susceptibility; the details of their explicit derivation are given
in Appendix A. Quite generally, the orbital susceptibility can
be decomposed in

χorb = χLP + χinter, (14)

where the first term called Landau-Peierls (LP) only involves
the zero field band spectrum whereas the second term, here
referred to as interband, encodes all wave functions’ geometric
effects.

A. Landau-Peierls contribution

The Landau-Peierls (LP) contribution χLP writes (in units
of μ0e

2

�2 ) [3]:

χLP(μ,T ) =
〈
n′

α

12

(
∂2
x εα ∂2

y εα − ∂2
xyεα ∂2

xyεα

)〉
BZ

(15)

with the shorthand notations used throughout the paper

nα ≡ nF (εα(k)), 〈 •〉BZ ≡
∑
α=±

∫
• d2k

4π2
(16)

and where nF (ε) is the Fermi factor. This LP contribution
only involves the energy spectrum and its Hessian near the
Fermi level. At parabolic band edges, it reduces to Landau
diamagnetism with the effective band mass. By contrast, in the
vicinity of a Van Hove singularity it is strongly paramagnetic
because the spectrum exhibits a saddle point and therefore
masses of opposite sign [30]. In the multiband case, χLP

verifies the sum rule (3) for each band separately. Being a
Fermi level property [see the n′

α factor in Eq. (15)], the LP
contribution vanishes in a gap.
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B. Interband geometric contributions

We now come to the structure of the interband contribution
χinter. It may itself be decomposed in three contributions as

χinter = χ� + χg + χ̃g, (17)

which explicitly depend on either the Berry curvature or the
metric tensor, and which separately obey the sum rule (3):∫

dμχ�(μ) =
∫

dμχg(μ)

=
∫

dμχ̃g(μ) = 0. (18)

The first contribution χ� is written in terms of the Berry
curvature �:

χ� =
〈(

−n′
α + α

nα

ε

)
M 2

〉
BZ

, M = ε� . (19)

The term proportional to n′
α can be understood as the Pauli

paramagnetic contribution of the orbital magnetic moment
M (k) = ε� [7,16,31]. Being a Fermi surface term, it vanishes
in a band gap. The term proportional to nα is always
diamagnetic. Moreover, being a Fermi sea term it gives rise to
a plateau in a band gap. Due to the absence of Berry curvature,
χ� vanishes in centrosymmetric systems.

The contribution χg may be seen as more fundamental since
it is related to the metric tensor, which never vanishes for
coupled bands. It may be compactly written as a pure Fermi
sea term:

χg =
〈(

−α
nα

ε

)
Zg

〉
BZ

, Zg = 1

2
∂j (ε2 ∂ig

ij ), (20)

where Zg explicitly involves the contravariant metric tensor
gij that was defined in (10). This quantity Zg(k) changes sign
in the BZ and verifies

∫
d2kZg(k) = 0. As a consequence,

χg(μ) may exhibit a diamagnetic or paramagnetic plateau in
a band gap.

The third contribution χ̃g only appears in the absence of
particle-hole symmetry. It may also be written as pure Fermi
sea contribution that depends on the metric tensor:

χ̃g =
〈(

−α
nα

ε

)
Z̃g

〉
BZ

(21)

Z̃g = gij ∂iε0 ∂j ε0 + αε ∂i(g
ij ∂j ε0). (22)

The first term of Z̃g(k) is always positive and thus leads to
a paramagnetic plateau in a gap. The second part changes its
sign with band index α, and its BZ average vanishes in a gap.

IV. EXAMPLES

This section presents explicit calculations of the different
contributions to the orbital susceptibility. We discuss particular
models that were designed in order to highlight the physics
hidden in the three interband geometric contributions and also
to illustrate their quantitative importance. We first consider a
lattice model with particle-hole symmetry (such that χ̃g = 0)
for which the relative importance of the interband contributions
χ� and χg can be tuned by a continuous parameter. We
show in particular the importance of the geometric tensor,
even in the absence of Berry curvature. In a second example

we discuss the important differences between a lattice model
and its low energy counterpart. This remark underlines the
approximations done when the spectrum is linearized near the
edges of a band gap. The last example concerns a lattice model
that is inversion symmetric (such that χ� = 0) but extremely
particle-hole asymmetric since it exhibits a flat band. This flat
band gives rise to a huge contribution χ̃g . For comparison
purposes, we also present calculations of the corresponding
spin contribution which, in the absence of spin-orbit coupling,
is limited to the Pauli susceptibility χspin which is simply
proportional to the zero-field density of states.

A. From square to honeycomblike lattice

We consider a toy-model of electrons hopping on a tunable
brick-wall lattice with a staggered on-site potential �. The
tunable hopping parameter λ interpolates between a square
lattice (λ = 1) where the Berry curvature is zero and a
distorted honeycomb lattice (λ = 0) where there is a finite
Berry curvature concentrated in the vicinity of the Dirac points.
The model is illustrated in Fig. 1(a). Setting the nearest-
neighbor coupling t = 1 and the interatomic distance a = 1,
the corresponding Hamiltonian [cf. Eq. (7)] is given by the
vector h(k) = [2 cos kx + (1 + λ) cos ky,(1 − λ) sin ky,�].

First, consider the case of the square lattice (λ = 1). The
energy spectrum has two bands separated by a gap 2�. The
density of states [proportional to the Pauli spin susceptibility
χspin plotted in Fig. 1(f)] exhibits Van Hove singularities at gap
edges. The orbital susceptibility χorb(μ) = χLP + χ� + χg is
plotted on the top row of Fig. 1(f). In addition to the Landau
diamagnetic behavior at the parabolic band edges, χorb(μ)
exhibits a truncated logarithmic behavior at the gap edges
and a paramagnetic plateau in the gap. The Landau-Peierls
contribution χLP properly exhibits Landau diamagnetism at
the band edges and also paramagnetic peaks reminiscent of the
logarithmic divergence of the density of states at the gap edges.
However it vanishes in the gap: Therefore it cannot explain the
paramagnetic plateau of χorb in the gap. For centrosymmetric
systems there is no Berry curvature and therefore χ� = 0.
Thus, one naively expects the bands to be uncoupled. However,
the quantum metric and Zg do not vanish but give rise to a
contribution χg that provides exactly the paramagnetic plateau
in the gap. As the gap goes to 0, this plateau diverges as log �.
In addition, in order to respect the sum rule, χg presents also
diamagnetic peaks near the gap edges. This striking example
shows that the interband coupling is not only encoded in the
Berry curvature, and that the metric contribution χg is essential
to explain the structure of the total susceptibility.

We now consider the limit λ = 0 defining the brick-wall
lattice. It has the same properties as the honeycomb lattice,
except that the two Dirac points do not lie on symmetry lines
of the BZ. It has been recently used in a cold-atom experiment
to probe the existence, the motion, and the merging of these
Dirac points under proper variations of hopping parameters
[32,33]. For this system, χorb and its different contributions
are presented on the bottom row of Fig. 1(f). In addition
to the diamagnetic Landau regime at the band edges and
the paramagnetic divergence at the Van Hove singularity,
it exhibits a deep diamagnetic plateau in the gap, whose
amplitude scales as 1/�, reminiscent of the diamagnetic δ
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FIG. 1. (a) Tunable brick-wall lattice with a staggered on-site potential �: It interpolates between a square (λ = 1) and a deformed
honeycomb (brick wall) (λ = 0). (b),(d) Berry curvature term −M (k)2, respectively, for λ = 1 and 0. (c),(e) Metric term Zg(k), respectively,
for λ = 1 and 0. For clarity, the area of the plot covers twice the first Brillouin zone. Blue and red colors denote, respectively, positive and
negative values. (f) Evolution of the magnetic susceptibility versus chemical potential μ as a function of λ. The first column is the Pauli spin
susceptibility which is proportional to the zero field density of states. It is normalized such that χspin = −3χorb at the band edges, as in the
absence of a lattice. The four next columns concern the orbital response, respectively, the susceptibility χorb (red), χLP (blue), χ� (green), and

χg (magenta). They are normalized to the Landau susceptibility χL at the band edges, which itself depends on λ: χL(λ) = χL(1)
√

1+3λ

3+λ
. The

half bandwidth, equal to
√

�2 + 3 + λ, is also normalized to unity. We fix �/t = 0.4 and T = 0.001t .

peak found by McClure in the limit � → 0 [31,34]. As it
is well known for the honeycomb lattice, there is a finite
Berry curvature concentrated near the two Dirac points, with
opposite signs in the two valleys [35], leading to −M 2 plotted
in Fig. 1(d). In this situation, the quantity Zg(k) in Fig. 1(e)
shows also large negative peaks near the Dirac points, leading
to a diamagnetic χg in the gap. Therefore the diamagnetic
plateau is due both to the Berry curvature and the quantum
metric contributions. Also remarkable is the paramagnetic
plateau near the edges of the gap [25,26]. This plateau arises
from the subtle compensation of a diverging diamagnetic peak
of χLP, a diverging paramagnetic peak of χ�, and a smooth
paramagnetic contribution χg .

Figure 1(f) presents the evolution of the susceptibility and
its different contributions [which all obey separately the sum
rule (3)] when varying λ from 1 to 0. The contribution related
to the Berry curvature, which is zero when inversion symmetry
is preserved, monotonously decreases in the gap and increases
outside. The geometric contribution χg is more involved:
Inside the gap it evolves from a paramagnetic to a diamagnetic
plateau whereas it has the reverse tendency outside the gap
such as to respect the sum rule.

B. Lattice model versus low energy model

This section provides a quantitative comparison of the
different susceptibility contributions between the brick-wall
lattice model at λ = 0 and the corresponding linearized low
energy effective model in the vicinity of the gapped Dirac
points. It is interesting since it emphasizes the approximations
which are made when linearizing the graphene electronic

spectrum (similar to the brick-wall lattice) in the vicinity of
the gapped Dirac points.

The lattice model at λ = 0 is given by h(k) = [2 cos kx +
cos ky, sin ky,�]. The gapped Dirac points are located at
(kx,ky) = (ξ 2π

3 ,0) with valley index ξ = ±1. The linearized
model describing the vicinity of a Dirac point is given by
hξ (k) = [ξvxkx,vyky,�] with (vx,vy) = (

√
3,1).

For this linearized model it is then straightforward to obtain
the equalities

3H = M 2 = Zg = �2v2
xv

2
y

4ε4
, (23)

where H (k) = 1
12 [∂2

xxε∂
2
yyε − (∂2

xyε)2] and ε(k) =√
(vxkx)2 + (vyky)2 + �2. From these equalities, it is

also immediate to deduce the explicit analytical form of the
different susceptibility contributions in each valley. This is
summarized in the following table (χ0 = 1

8π

vxvy

�
):

The expression for χorb corresponds to a diamagnetic
plateau in the gap and zero outside the gap. This coincides

|μ| < � |μ| > �

χLP 0 − 1
3 χ0

�3

μ3

χ� − 1
3 χ0 + 2

3 χ0
�3

μ3

χg − 1
3 χ0 − 1

3 χ0
�3

μ3

χorb − 2
3 χ0 0
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FIG. 2. (a) The susceptibility contributions χorb, χLP, χ�, and χg

as a function of the chemical potential μ for the lattice model [this
is identical to Fig. 1(f) with λ = 0]. (b) Similar quantities but for the
low energy (linearized) model.

exactly with what has been derived directly from the Lan-
dau levels of a gapped Dirac spectrum [31]. The present
perturbative approach, however, provides the supplementary
information that the apparent vanishing of χorb outside the
gap results from the fortuitous compensation of the three
contributions χLP,χ�, and χg , since each of them is a power-
law decreasing function outside the gap.

The quantitative comparison of the expressions for the low
energy model with the exact lattice calculations are shown
in Fig. 2. One striking feature is that, for the contribution
χ�, the lattice model and the low energy model calculations
almost coincide. In fact, the contribution χ� of the linearized
model verifies the sum rule. By contrast, for the contribution
χg there is a large quantitative difference for the value of

the diamagnetic plateau between the lattice model and the
low energy model. This difference explains quantitatively the
value of the paramagnetic plateau (at gap edges) of χorb

for the lattice model. To summarize, we have shown that if
χ� essentially depends on the vicinity of the Dirac points,
accounting quantitatively for χg requires us to consider the
whole Brillouin zone.

C. Mielke’s checkerboard lattice model

As an illustration of a non-particle-hole symmetric system,
we consider a toy model exhibiting a flat band. This is the
Mielke checkerboard lattice shown in Fig. 3(a), where all hop-
ping integrals are identical (t = 1

2 ) [36,37]. The corresponding
Hamiltonian is characterized by the vector h(k) = (cos kx +
cos ky,0, sin kx sin ky) and the energy ε0(k) = ε(k) − 1 [see
Eq. (7)]. The spectrum, shown in Fig. 3(b), consists of a flat
band touching the bottom of a dispersion relation which is that
of the square lattice. One could expect naively the flat band to
be inert in a magnetic field and the susceptibility to be simply
given by the LP response of the square lattice [blue curve in
Fig. 3(c)]. The exact result (red curve) is dramatically different,
showing the importance of interband effects in this case.
Because of inversion symmetry, there is no Berry curvature
and χ� = 0, and therefore only the metric dependent terms
χg and χ̃g can account for the strong interband effects. The
most striking feature is the diverging paramagnetic peak of χorb

when approaching the energy of the flat band. Away from the
flat band, this peak appears partially compensated by a wide
diamagnetic shoulder. These two features come, respectively,
from the first and second term in χ̃g . In fact, the contribution χg

appears completely shadowed by that of χ̃g . Both contributions
show, however, that interband effects extend far away in energy

FIG. 3. Top: (a) The checkerboard lattice (here there is no on-
site potential) and (b) the corresponding energy spectrum. Bottom:
(c) Pauli spin susceptibility and orbital susceptibility χorb with its
different contributions as a function of the chemical potential. Units
for χ and μ are similar to Fig. 1(f).
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from the flat band. As a last remark, we note that Tasaki’s
two-band model on the square lattice [37,38], which exhibits
a flat band separated by a finite gap from the dispersive band,
gives rise to vanishing contributions χ̃g and χ� and a finite
contribution χg with a paramagnetic plateau in the gap.

V. HEURISTIC DERIVATION AND INTERPRETATION OF
INTERBAND GEOMETRIC CONTRIBUTIONS

This section presents a heuristic derivation and an inter-
pretation of the three interband susceptibility contributions
χ�,χg,χ̃g . To this end, it appears instructive to recall known
results for the spontaneous orbital magnetization.

For generic multiband systems, the spontaneous orbital
magnetization is given by [12]

M(μ,T ) = 〈[nαMα + T ln(1 + e−(εα−μ)/T )�α

]〉
BZ

, (24)

where Mα(k) is the orbital magnetic moment and �α(k) is
the Berry curvature of the band of energy εα(k). For time
reversal invariant systems considered here, the spontaneous
orbital magnetization vanishes because Mα(k) = −Mα(−k)
and �α(k) = −�α(−k). For a system that breaks time reversal
symmetry, M(μ) can be nonzero however it has to verify
the sum rule

∫
dμ M(μ) = 0, valid for any multiband tight-

binding model. Although formula (24) has been demonstrated
in various ways [12,25], a useful heuristic derivation or
reinterpretation consists of differentiating the grand canonical
potential

F (μ,B,T ) = −T

∫
dερ(ε,B) ln(1 + e−(ε−μ)/T ), (25)

to first order in magnetic field, with an effective magnetic field
dependent density of states of the form [12]

ρ(ε,B) = 〈(1 + B�α)δ(ε − εα + MαB)〉BZ. (26)

The factor (1 + B�α) is interpreted as a correction to the
phase-space integration measure and −MαB as a Zeeman-like
correction of orbital origin to the band energy at first order in
magnetic field. To finish with the spontaneous orbital magne-
tization, we note that for two-band systems Mα = αε�α and
�α = α�, such that by introducing the two-dimensional Berry
connection vector aα(k) = i〈uα|∇k|uα〉 and using the identity
�α = [∇k × aα]z, the spontaneous magnetization Eq. (24) of
two-band systems can be recast in the form

M(μ,T ) = 〈nα(αε[∇k × aα]z + [vα × aα]z)〉BZ, (27)

with vα(k) = ∇kεα the band velocity and where the second
term in Eq. (27) follows from an integration by part of the
second term in Eq. (24).

We now come to the heuristic derivation of the three
interband susceptibility contributions. The idea consists of
finding the modified effective density of states, valid to second
order in magnetic field that permits us to obtain the three
contributions χ�,χg,χ̃g from the second order derivative of the
grand potential. For two band systems we obtain the following
effective density of states:

ρ(ε,B) = 〈(1 + B�α)δ
(
ε − εα + MαB − 1

2Mα�αB2
)〉

BZ,

(28)

where now �α(B) and Mα(B) are field dependent quantities
given by

�α(B) = [∇k × aα]z + B

2
α[∇k × ãg]z, (29)

Mα(B) = αε

(
�α(B) + B

2

[∇k × ε2ag]z
ε2

)
, (30)

where aα is the zero-field Berry connection and ag,ãg are
the first order field induced corrections [29] that verify (see
appendix B for more details)

�g(k) = [∇k × ag]z = − 1
2∂i∂jg

ij , (31)

�̃g(k) = [∇k × ãg]z = −∂i

(
gij ∂j ε0

ε

)
. (32)

Within this picture, χ� is given by

χ� = 〈(−n′
αM 2

α + nαMα�α

)〉
BZ, (33)

where Mα = αε�α and �α = α� are the zero field orbital
magnetic moment and Berry curvature. The contribution χ� is
thus a quadratic function of the quantities Mα,�α that appear
linearly in the orbital magnetization formula Eq. (24). This
suggests that a natural interpretation for χ� is a measure of the
k-space fluctuations of the spontaneous orbital magnetization
(the k-space average of which vanishes). By contrast, χg and
χ̃g depend linearly on, respectively, ag and ãg:

χg =
〈
nα αε

(
[∇k × ε2ag]z

ε2

)〉
BZ

,

χ̃g = 〈nα(αε[∇k × ãg]z + [vα × ãg]z)〉BZ. (34)

The form of χ̃g being identical to the equality (27), it
strongly suggests to interpret the quantity χ̃gB as an induced
magnetization. By extension, we suggest that χgB may be
interpreted as a field induced orbital magnetization resulting

from a field induced orbital magnetic moment αε B
2

[∇k×ε2 ag]z
ε2 .

VI. COMPARISON WITH OTHER WORKS

Many different approaches were developed to calculate
the orbital susceptibility in multiband systems (see discussion
in Refs. [25,39]). Compact but abstract orbital susceptibility
formulas were obtained using Green’s function techniques.
Other approaches usually result in an orbital susceptibility
that is composed of several contributions. The main object
of this section is to discuss the different decompositions that
were obtained for the interband contribution χinter(μ). Before
discussing specific works, it is worth mentioning some generic
features of the interband contribution χinter(μ). Quite generally
χinter(μ) may be formally written as the sum of individual band
contribution χinter,α(μ) where each χinter,α(μ) is composed of
both Fermi surface and Fermi sea contributions. For each band,
the Fermi surface term depends on n′

α and thus vanishes outside
the energy band. By contrast the Fermi sea term proportional
to nα gives rise to a finite susceptibility plateau for all μ above
the top edge of the αth band. As a consequence the integrated
contribution

∫
dμχinter,α(μ) is infinite. In retrospect, this result
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implies that the decomposition of χinter(μ) into individual band
contribution χinter,α(μ) is quite meaningless. A natural issue
is thus how to decompose χinter(μ) into several contributions
χλ(μ) that are independently meaningful. From that perspec-
tive and as explained in the previous sections, in the present
work χinter(μ) is decomposed into three contributions χ�,χg ,
and χ̃g , that each verifies the following two properties: (i)
it vanishes outside the full band spectrum, (ii) it verifies the
tight-binding sum rule

∫
dμ χ�,g,g̃(μ) = 0, despite the fact

that they all contain a Fermi sea part.
In the following, the discussion focuses on two works

that provide an explicit decomposition of the interband
susceptibility χinter into several distinct contributions. The first
one is Blount’s pioneer work [7] in which some interband
contributions explicitly imply the orbital magnetic moment
and the Berry curvature (note that the Berry curvature concept
and terminology did not exist at that time). The second one
is the recent semiclassical wave packet approach developed
in Refs. [16,29], where it was shown that some interband
contributions explicitly imply the quantum metric.

A. Blount’s decomposition of χinter

More than fifty years ago, Blount [7] proposed a decompo-
sition of χinter into six distinct contributions. More precisely by
defining χinter(μ) = − ∂2

∂B2 Finter(μ,B), Blount writes the grand
potential F = FLP + Finter with

Finter = FPauli + F� + FVV + Fat + Fpa + F7, (35)

and where each contribution is given by

FPauli =
〈
n′

α

1

2
(B · MMM α)2

〉
BZ

,

F� =
〈
− nα

3

4
(B · MMM α)(B · �α)

〉
BZ

,

FVV =
〈
nα

∑
β �=α

|∑β ′ �=α AAA αβ ′ · (V β ′β + vαδββ ′)|2
εα − εβ

〉
BZ

,

Fat =
〈
nα

1

2

∑
β �=α

AAA αβ · AAA βα

m

〉
BZ

,

Fpa =
〈
−nα

1

2

∑
β �=α

(Ai)αβ(Aj )
βα

∂2
ij εα

〉
BZ

,

F7 =
〈
n′

α

1

2
vα·
⎡
⎣∑
β,β ′ �=α

(AAA αβ(V β ′β+vαδββ ′) · AAA β ′α+c.c)

⎤
⎦
〉

BZ

,

(36)

with the notations

V αβ = 〈uα|∇kĥ|uβ〉,
vα = V αα = ∇kεα,

Aαβ = 〈uα|i∇k|uβ〉 = −i
V αβ

εα − εβ

,

MMM α = 1

2

∑
β �=α

Aαβ × V βα,

�α = i
∑
β �=α

Aαβ × Aβα,

AAA αβ = 1

2
B × Aαβ. (37)

All these expressions were derived starting from the
Schrödinger Hamiltonian Ĥ = p2

2m
+ V (r) in a periodic lattice

potential V (r) such that m is the bare electron mass. The
effect of the crystal lattice is implicitly taken into account
through the existence of an infinite number of bands with
effective dispersions εα(k) and associated cell-periodic Bloch
states |uα〉.

In Eqs. (36), the contribution FPauli is Fermi surface like
and represents the effective Pauli paramagnetism of the orbital
magnetic moment MMM α of the αth band. The contribution F�

involves the product of the orbital magnetic moment by a
quantity �α which appears to be the Berry curvature. F� is
Fermi sea like, and Blount argued that it is diamagnetic. The
third contribution represents the Van-Vleck paramagnetism
of occupied bands; it involves interband geometric effect
through the interband Berry connection Aαβ or interband
velocity operator V αβ . The fourth and fifth terms are argued to
constitute generalization of the Langevin atomic diamagnetism
for electrons in occupied bands. In particular the fourth term is
clearly diamagnetic whereas the sign of the fifth may change
according to the band dispersion. The last term F7 is Fermi
surface like, but its meaning remains unclear.

Due to the very different starting point, it may appear quite
difficult to compare Blount’s results with the tight-binding
approach, involving a finite number of band, considered in
this work. Nevertheless it appears instructive to arbitrarily
substitute the peculiar form of the Berry connection properties
of two-band models into Blount’s formula (for a magnetic field
B perpendicular to a 2D plane). In doing this, each Blount’s
susceptibility contribution rewrites:

χPauli = 〈−n′
α ε2�2〉BZ,

χ� =
〈
nα

3

2
αε�2

〉
BZ

,

χVV = 〈−nα gij ∂iε0∂j ε0
〉
BZ,

χat =
〈
nα

1

4m
gij δij

〉
BZ

,

χpa =
〈
−nα

1

4
gij ∂2

ij εα

〉
BZ

,

χ7 = 〈n′
α gij ∂iεα∂j ε0

〉
BZ = 〈−nα ∂i(g

ij ∂j ε0)
〉
BZ, (38)

where an integration by part permits us to rewrite χ7 also as a
Fermi sea term.

By summing the two Blount contributions that depend on
the Berry curvature it appears that χPauli + χ� is similar but
differs by a numerical factor from the corresponding tight-
binding contribution χ� (19). More precisely Blount’s Fermi
sea term χ� is a factor 3/2 bigger than in Eq. (19); as a result
χPauli + χ

�
cannot verify the sum rule. By contrast, it appears

that Blount’s contributions χVV and χ7 correspond perfectly
to the first and second part of the contribution χ̃g in Eqs. (20)
and (22); as a result χVV + χ7 verifies the sum rule. The last
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two terms χat and χpa are, however, very different from the last
contribution χg obtained for two-band tight-binding models.

From the above analysis one may conclude that the three
contributions χ�, χat , and χpa of Blount need to be modified
in order to recover the two-band tight-binding formula. In
fact, it appears that only χat needs to be revised (see
below) [16]. To conclude with Blount’s formula, we note that
for centrosymmetric systems (χPauli = χ� = 0), contributions
identical to χVV,χat,χpa, and χ7 were recently derived [40]
starting from the Fukuyama [10,11] compact Green’s function
formula.

B. Gao et al. decomposition of χinter

Using a semiclassical wave packets method, Gao et al.
[16] recently presented a decomposition of the interband
contribution Finter(μ) into five terms:

Finter = FPauli + Fgeom + FPolar + FVV + FLangevin, (39)

which are given by

FPauli =
〈
− n′

α

1

2
(B · MMM α)2

〉
BZ

,

Fgeom = 〈nα

[(
3

4
(B · MMM α)(B · �α)

+ 1

8
εsikεtj lBsBtgαij ∂

2
klεα

)]〉
BZ,

FPolar =
〈
n′

α

1

4
vα · Pα

〉
BZ

,

FVV =
〈
−nα

∑
β �=α

Gαβ Gβα

εα − εβ

〉
BZ

,

FLangevin =
〈
− nα

1

8

[ ∑
β,β ′ �=α

(B × Aαβ)i(�ij )ββ ′(B × Aαβ)j

− 1

2
(B × ∇)i(B × ∇)j (�ij )αα

]〉
BZ

, (40)

where εijk is the totally antisymmetric tensor and with

gαij = 1

2

∑
β �=α

[
(Aαβ)i(Aβα)j + c.c

]
,

Pα = 1

4

∑
β,β ′ �=α

[(B × Aαβ)(vαδββ ′

+V ββ ′ ) · (B × Aβ ′α) + c.c],

Gαβ = −1

2
B ·
⎡
⎣∑

β ′ �=β

(V αβ ′ + vβδαβ ′ ) × Aβ ′β

⎤
⎦,

(�ij )αβ = 〈uα|∂2
ij ĥ|uβ〉, (41)

where the quantities gαij and Pα correspond, respectively,
to the quantum metric tensor and the polarization associated
to the αth band, where in fact the polarization is argued to
constitute another characteristic geometric quantity [16].

Despite the very different derivation and some change of
notation, as compared to Blount, it is apparent that there

are strong similarities between Blount’s formula Eqs. (36)
and Gao et al.’s expressions Eqs. (40). More precisely, it
is easily shown that FPauli,FVV are identical and moreover
Fgeom = F� + Fpa and FPolar = 1

2F7. Apart from the wrong
factor 1/2 of FPolar (which has been already pointed out
in Ref. [40]), the main apparent difference between Blount
and Gao et al. formulations resides in the contribution Fat

for the former which becomes FLangevin in the latter. In
fact when considering the same starting Hamiltonian [e.g.,
Ĥ = p2

2m
+ V (r) in a periodic lattice potential V (r)] it appears

that (�ij )αβ = 1
m

δij δαβ , with m the bare electron mass, such
that in this situation FLangevin = Fat.

More interestingly, when considering generic two-bands
tight-binding models, as in the present work, it is possible to
show that in such a situation the Langevin term gives rise to a
susceptibility contribution of the form:

χLangevin =
〈
−nα

[
1

4
gij ∂2

ij εα + 1

2
αε�2+1

2
α

∂i(ε2∂jg
ij )

ε

]〉
BZ

.

(42)

Using this expression it is immediate to establish the following
identities (valid for two-band models)

χ� + χg = χPauli + χgeom + χLangevin,

χ̃g = χVV + 2χPolar, (43)

where in the first line there is a complete cancellation of the
term 〈nα

1
4gij ∂2

ij εα〉BZ present in both χgeom and χLangevin but
with opposite sign. This cancellation is important because it
can be checked that this term generically gives rise to an
unphysical finite susceptibility plateau that extends to μ → ∞
when each contribution χgeom and χLangevin are considered
separately. An indication of this spurious plateau for each
contribution is already visible in Fig. 2(b) of Gao et al. [16],
despite the reduced range of μ.

VII. CONCLUSION AND PERSPECTIVES

This study shows the physical richness of the orbital
susceptibility even in the simplest case of two coupled bands.
We have stressed that the Berry curvature � is not sufficient
to describe interband effects which are still prominent even
when � = 0, as shown for the square lattice with staggered
potential (broken sublattice symmetry). A simple model in
which inversion symmetry is progressively broken shows how
the complexity of the orbital response is driven by the structure
of a quantum geometric tensor, whose antisymmetric part is the
Berry curvature and the symmetric part (the quantum metric)
carries information on the distance between Bloch states in
Hilbert space. The complex structure of the susceptibility can
be summarized by its value in the gap which shows explicitly
the contributions related to the Berry curvature � and the
metric tensor gij :

χgap =
〈

1

ε

(
−ε2�2 + 1

2
∂i(ε

2 ∂jg
ij ) + gij ∂iε0 ∂j ε0

)〉
BZ

.

The surprising strong influence of a flat band even in the
simplest case of a two-band model motivates further the
study of flat band physics in multiband systems. On a more
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general perspective, the orbital susceptibility may be an
important tool for the investigation of topological transitions
in multiband systems since it provides unique information
on the evolution of the geometric properties of Bloch states
across such transitions.
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APPENDIX A: ORBITAL SUSCEPTIBILITY OF
TWO-BAND MODELS

1. Explicit derivation

This section presents the main calculation steps of the four
contributions χLP, χ�, χg , and χ̃g . To start with, the general
susceptibility formula Eq. (1) (main text) is rewritten in the
form

χorb(μ,T ) = −μ0e
2

12�2

�m

πS

∫ ∞

−∞
dEnF(E)

×
∫

BZ

d2k

4π2
(U (k,E) + V (k,E)) (A1)

with

U (k,E) = tr {(ĝ∂xxĥĝ∂yyĥ − ĝ∂xyĥĝ∂xyĥ)k},
V (k,E) = 2 tr {([ĝ∂xĥ,ĝ∂yĥ]2)k} (A2)

where tr{•} is the partial trace operator on the band index
α = ±. By using similar steps as described in Appendix D of
Ref. [25], one obtains

U =
∑

α

g2
αU (1)

α + gαg−αU (2),

V =
∑

α

g3
αg−αV (1)

α + g2
αg2

−αV (2) (A3)

with gα(k,E) = 1
E−εα (k) and where

U (1)
α (k) = (∂xxεα∂yyεα − ∂xyεα∂xyεα)

+ 4(ε2�2 − αεgij ∂ij εα),

U (2)(k) = −4
(
ε2�2 + 1

2∂ij (ε2gij ) − εgij ∂ij ε
)
,

V (1)
α (k) = −16ε2gij ∂iεα∂j εα,

V (2)(k) = −16ε2(2ε2�2 − gij ∂iεα∂j ε−α). (A4)

At this point, using the identity ∂i(gn
α) = ngn+1

α ∂iεα and
integration by part, the following identity is established:∫

BZ

d2k

4π2

∑
α

g3
αg−αV (1)

α

=
∫

BZ

d2k

4π2

∑
α

8

[
g2

αg2
−α(ε2gij ∂iεα∂j ε−α)

+ g2
αg−α(ε2gij ∂ij εα) − 1

2
gαg−α∂ij (ε2gij )

]
. (A5)

From there, by using the equalities

gαg−α = α

2ε
(gα − g−α),

g2
αg2

−α = 1

4ε2

(
g2

α + g2
−α − 2gαg−α

)
,

g2
αg−α = α

2ε

(
g2

α − gαg−α

)
, (A6)

it is possible to rewrite Eq. (A3) as

U =
∑

α

g2
αU (1)

α + α
gα

ε
U (2),

V =
∑

α

g2
αṼ (1)

α + α
gα

ε
Ṽ (2) (A7)

with

Ṽ (1)
α (k) = 4(−4ε2�2 + 3gij ∂iεα∂j ε−α + αεgij ∂ij εα),

Ṽ (2)(k) = −4(−4ε2�2 + 3gij ∂iεα∂j ε−α + εgij ∂ij ε

+ ∂ij (ε2gij )). (A8)

Summing U and V yields

U + V

12
=
∑

α

g2
α

[
1

12
(∂xxεα∂yyεα − ∂xyεα∂xyεα) − ε2�2

+ gij ∂iεα∂j ε−α

]

+α
gα

ε

[
ε2�2 − gij ∂iεα∂j ε−α − 1

2
∂ij (ε2gij )

]
.

(A9)

The final step consists of performing the explicit integral over
variable E by using the identity

�m

∫ +∞

−∞

nF(E)

(E − εα)k
dE = − π

k!
n

(k)
F (εα), (A10)

where n
(k)
F is the kth derivative of the Fermi function

nF(ε) = 1/[eβ(ε−μ) + 1]. In order to shorten the expressions,
the susceptibility is written in units of μ0e

2

�2 and the main text
shorthand notations are introduced

nα ≡ nF (εα(k)), 〈· · · 〉BZ ≡
∑
α=±

∫
· · · d2k

4π2
. (A11)

The different terms appearing in Eq. (A9) then give rise to the
different susceptibility contributions:

χorb = χLP + χ� + χg + χ̃g, (A12)

with

χLP =
〈
n′

α

12
(∂xxεα∂yyεα − ∂xyεα∂xyεα)

〉
BZ

, (A13)

χ� =
〈(

−n′
α + α

nα

ε

)
M 2

〉
BZ

, M = ε� (A14)
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and

χg + χ̃g

=
〈(

n′
α − α

nα

ε

)
gij ∂iεα∂j ε−α − α

nα

ε

1

2
∂ij (ε2gij ).

〉
BZ

.

(A15)

There are different ways to write the separate contributions χg

and χ̃g . The following compact expressions are obtained by
performing integrations by part in order to eliminate all Fermi
surface contributions:

χg =
〈
−α

nα

ε
Zg

〉
BZ

, χ̃g =
〈
−α

nα

ε
Z̃g

〉
BZ

(A16)

with

Zg = 1
2∂j (ε2∂ig

ij ), Z̃g = gij ∂iε0∂j ε0 + αε∂i(∂j ε0g
ij ).

(A17)

To conclude, it is worth mentioning that the distinct suscepti-
bility contributions verify separately the sum rule over the full
zero-field spectrum:∫

dμχLP(μ) =
∫

dμχ�(μ) =
∫

dμχg(μ)

=
∫

dμχ̃g(μ) = 0. (A18)

Furthermore each susceptibility contribution vanishes for μ

outside the full spectrum. These last two properties, together
with the rather natural interpretation of each contribution (see
below) strengthens the above decomposition of χinter into three
terms in comparison with the various decompositions adopted
in other works (see below) [7,16,40].

2. Role of symmetries on interband susceptibility
contributions χ�,χg,χ̃g

As already mentioned in the main text, for systems
that are time-reversal invariant, inversion and particle-hole
symmetries permit us to discriminate the three interband
susceptibility contributions χ�,χg,χ̃g . For systems with an
inversion symmetry, the Berry curvature vanishes [�(k) = 0]
and therefore χ�(μ) = 0 (from that perspective, the case of
graphene should be understood as the zero gap limit of a
system that breaks inversion symmetry such as boron nitride).
Similarly, systems with particle-hole symmetry [ε0(k) = 0]
verify χ̃g(μ) = 0. The contribution χg(μ) is thus the only one
that remains when both inversion and particle-hole symmetries
are simultaneously present. In that respect it may be seen as
the most fundamental one.

Beyond global symmetries, it nevertheless appears that
χg vanishes for systems such that h(k) only depends on

either kx or ky . For such a case, the metric tensor has a
single nonvanishing component gxx or gyy , and therefore χg

and χ� both vanish. In that situation the only nonvanishing
component is χ̃g . A simple example is a square lattice
with nearest neighbor hopping t and an alternating onsite
potential ±� along the x direction. The corresponding
Hamiltonian matrix is constructed from ε0 = 2t cos(ky) and
h(k) = (2t cos(kx),0,�).

APPENDIX B: FIELD INDUCED POSITIONAL SHIFT IN
TWO-BAND SYSTEMS

Very recently it was shown that the presence of a magnetic
field induces a band dependent positional shift of the Berry
connection such that aα → aα + Ba′

α , to linear order in mag-
netic field [16,29]. (Here a′(k) does not contain the magnetic
field, so that the full Berry connection is a(k) + a′(k)B.)
According to the semiclassical wave packet formalism [16,29],
the positional shift is composed of two distinct contributions
so that a′

α(k) can be written

a′
α = ag + αãg, (B1)

where the contribution ag originates from the horizontal
mixing of zero field band eigenstates whereas the contribution
ãg comes from further vertical mixing of band eigenstates
[16,29]. For two-band systems in two dimensions and in a
perpendicular magnetic field, the positional shift contributions
ag and ãg take the form

ag(k) = B
B

× 1

2

⎛
⎜⎝

∂jg
xj

∂jg
yj

0

⎞
⎟⎠, ãg(k) = B

B
× 1

ε

⎛
⎜⎝

gxj ∂j ε0

gyj ∂j ε0

0

⎞
⎟⎠.

(B2)

Defining the corresponding field induced shifts of the Berry
curvature,

�g(k) = [∇k × ag]z = − 1
2∂i∂jg

ij (B3)

and

�̃g(k) = [∇k × ãg]z = −∂i

(
gij ∂j ε0

ε

)
, (B4)

it is clear that each of them is an even function in k-
space �g(k) = �g(−k) and similarly for �̃g(k), which is
to be expected since it depends on the magnetic field that
explicitly breaks time-reversal symmetry. Despite this, each
Berry curvature shift verifies the sum rule

∫
BZ d2k �g(k) =∫

BZ d2k �̃g(k) = 0.
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[23] A. Srivastava and A. Imamoğlu, Phys. Rev. Lett. 115, 166802

(2015).
[24] L.-K. Lim, J.-N. Fuchs, and G. Montambaux, Phys. Rev. A 92,

063627 (2015).
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