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In recent years, universal scaling has gained renewed attention in the study of magnetocaloric materials. It
has been applied to a wide variety of pure elements and compounds, ranging from rare-earth-based materials
to transition metal alloys, from bulk crystalline samples to nanoparticles. It is therefore necessary to quantify
the limits within which the scaling laws would remain applicable for magnetocaloric research. For this purpose,
a threefold approach has been followed: (a) the magnetocaloric responses of a set of materials with Curie
temperatures ranging from 46 to 336 K have been modeled with a mean-field Brillouin model, (b) experimental
data for Gd has been analyzed, and (c) a 3D-Ising model—which is beyond the mean-field approximation—has
been studied. In this way, we can demonstrate that the conclusions extracted in this work are model-independent.
It is found that universal scaling remains applicable up to applied fields, which provide a magnetic energy to
the system up to 8% of the thermal energy at the Curie temperature. In this range, the predicted deviations from
scaling laws remain below the experimental error margin of carefully performed experiments. Therefore, for
materials whose Curie temperature is close to room temperature, scaling laws at the Curie temperature would be
applicable for the magnetic field range available at conventional magnetism laboratories (∼10 T), well above the
fields which are usually available for magnetocaloric devices.
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I. INTRODUCTION

The magnetocaloric effect (MCE) is an intrinsic property of
some materials consisting in a reversible temperature change
upon the application/removal of a magnetic field. Nowadays,
it represents a hot topic in the material science research. This
is mainly due to its applications in refrigeration technologies,
which are increasingly becoming more competitive [1]. The
main advantages of the magnetic refrigeration are related to
its environmental benefits compared to older established tech-
nologies. It is thought, especially after the discovery of several
materials with a giant magnetothermal response [2–4], that the
viability of devices based on MCE materials is feasible, with
a variety of prototypes, which have been developed in recent
years [5]. During this period of thorough research in this field,
many materials with remarkably MCE have been found. They
belong to different families: intermetallic compounds, Heusler
alloys, amorphous materials, ceramic manganites, etc. In par-
allel, the physical foundations of this phenomenon have been
clarified both from the theoretical and experimental points of
view as shown in several review papers and books [6–9].

Because of the practical importance of the MCE there has
been a remarkable increment in the number of papers devoted
to the modeling of this effect from a theoretical point of
view [6,8,10]. These theoretical studies on the MCE were
carried out in order to estimate the main MCE parameters
such as magnetic entropy change and adiabatic temperature
change. It is worth noting that these models allow us to extract
useful information about the foundations of the MCE and
they can provide detailed and complementary information to
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the experimental results, especially in the high applied-field
regions, where experiments are normally more difficult to
perform. A wide variety of models exist in the theoretical
study of the MCE. Among these theoretical models we can
distinguish between two main groups.

On the one hand, we find the so-called first-principles
methods which try to obtain the magnetothermal response
without any empirical information, or at least with the
minimum amount of fitting parameters. These methods consist
on purely microscopic approaches. Two classical methods
belonging to this group are quantum mechanics Hamiltonians
solved by Monte Carlo (MC) algorithms and density functional
theory (DFT) simulations. Both of them have already been
used in modeling MCE. There are some interesting papers
in which MC simulations are used with different materials
like Gd(SixGe1−x)4 [11], (GdxTb1−x)5Si4 [12], and several
Heusler alloys [13–15]. Recently, a new type protocol of
the MCE was proposed in theoretical studies based on the
MC methods [16,17]. On the other side, DFT is less used
in this research field, although it has been used to describe
both the structural and the magnetic phase transitions in some
rare-earth intermetallic pseudo-alloys exhibiting a giant MCE
[18–23], and there have been very few attempts to describe the
MCE of materials from first principles by only using DFT. At
the moment, this latter approach only succeeded with simple
metals like gadolinium [24]. Note that both of the mentioned
methods consist in microscopic approaches to obtain the MCE.

The other group of models is derived from phenomenolog-
ical laws like those of molecular field or the Landau theory. In
this kind of approaches, which are mainly from a macroscopic
point of view, the final result is an equation of state in which
magnetization (M), applied field (H ), and temperature (T ) are
related by an equation of the form �(M,H,T ) = 0. Although
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this expression is analytical it is not ensured that it can be
solved for each variable separately. Of course, it is always
possible to treat the cited function numerically to obtain values
of magnetization for different temperatures and applied fields.
In this way, the MCE properties can be easily estimated in the
same way used for experimental data [i.e., by numerically pro-
cessing the M(H,T ) data]. These phenomenological equations
of state are divided in two main groups. The first group includes
those equations derived from mean-field approximations, like
the molecular field theory by P. Weiss [25], the generalization
proposed by C. P. Bean and D. S. Rodbell [26] or the
equation more recently derived by M. D. Kuz’min [27] based
on the Landau theory. The second group is constituted by
those expressions derived from the scaling relations including
critical exponents like the widely used Arrott-Noakes equation
[28] and others less used like the one derived by J. T. Ho and
J. D. Litster [29] a couple of years later. Furthermore, it is
possible to find some examples of generalizations of mean-
field equations of state to include other critical exponents, as
it was proposed again by A. Arrott a few years ago [30].

In any case, all these models must fulfill some scaling
laws in the proximity of the critical point. These scaling
laws were deduced by B. Widom in his, now famous, paper
of 1965 [31], where he showed how the variation of some
properties followed a certain scaling law governed by some
powers called critical exponents. Although there are many
exponents involving different magnitudes, only two of them
are independent. All others can be obtained through the so
called scaling relations. During the following years, the ideas
of B. Widom were experimentally confirmed in many systems
including magnetic materials and fluids [32,33]. Of course,
all this scaling formalism can be transferred to the study on
the MCE, since the maximum in the magnetic entropy change
occurs normally near the critical point. For this reason, it is
possible to find power-law dependencies of the main MCE
parameters with respect to the applied field in materials with a
second-order phase transition [34]. This scaling behavior has
been observed experimentally many times in a wide range of
materials including rare earths, transition metals based alloys,
amorphous alloys, and manganites [35–40]. Recently, it was
even used to predict the concentration of skyrmions [41].

However, this behavior is supposed to be present only in
the vicinity of the critical point. During the last years, the
magnetocaloric community has been using these scaling laws
to fit and predict the values of some MCE properties regardless
of the conditions of work temperatures and applied fields. The
purpose of this work is to clarify under which conditions it is
possible to use these scaling laws. For completeness, in Sec. II,
we will start with an overview of the theory and methodologies
which will be followed by their applications to different kind
of materials and models. In Sec. III, we will analyze the
results obtained by using a mean-field approximation in a
wide selection of ferromagnetic materials with different Curie
temperatures. This allows us to derive the range of applicability
of the scaling laws in the MCE in terms of temperature and
applied field. In order to demonstrate its validity, we will
include some experimental data to support our hypothesis.
Then, we will carry out a similar analysis using a 3D-Ising
model, which is a microscopic treatment beyond the mean-field
approximation. We will extract similar conclusions, proven

that are independent of the model used. Finally, we will make
some brief remarks about other models used in MCE research
regarding how they behave with respect the critical scaling.

II. THEORY

A. Scaling behavior and field dependence

Before starting with the analysis of the scaling behavior
and the field dependence of some MCE quantities, we must
remember that the MCE is characterized by the magnetic
entropy change and the adiabatic temperature change that a
sample undergoes upon the application of a magnetic field.
The first quantity can be defined through the integrated version
of the Maxwell relation as

�SM(T ,H ) = μ0

∫ H

0

(
∂M

∂T

)
H ′

dH ′. (1)

And the second one is defined as

�Tad(T ,H ) = −μ0

∫ H

0

T

c(T )H ′

(
∂M

∂T

)
H ′

dH ′, (2)

where c(T )H is the specific heat at constant field of the material
and μ0 is the permeability of vacuum.

In this work, we will only focus on the magnetic entropy
change. Probably the first attempt to describe the field
dependence of the maximum magnetic entropy change was
made over thirty years ago by H. Oesterreicher and F. T. Parker
[42] who showed that −�SM(TC,H ) ∝ H 2/3 by expanding the
Brillouin function on a power series, where TC is the Curie tem-
perature. This empirical law was widely accepted among the
magnetocaloric community. Later, M. D. Kuz’min [43] added
a small negative term independent of H , which arose from spa-
tial inhomogeneities of real ferromagnetic materials. J. Lyubi-
una et al. [44], based on the Landau theory, proposed a more
complex dependence (including the Kuz’min constant term) as

− �SM(T ≈ TC,H ) = A(H + H0)2/3 − AH
2/3
0 + BH 4/3,

(3)

where A and B are intrinsic material constants and H0 is related
to the Kuz’min constant term. Similar results were obtained
by using other mean-field approximations like the Green
functions formalism applied by P. Álvarez et al. [45]. In an
equivalent way, similar relations were derived for the adiabatic
temperature change [46]. Independently from these mean-field
approximations, in 2006, V. Franco et al. [47] proposed that the
field dependence of the magnetic entropy change near TC was a
power law with an exponent n related to the critical exponents
of the material: n = 1 + (β − 1)/(β + γ ). The n = 2/3 case
is a particular case of this general expression when we choose
the mean-field critical exponents β = 1/2 and γ = 1. It was
proved experimentally that materials with critical exponents
far from the mean-field approximation obeyed this power law
[48,49]. The exponent n can be calculated for all temperatures
from the magnetic entropy change curves and not only at the
critical point, using the following expression:

n(T ,H ) = d ln |�SM(T ,H )|
d ln H

. (4)

For a given applied field, the behavior of this exponent
is as follows. It has a minimum near TC, (exactly at TC for
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mean-field approximation) whose value is the one pointed
out previously depending on the critical exponents (2/3 in
the frame of the mean-field approximation). For temperatures
well above the Curie temperature, in the paramagnetic region,
it reaches the value of 2. On the contrary, for temperatures
below the Curie temperature, it reaches the value of 1 in the
purely ferromagnetic region [34].

It is also possible to construct a unique normalized magnetic
entropy change curve for all values of applied field, which
was initially called master curve [47] and eventually universal
curve [50]. The collapse of all magnetic entropy change
curves for different applied fields has been proved that it
is a consequence of the critical scaling behavior [50]. For
magnetic systems near the critical point, a scaling relation
between magnetization, applied field, and temperature must
be fulfilled and it has the form [51]

H

Mδ
= f (tM−1/β), (5)

where δ and β are the critical exponents, t ≡ (T − TC)/TC

and f is a scaling function which depends on the model or the
material. For mean-field models, this scaling is fulfilled with
δ = 3 and β = 1/2. Notice that this relation should be fulfilled
only in a region close to the phase transition and not in the
whole range of applied field and temperature, except for some
models which has been constructed exclusively from scaling
hypothesis. As expected, the universal curve has been applied
to different materials exhibiting a second-order phase transi-
tion. However, materials with first-order phase transitions do
not collapse onto a universal curve and this fact can be used to
determine the nature of the phase transition in a given material
[52]. In order to construct this phenomenological curve, we
firstly normalize the magnetic entropy change dividing by the
maximum �SM/�S

pk
M . Then we choose two reference temper-

atures, which must fulfill the following conditions: �SM(Tr1 <

TC)/�S
pk
M = �SM(Tr2 > TC)/�S

pk
M = h, where 0 < h < 1 is

an arbitrary constant. Although in principle h could be
freely selected between 0 and 1, a too large value (reference
temperatures chosen too close to the peak temperature) would
produce large numerical errors due to the limited number
of points—in experimental measurements—which lie in that
region. Conversely, if h is too small, it implies selecting
reference temperatures far from the critical region, where
other phenomena could take place. Once the two reference
temperatures are found, we define a new variable θ for the
temperature axis as

θ =
⎧⎨
⎩

−(T − TC)/(Tr1 − TC) if T � TC

(T − TC)/(Tr2 − TC) if T > TC

. (6)

The representation of the different magnetic entropy change
curves on the �SM/�S

pk
M and θ axis produces the phenomeno-

logical universal curve. It was subsequently proved that the use
of two reference temperatures was not necessary, unless there
were multiple phases in the sample or the demagnetizing factor
was not negligible [34]. Therefore, in our analysis, we will
only use a single reference temperature for T > TC. Notice
that in Eq. (6), we have used TC which coincides with T pk

in mean-field models but in general they might be slightly

different [53]. In any case, they are very close and they can be
used indistinctly.

B. Mean-field model

One simple approach to describe the ferromagnetic be-
havior of a substance is to consider the possible orientations
of the magnetic moment with respect the applied field H at
temperature T , according to the possible 2J + 1 values of the
magnetic quantum number (from −J to +J ). In that case, it is
straightforward to calculate the single-dipole partition function
[54]:

Z(T ,H,M) = sinh
(

2J+1
2J

x
)

sinh
(

1
2J

x
) , (7)

where x = gμ0μBJ (H + λM)/kBT . Here, kB is the Boltz-
mann constant, g is the Landé factor, μB is the Bohr magneton
and λ is the phenomenological constant of the Weiss molecular
field. From this partition function, it is possible to deduce all
important quantities, especially the magnetization:

M = NkBT

μ0

(
∂ ln Z

∂H

)
= MsBJ (x), (8)

where Ms = (N/V )μBgJ is the saturation magnetization and
BJ (x) is the well know Brillouin function. Here, N and V are
the number of magnetic ions and the volume, respectively.
Notice that this expression represents an equation of state
for the magnetic system and this model will be referred as
mean-field Brillouin model. Although the scaling relation is
not obtained for the whole range of temperature, it is not hard
to deduce that for T ≈ TC the scaling relation given by Eq.
(5) is indeed confirmed with f (x) = x + c being c a constant.
The magnetic entropy per mole, in terms of the gas constant
R, has the following analytical expression:

SM(T ,H,M)

R
= ln Z + T

(
∂ ln Z

∂T

)

= ln
sinh

(
2J+1

2J
x
)

sinh
(

1
2J

x
) − xBJ (x). (9)

The magnetic entropy change can be calculated as �SM =
SM(T ,H ) − SM(T ,0). At very high temperatures, the magnetic
entropy reaches its maximum value (maximum disorder) and it
is easy to see that SM(T → ∞,H ) = R ln(2J + 1). By apply-
ing a magnetic field, all dipoles begin to align in the same direc-
tion of the applied field, hence reducing the magnetic entropy,
reaching SM(T → 0,H ) = SM(T ,H → ∞) = 0 for very low
temperature or infinitely high field. Therefore the maximum
magnetic entropy change achievable for a given material is
−R ln(2J + 1). In this work, we do not use the analytical form
of the magnetic entropy to calculate the MCE. Instead of this,
we proceed in an analogous way as that used for experimental
data; differentiating and integrating the magnetization curves.
In this way, we get much more information about the system.
This simple model only needs two parameters to describe the
MCE; the saturation magnetization (or only the atomic density)
and the Curie temperature. Remember that in this model, the
Curie temperature is related to the phenomenological constant,
as TC = μ0(N/V )J (J + 1)(gμB)2λ/3kB. To study the field
dependence of the magnetic entropy change peak we can use
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the scaling relation near the Curie temperature and it is possible
to obtain the following expression:

�SM(TC,H ) 	 −μ0λ

2TC

[
10(J + 1)2M2

s

3λ(2J 2 + 2J + 1)

]2/3

H 2/3. (10)

As it was expected, the dependence is a power law with n =
2/3, which corresponds with the mean-field critical exponents.
This result was previously obtained by J. H. Belo et al. [55] and
of course is compatible with the mentioned behavior suggested
by H. Oesterreicher and F. T. Parker in 1984 [42].

Despite being very simple, this mean-field model can be
used to fit experimental data with a reasonable agreement
in simple ferromagnetic materials [8]. This model can be
improved by adding a new term in the argument of the Brillouin
function of the type λ3M

3 as proposed by C. P. Bean and
D. S. Rodbell [26]. They showed this new term affected the
transition temperature and, moreover, depending on the value
of the phenomenological constant λ3, the transition could
be of first or second-order type. On the other hand, another
extra term can be added to the Gibbs free energy to take into
account changes of volume during the phase transition. In
this way, it is possible to study pressure effects during the
phase transition, which sometimes have an important role in
the MCE. This model has been successfully used to reproduce
the MCE of some materials with giant MCE and first-order
phase transitions where pressure may have an important role
[56–60], and some other materials like manganites [61] with
both first- and second-order phase transitions. Moreover, this
kind of theoretical models can provide useful information
about the foundations of the different types of phase transitions
that produce the MCE [62,63].

C. 3D-Ising Model

The other model that we will use in this work is the Ising
model on a cubic lattice which will be referred as 3D-Ising
model. Let N be the number of sites, which is given by N =
L × L × L, where L is the linear dimension. The Hamiltonian
of this model is defined as

H = −Jex

∑
〈i,j〉

sz
i s

z
j − gμ0μBH

∑
i

sz
i , (sz

i = ±1/2),

(11)

where Jex > 0 is the ferromagnetic exchange interaction
parameter between nearest-neighbor spin pairs 〈i,j 〉. Here we

consider an S = 1/2 system which corresponds to the case of
J = 1/2 in Sec. II B. Thus, only at zero applied field, this
model exhibits a second-order phase transition. According
to Ref. [72], in which high-precision MC calculation was
done, the phase transition temperature, that is, the Curie
temperature, is kBTC/Jex = 1.127 and the critical exponents
are β = 0.3265, γ = 1.2372, and δ = 4.789 [73,74]. In this
paper, we calculate the magnetic entropy change of this
model by MC simulations based on the Wang-Landau method
[75–77]. The Wang-Landau method is one of the multicanon-
ical methods, which can directly obtain the density of states.
Then, the behavior of magnetic entropy can be calculated
with high accuracy [16,17]. We confirmed that the magnetic
entropies for L = 8, 12, and 16 are almost collapsed. Thus we
use the simulation results for L = 16 in the analysis throughout
this paper. Notice that the maximum value of magnetic entropy
achievable for this model is R ln 2 ≈ 0.693R when kBT → ∞.

III. RESULTS AND DISCUSSION

A. Mean-field model

In this section, we will analyze the results regarding the
mean-field Brillouin model for ferromagnetic materials. As
it was previously pointed out, this model reproduces in a
reasonable way the magnetic behavior of simple ferromag-
netic materials. Therefore, in principle, we cannot deal with
materials exhibiting other types of magnetic order such as
antiferromagnetism, ferrimagnetism, etc. Among these ideal
ferromagnetic materials we can find pure elements like iron,
cobalt, and nickel. All lanthanides except lanthanum and
lutetium have unpaired f electrons so they do present magnetic
behavior. All of them have been previously studied in this
frame of the mean-field approximation [78,79]. However,
speaking strictly, the use of this simple model is only justified
in the case of gadolinium, which has a simple ferromagnetic
behavior. In all other cases, the crystal field interaction plays
a key role in the establishment of the magnetic order. The
mean-field model would be valid only in the high applied-field
regime well above the critical fields of the antiferromagnetic
order. Of course, there are more sophisticated formalisms
available to deal with these materials [8]. Since we are
restricted to a narrow group of materials we will focus on
gadolinium and some gadolinium based compounds with
nonmagnetic atoms. We present in Table I our selection of
materials covering a wide range of Curie temperatures from

TABLE I. Parameters used in the mean-field Brillouin model simulations for gadolinium based compounds. From crystallographic data,
it is possible to determine the number of atoms and the volume of the unit cell Vcell, to calculate the mass density ρ, and the saturation
magnetization Ms = (N/V )μBgJ.

Material Structure Space group Vcell ρ TC λ g J Ms at ≈ 0 K Refs.

(Å
3
) (g cm−3) (K) (kA m−1)

Gd5Si4 Sm5Ge4 Pnma 854.78 6.98 336 87.7 2 7/2 1513 [64]
Gd hcp P 63/mmc 66.101 7.90 293 58.8 2 7/2 1963 [65]
Gd3In Fe3C Pnma 391.561 9.95 213 42.3 2 7/2 1989 [66,67]
GdMg ClCs Pm3̄m 55.35 5.45 119 40.1 2 7/2 1172 [68]
GdRu2 MgZn2 P 63/mmc 214.241 11.14 84 27.4 2 7/2 1212 [69,70]
GdPd CrB Cmcm 183.419 4.77 46 25.7 2 7/2 707 [71]
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FIG. 1. Magnetic entropy change obtained in the mean-field Brillouin model for the selected materials at several values of applied field.
They are ordered by decreasing Curie temperature. Be aware that the scale of ordinate axis is different depending on the material.

46 K in GdPd to 336 K in Gd5Si4. In this way, we are able to
study how the magnitude of applied fields affects the scaling
relations of the MCE in these materials with very different
working temperatures. As it was shown in Sec. II B, for this
model, we only need the Curie temperature of the material and
its saturation magnetization (or the atomic density, which can
be easily calculated from crystallographic data). All required
parameters are collected from the literature and compiled in
Table I. It is worth mentioning that, in order to be able to make
realistic predictions which would match experimental results,
it is necessary to make such a broad selection of materials and
transition temperatures. The reliability of the predictions will
be shown with experimental results for Gd in Sec. III B.

The calculated magnetic entropy change curves in the
mean-field Brillouin model for different applied fields are
shown in Fig 1. Since the magnetic entropy is expressed per
mole, the magnitude of the MCE is quite different depending
on the material, ranging from −0.3R to −1.2R for 9 T, still
far from R ln 8 ≈ 2.08R of the maximum value. All of the
curves have the well know caret shape characteristic of simple
ferromagnetic materials with a second-order phase transition.
Just after this preliminary characterization, we can calculate
the exponent n for the whole range of temperatures, as shown
in Fig. 2. Although it seems that all materials follow the
behavior described in Sec. II A, if we analyze these results
carefully we can appreciate how some deviations from the
expected behavior appear in those materials with low Curie
temperatures. For instance, the ideal tendency of n = 2 for
T � TC is found in all cases, but this limit is reached at higher

temperatures for increasing values of applied field. However,
if we focus around the Curie temperature, we can see a slight
decrease of n at TC for increasing fields. In principle, since
we are using a mean-field approximation, n was expected to
be 2/3 in all cases. This is true for Gd5Si4, Gd, Gd3In, and
GdMg (with minor discrepancies). But for GdRu2 and GdPd,
whose Curie temperatures are 84 K and 46 K respectively, the
drop in the value is quite evident, being close to n = 0.5 for
9 T in both cases. Moreover, if we look at the ferromagnetic
region, (below TC) for these low Curie temperature materials
the limit of n = 1 is not reached. In fact, at some point in
temperature n starts to decrease. After this brief analysis, we
could wonder which are the applicability limits of the power
laws in the study of the MCE. Of course, it is well know that
all the power laws described in Sec. II A are only fulfilled
in the “neighborhood of the phase transition.” Our goal is to
transform this loose statement into a more quantitative one
when the MCE magnitudes are concerned.

First of all, if we think in very basic terms there is one
magnitude that will certainly induce the destruction of the
scaling behavior of the magnetic entropy change peak. For
some value of applied field, a very close value to the theoretical
limit of �SM is going to be achieved. For this large enough
value of applied field, all magnetic spins are going to be aligned
along the same direction. Then, if at that point we increase the
applied field, we are not going to notoriously increase the value
of the magnetic entropy change because it is indeed very close
to the maximum value. Hence, in this regime of very high
applied fields, the value of the exponent n is going to be 0 or
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FIG. 2. Exponent n obtained in the mean-field Brillouin model through Eq. (4) for the selected materials at different applied fields. Notice
that for those materials with low Curie temperatures, that is, GdRu2 and GdPd, the value of the exponent at TC becomes field dependent for
moderately high fields deviating from the mean-field predicted value of 2/3. Besides, for these low-TC materials at very low temperatures, the
limit of n = 1 is not reached.

very close to it. This is in agreement with the decrease from
0.66 to 0.5 showed in Fig. 2 for the cases of GdRu2 and GdPd.
For this reason, it is obvious that for some value of the applied
field the exponent n at TC will begin to decrease from the
predicted value of the critical exponents to 0. Now, we want
to elucidate which are the values of these fields for which the
power laws are not valid any more. However, according to the
results showed in Fig. 2, we cannot focus exclusively on the
magnetic field because the deviations from the ideal behavior
are only apparent for the low Curie temperature materials
(when we restrict ourselves to the same values of applied
field). Therefore both magnitudes have to be involved in the
worsening of the scaling behavior. In order to extract some
quantitative conclusions, we analyze the field dependence of
the magnetic entropy change peak for all these materials. In
Sec. II B, we have showed the expression of Eq. (10) for the
theoretical field dependence of the magnetic entropy change
peak near the phase transition, so we can compare this ideal
behavior (which is a power law) with the real behavior obtained
by Eq. (8). In this way, we can observe simultaneously which
is the effect of both quantities. On the one hand, we analyze for
which applied-field breakdown of the power laws appears, on
the other hand, by comparing different materials with different
working temperatures, we analyze if this applied-field limit
has a tendency with respect to the Curie temperature. All these
results are collected in Fig. 3, where we have marked, for each
material, a couple of values of applied field, labeled by H (5%)

and H (8%), which represent those values for which the power
law prediction of the maximum magnetic entropy change
differs only by 5% and 8% from the real one, respectively.
The 5% limit has been chosen taking into account the typical
error margin of experimental MCE measurements. The 8%
limit represents deviations from the scaling behavior which
cannot be ascribed to experimental uncertainty. Although these
two limiting values can be considered somewhat arbitrary,
especially the upper one, their modification would not alter the
conclusions of this work. According to this, for applied field
lower than H (5%) we can apply all power laws in a reliable
way. For applied fields between H (5%) and H (8%), we could
apply them too, but it is possible that we have non-negligible
errors. And for applied fields above H (8%), we should not
apply any power law at all because the differences are too
large. As we can see in Fig. 3, these reference values of
applied field are different for each material and, as expected,
these values are clearly related to the Curie temperature. In
Table II, we have collected all these values and compared them
with an intrinsic field given by kBTC/gJμB. This quantity
provides information about the ratio between the magnetic
energy and thermal energy at TC. According to the data of
Table II, the power laws are only valid when the applied field
is around one order of magnitude (∼ 8%) smaller than this
intrinsic field of the material. To give some useful numbers,
for materials with near room temperature transition all scaling
approximations are valid even for applied field up to around
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FIG. 3. Applied-field dependence of the magnetic entropy change peak for the selected materials ordered by decreasing Curie temperature.
In each graph, we have a comparison between the analytical expression of the ideal scaling (black dashed line) and the real behavior obtained
with the mean-field Brillouin model (red solid line). In order to clarify the main results, all graphs are divided in three regions: low-field regime
where the difference between the peak value predicted by the ideal relation and the real one is below a 5% (green) so the scaling approximation
is valid; high-field regime, where the scaling approximation is not valid any more because the discrepancies are over 8% (red) and a mid-field
region where the errors are within 5% and 8% (yellow).

10 T. However, for those materials with Curie temperatures
below the nitrogen boiling point, this kind of approximations
have a limited applicability for applied fields of ∼1 T.

We can also analyze the correlation between the scaling
behavior and the collapse onto the universal curve of all
magnetic entropy change curves for different applied fields.
In Sec. II A, we have discussed in detail that collapse of
the normalized magnetic entropy change curves is direct
consequence of the scaling behavior of �SM. In Fig. 4, we
collect the universal curves for the six studied materials. As
expected, the dispersion of the universal curve for θ < 0 (the
ferromagnetic region) remains small only for those materials
with large Curie temperature and it becomes large for the
rest, where significant deviations from the scaling laws were
observed in the exponent n. This kind of deviation from the
ideal behavior predicted by scaling laws has been observed
before in measurements of low Curie temperature materials.
See, for example, the work by Y. Su et al. [39] on YbTiO3,

with TC = 42 K, and related perovskites or the recent paper by
L. Li et al. [80], which deals with HoZn intermetallic
compound with TC ∼ 72 K. Our results point out that the
presence of additional magnetic phase transition is not the only
cause of the lack of universal scaling at low temperatures.

TABLE II. Relevant values of applied field for the applicability
of scaling relations.

Material TC μ0H (5%) μ0H (8%) kBTC/gJμB

(K) (T) (T) (T)

Gd5Si4 336 5.86 11.87 71.4
Gd 293 5.08 10.33 62.3
Gd3In 213 3.62 7.45 45.3
GdMg 119 1.76 2.94 25.3
GdRu2 84 0.54 2.43 17.9
GdPd 46 0.32 1.30 9.8

B. Experimental support

As it was previously pointed out, with the Brillouin function
the magnetothermal response of a simple ferromagnetic
material can be reproduced with reasonable accuracy. To show
this, Fig. 5 shows a comparison between the magnetic entropy
change and n(T ) curves obtained with the mean-field Brillouin
model and experimental data for a flat disk shaped piece of Gd
measured in a vibrating sample magnetometer for different
applied fields up to 9 T. Despite of the simplicity of the model,
it is obvious that the agreement is quite good, at least around
the Curie temperature. In both cases experimental data were
corrected with a demagnetizing factor of 0.26 in SI untis.
Notice that in the case of the experimental data, even if the
shape of the sample (a thin plate measured with the field
applied in the plane of the sample) has been chosen to minimize
the influence of the demagnetizing factor, a contribution of this
demagnetizing field is known to alter the MCE of materials
change peak [81]. This effect is especially relevant in the n(T )
curves where n = 1 limits would not be achieved for T 
 TC

in the presence of demagnetizing fields [82] as in this case
does. With the aid of the experimental data we can check our
proposal of the limits of validity of scaling relations obtained
by the mean-field Brillouin model. According to our previous
results for gadolinium, whose Curie temperature is 293 K, in
the proximity of room temperature, we should expect a good
power law behavior for applied fields up to 10 T. In Fig. 6,
we show the field dependence of the magnetic entropy change
peak obtained in the mean-field Brillouin model together with
the result of experimental data. Notice how the correction
of the demagnetization factor is completely necessary [82],
otherwise, we would find a relevant discrepancy in the
low-field region but completely artificial and unrelated to
the theoretical model. The calculated maximum of magnetic
entropy change is slightly lower (<4%) than the experimental
one but they are close enough. Another important point that
must be clarified is that critical exponents of real gadolinium
(β = 0.39 and γ = 1.24) [83] are significantly different from
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FIG. 4. Normalized magnetic entropy change curves as a function of the reduced temperature θ using a single reference temperature defined
with h = 0.6 for the selected materials. Notice that the larger deviations from scaling are observed for the materials with low TC.

those of mean-field values. However, it is possible to compare
directly all results because the exponent n in the case of
real gadolinium is 0.626, which very close to the 2/3 value
of the mean-field theory. Therefore no relevant difference is
expected in the slope of the critical scaling when plotting
both sets of data. We see how up to applied fields of 9 T the
agreement between calculated data by the mean-field Brillouin

model and experimental data is excellent. Consequently, as it is
shown experimentally it is possible to apply scaling relations
in the maximum entropy change of the MCE in the usual
working applied fields for materials with Curie temperature
close to room temperature. This fact can be used to estimate
the performance of different materials without carrying out
experimental measurements at very high applied fields.

FIG. 5. Comparison between the calculated magnetic entropy change curves with the mean-field Brillouin model (solid lines) and the
experimental data of gadolinium with applied fields up to 9 T (symbols) (a). The same comparison between the exponent n obtained with
Eq. (4) (b). In both cases, experimental data are corrected with a demagnetizing factor of 0.26. This correction is especially relevant in the
calculation of the exponent n. Despite of the simplicity of the model, the agreement is quite reasonable.
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FIG. 6. Comparison of the field dependence of the magnetic
entropy change peak between the mean-field Brillouin model and
the experimental data with and without demagnetization factor (DF).
As it was predicted by the model for the case of gadolinium whose
Curie temperature is at room temperature the power law for the field
dependence is fulfilled up to fields of 10 T.

C. 3D-Ising model

It is important to complete our results using the 3D-
Ising model introduced in Sec. II C since different results
have been often observed in models beyond the mean-field
approximation. Regarding the MCE, we can find several
examples, for instance, in all magnetic equations of state
based on mean-field approximation [25–27] the exponent n for
the applied-field dependence of the magnetic entropy change
at the peak is going to be 2/3, as predicted by mean-field
critical exponents. On the contrary, in other models beyond
the mean-field approximation, this value is different and it
is given in terms of the critical exponents. Other example is
the peak position of the magnetic entropy change. While in
the mean-field approximations the temperature of the peak
coincides with the Curie temperature, in the models beyond
the mean-field approximation the peak temperature is located
slightly above the Curie temperature and linearly increases
with the applied field [53].

The aim of this section is to carry out a similar analysis
of the previous sections in the 3D-Ising model where Jex > 0
as explained in Sec. II C. The Ising model is a microscopic
model and can treat physical properties beyond the mean-field
approximation and it belong to a different universality class
[74]. By using the 3D-Ising model, we can confirm that the
conclusions extracted in Secs. III A and III B are completely
general. Figure 7 shows the temperature dependence of the
magnetic entropy change for different applied fields for L =
16, which are calculated by the Wang-Landau method. We
have chosen values of the applied field so that the usual
experimental conditions can be reproduced. In the experimen-
tal data of gadolinium presented in Sec. III B the applied
field was within the range 1–10 T. In this paper, Jex is the
energy unit, so the temperature and applied field are expressed
by kBT/Jex and gμ0μBH/Jex, respectively. By comparing
kBT/Jex and gμ0μBH/Jex, we can estimate the value of the
applied field, finding that gμ0μBH/Jex > 1 corresponds to
over 100 T for the materials whose Curie temperatures are
∼100 K. Thus, in order to reproduce the order of 1–10 T, it
is reasonable to use gμ0μBH/Jex in the range of 0.01 − 0.1.

The temperature dependence of the exponent n for different

FIG. 7. Calculated magnetic entropy change curves with the 3D-
Ising model for different applied fields. Notice that in this case we
work with dimensionless magnitudes in applied field and temperature.

applied fields is shown in Fig. 8. The same behaviors observed
in the mean-field Brillouin model shown in Fig. 2 explained in
Sec. III A, that is, at T 
 TC and T � TC, respectively, bounds
of n = 1 and n = 2, are obtained in the 3D-Ising model for
low applied fields. The different point from the mean-field
Brillouin model is that the value of n at TC becomes 0.569,
which is obtained by the critical exponents of the 3D-Ising
model by n = 1 + (β − 1)/(β + γ ). However, these behaviors
are shifted when the applied field becomes large, because the
applied field is so high that we are close to the saturation
magnetization regime, as discussed in Sec. III A. Figure 9
shows the magnetic entropy change at the peak |�S

pk
M |, plotted

in logarithmic scale, as a function of the applied field. In
this model, we cannot provide an analytical expression of the
magnetic entropy change. However, it is possible to confirm the
power-law behavior of this magnitude by performing a linear
fitting in the low applied field region. The intrinsic field of

FIG. 8. Exponent n with the 3D-Ising model for different applied
fields calculated from Eq. (4). Notice that the behavior is the same as
in the mean-field Brillouin model. For high applied field the exponent
at TC begins to decrease and the limit of n = 1 is not satisfied for very
low temperatures.
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FIG. 9. Applied-field dependence of the magnetic entropy change
peak in the 3D-Ising model. In this case, an analytical expression for
the scaling relation cannot be provided. Instead, we perform a linear
fitting in the low applied field region. The exponent obtained in the
fitting is very similar to the value predicted by the critical exponents
of the model (see text for details).

this model defined in Sec. III A is 2kBTC/Jex = 2.254 (taking
into account the value of J = 1/2 in this model) and the 8%
of this field is 0.18. By performing the linear fitting in this
region gμ0μBH/Jex < 0.18, we obtain n = 0.571, which is
in perfect agreement with the expected value of 0.569 from
the critical exponents. This fitting curve is also shown in Fig. 9
and notice that expanding the linear fitting to higher values
of applied fields the obtained value of exponent n differs
dramatically from the expected value.

Finally, in Fig. 10, we plot the magnetic entropy change
curves for different applied fields (with a single temperature
reference) which are in the range of applicability of the scaling
relations (with two extra curves outside of the correct field
range). Around the Curie temperature, all magnetic entropy
change curves are superposed by using normalized magnetic
entropy and normalized temperature but for negative values of
θ not very far away from zero because the Curie temperature
is only kBT/Jex = 1.127.

FIG. 10. Universal curve of the magnetic entropy change in the
3D-Ising model. The specific value of the Curie temperature of this
model produces a quick saturation of the material in the ferromagnetic
range, affecting the collapse of the curves as discussed in the text.

D. Other remarks

There are several aspects which might be important when
analyzing experimental data and, especially, when comparing
with theoretical models. Firstly, we have proved in the previous
sections that we have to be cautious if we want to apply the
power laws derived for the MCE magnitudes. We have to
make sure, first, that we are in the appropriate conditions of
temperature and applied field to do this. Additionally, when
using theoretical magnetic equations of state we have to be
aware that, depending on the model, the scaling relations can be
fulfilled in a broader or narrower range. For instance, we have
seen that for the Brillouin function the range of applicability
is similar to that observed in experiments but it might not
be the case for other models. Of course, the power laws
should be guaranteed at least for T → TC if the model is well
constructed. However, there are models in which the range
of applicability is very narrow, for example in the Kuz’min
equation of state [27]. In other cases, like in the Bean-Rodbell
model [26], some additional parameters are included, so they
can promote the destruction of these critical phenomena or
lead to an artificial narrowing of its validity range. This fact
has been interpreted by some researches as a proof of the
lack of scaling relations in materials [84]. Finally, we want to
pay some attention to those equations of state based directly
on scaling relations like the Arrott-Noakes equation [28] or
the Ho-Litster equation [29]. The first one has been widely
used among the MCE community with plenty of success. In
fact, it has been used to fit experimental data with very high
accuracy [48,85]. The Arrott-Noakes equation of state was
derived originally to reproduce the magnetothermal response
of pure nickel and can be expressed as

(
H

M

)1/γ

= a(T − TC) + bM1/β, (12)

where a and b are two fitting parameters. This equation is
extremely useful due to its simplicity and the two fitting
parameters add a lot of freedom allowing the understanding
of the experimental data. Another advantage of this equation
is the wide range of applicability, which has been proved to
be valid for t(M/H )−1/β � 25 within errors of less than 1%
[86]. Moreover, this equation has been used to extract valuable
information in the context of MCE such as composite materials
[87] or the demagnetizing factor [82]. Nevertheless, it is worth
noting that this type of equations of state are constructed by
applying the critical scaling in the whole range of applied
field and temperature, which means that in these models a
real saturation in magnetization is never reached. This fact
has the clear consequence that the exponent n is completely
independent of the applied field because no saturation in
magnetization is taken into account.

As an example we show in Fig. 11 the applied-field
dependence of the exponent n evaluated at TC for the mean-
field model and for a soft amorphous alloy modeled by
the Arrott-Noakes equation [48] with n = 0.7313. As it is
shown in the graph, with the mean-field approximation of
the Brillouin function a slight field dependence exists in the
exponent n at TC especially for materials with low Curie
temperatures as we discussed in Sec. III A. On the contrary,
for the alloy modeled with the Arrott-Noakes equation of state,
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FIG. 11. Applied-field dependence of the exponent n evaluated at
TC for the different materials calculated with the mean-field Brillouin
model (MF). Notice the slight dependence with respect to the applied
field for those materials with low Curie temperature. For materials
with near room Curie temperature the values of n remain close to
the predicted value. On the contrary, for scaling models like the
Arrott-Noakes (AN) equation there is no field dependence at all.
Dashed lines correspond to the ideal value of 2/3 and to a 5% lower
value which would be acceptable.

the exponent n is constant all over the whole range of applied
fields. As we pointed out, this incorrect tendency is due to the
absence of a real saturation of magnetization. However, if we
remember the experimental data of gadolinium in Fig. 5, in
the usual experimental applied-field range we are still far from
the complete saturation region. For this reason, it is completely
acceptable the use of this type of equations in the standard
experimental conditions and in the neighborhood of the phase
transition.

IV. CONCLUSIONS

In this work, we have carried out a detailed study of the
field dependence of the magnetic entropy change by means
of a mean-field Brillouin model and a 3D-Ising model. We
have shown that the field dependence of the magnetic entropy
change at the peak obeys a power law according to the critical

exponents of each model but not in the whole range of applied
field. Therefore we have delimited which is the range of
applicability of this behavior in terms of temperature and
applied field. We have proven that, even for temperatures
very close to the Curie temperature for high enough applied
fields, the exponent n starts to decrease, reaching zero value
for infinitely high fields. This is due to the achievement of the
total orientation of the domains in the direction of the applied
field, reaching the theoretical maximum in magnetic entropy
change, R ln(2J + 1), regardless of any further increase of the
applied field. On the other hand for temperatures well below
the Curie temperature the scaling behavior is also lost even for
moderate values of applied fields. According to these results,
the scaling behavior of the MCE is only valid when the energy
arising from the magnetic field μ0gJμBH is much less than
the energy contribution of the temperature kBT . In practical
terms, this means that for materials with phase transition near
room temperatures these scaling approximations are valid in
a broad enough applied-field range (� 10 T) so the use of
the power laws is completely justified and it could be very
useful in magnetic measurements. This point was confirmed
with experimental data of gadolinium. However, for materials
with transition temperature of the order of the boiling point
of nitrogen or less, we should be very careful when applying
these scaling relations because they will not be valid even for
such low applied fields of the order of 1 T.
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