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Effects of intense optical phonon pumping on the structure and electronic properties of yttrium
barium copper oxide
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We investigate the structural modulations induced by optical excitation of a polar phonon mode in YBa2Cu3O7

using first-principles calculations based on density functional theory. We focus on the intense-excitation regime in
which we expect that fourth-order phonon-phonon coupling terms dominate and model the structural modulations
induced by pulses of such intensity. Our calculations of the phonon-phonon anharmonicities confirm that the
cubic coupling between modes, shown in earlier work to cause a quasistatic change in the apical O-Cu distance
and a buckling of the CuO2 planes, is the leading contribution at moderate pump strengths. At higher pump
strengths (∼10 MV/cm) the previously neglected quartic couplings become relevant and produce an additional
shearing of the CuO2 planes. Finally, we analyze the changes in the electronic and magnetic properties associated
with the induced structural changes.
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I. INTRODUCTION

Ultrafast modulation of crystal structures using terahertz
(THz) radiation is an emerging technique in condensed-matter
physics to study the interplay of structural and electronic
properties [1]. For example, control of electronic phases has
been achieved in perovskite-structure manganites by selective
pumping of phonon modes [2,3], and driving of spin dynamics
has been demonstrated through excitation of coupled spin-
phonon modes [4]. Particularly intriguing was the report of
induced coherent transport [5] in underdoped YBaCu3O6+δ ,
on optical pumping of the IR-active B1u mode at 670 cm−1

(20 THz), whose appearance has been associated [5–7] with
a possible signature of superconductivity above the usual
superconducting Tc. The eigenvector of this mode consists
of the in-phase displacement of the apical oxygen atoms of the
Cu-O planes along the c axis [Fig. 1 (a)] with an associated
change of the Cu-apical-oxygen distance, a parameter that
has often been suggested to correlate with superconductivity
[8]. The enhanced coherence was therefore associated with
an increase (decrease) in inter- (intra-) bilayer Josephson
tunneling strength [6].

An important breakthrough in understanding this observa-
tion followed from the determination, through a combined ul-
trafast x-ray diffraction (XRD) and ab initio density functional
theory (DFT) study, of the transient crystal structure during
the optical pumping process [9]. As expected, oscillating
staggered dilations/contractions of the Cu-O intra- (inter-)
bilayer distances corresponding to the displacements of the
B1u mode were observed. In addition, anisotropic changes in
the buckling of the in-plane Cu-O bonds were found and were
shown to result from a cubic coupling of the Ag symmetry
mode corresponding to this additional distortion to the square
of the pumped B1u mode [10].

The basic physics of THz-radiation-induced structural
distortion, often referred to as nonlinear phononics [2,10],
can be seen from analyzing the phonon-phonon interactions.
For low field strengths, excitation of a phonon results only
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in harmonic oscillation of the atoms around their equilibrium
positions, described by the harmonic Hamiltonian

H har = ω2Q2

2
. (1)

The atomic displacements are determined by the normal
coordinate of the mode Q , which in turn is the eigenvector
of the dynamical matrix, and the corresponding eigenvalue
ω gives the mode frequency. Phonons of different energy are
orthogonal and do not interact in the harmonic approximation,
and importantly, there is no change in the time-averaged
structure with phonon excitation (〈Q〉T = 0).

At higher field strengths and larger amplitudes, however,
anharmonic phonon-phonon interactions become noticeable.
Using the notation of Ref. [9], the anharmonic terms in the
Hamiltonian can be written as

H anh = −a3Q
2
IRQG − a4Q

2
IRQ2

G + · · · , (2)

considering terms only up to quartic order. Here QIR labels an
infrared active mode that can be excited by an optical phonon,
and QG is a general polar or nonpolar mode. We note that
the term containing a3 is only allowed if the symmetry of QG

is given by an A1 irreducible representation of the crystal-
structure point group.

In the case of high-Tc superconducting cuprates, which
are centrosymmetric, the third-order coupling is sizable for
several modes QG of Ag symmetry. As mentioned above, this
cubic coupling to Ag modes was shown to be responsible
for the shift of the mean atomic displacements measured
using femtosecond x-ray diffraction in Ref. [9]. Note that,
in the experiments of Ref. [9], the system was excited
using midinfrared optical pulses of ∼300 fs duration with a
maximum fluence of 4 mJ/cm2, which corresponds to a peak
electric field of ∼3 MV/cm. This field strength suggests a peak
amplitude of the B1u mode corresponding to a 2.2-pm increase
in the apical-oxygen-Cu distance.

The product of Q2
IRQ2

G is totally symmetric, and hence
fourth-order coupling of any IR pumped mode to all other
phonons is always allowed by symmetry. As mentioned in
Ref. [11], analysis of the equation of motion shows that,
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FIG. 1. Eigendisplacements of selected phonon modes in
YBa2Cu3O7; the black arrows indicate the relative atomic dis-
placements. (a) The pumped polar B1u(17) phonon mode, (b) the
symmetry-conserving Ag(14) phonon mode, and (c) the in-plane
mode B2g(2).

for small amplitude excitations, the effect of this coupling
is renormalization of the frequency of the QG mode by

ω′
G = ωG

√
1 − 2a2

ω2
G

Q2
IR . (3)

Equation (3) also reveals that this quartic interaction can induce
a softening of the QG mode and an associated lattice instability,
in the case of large QIR amplitude, strong coupling, and low
frequency of the mode QG. For the excitation strengths of
Ref. [11], fourth-order coupling effects were not observed.

The aim of this paper is to extend the investigation of
Ref. [11] to evaluate the effect of the third- and fourth-order
anharmonic couplings on the structure and electronic and
magnetic properties when a phonon is excited by an intense
optical pulse. We first use first-principles electronic structure
calculations to compute the anharmonic coupling constants
between the 17-THz polar B1u phonon mode of YBa2Cu3O7

and all other phonon modes of the material. We then solve
the equations of motion using the first-principles coupling
constants to calculate the structural modulations induced by
excitation with an optical pulse. We focus particularly on the
case of large-amplitude oscillations of the B1u mode, for which
we predict additional structural modulations due to the quartic
coupling. Finally, we discuss the requirements for entering
the regime in which such interactions dominate, offering a
motivation for the provision of THz sources at free-electron
lasers.

II. ANHARMONIC PHONON INTERACTIONS IN
YTTRIUM BARIUM COPPER OXIDE

We begin by using density functional theory to calculate
the third- and fourth-order phonon-phonon coupling constants
for YBa2Cu3O7. We choose YBa2Cu3O7 since it captures
all the characteristics, such as the dopant oxygen atom and
the Pmmm orthorhombic symmetry, of the YBa2Cu3O6.5+x

family and is computationally convenient because of its small
total number of atoms per unit cell. Note that the values for the
coupling constants that we obtain differ quantitatively but not

TABLE I. Experimental (EXP) [12] atomic positions and those
calculated in this work (DFT) for YBa2Cu3O7.

Atom Wykoff x y z (DFT) z (EXP)
position

Y 1h 0.5 0.5 0.500 0.500
Ba 2t 0.5 0.5 0.181 0.185
Cu1 1a 0.0 0.0 0.000 0.000
Cu2 2q 0.0 0.0 0.353 0.355
O1 2q 0.0 0.0 0.161 0.158
O2 2r 0.0 0.5 0.379 0.378
O3 2s 0.5 0.0 0.379 0.378
O4 1e 0.0 0.5 0.000 0.000

qualitatively from those of Ref. [11], in which YBa2Cu3O6.5

was studied.
First, we calculate the lowest-energy atomic positions using

the experimental lattice constants of YBa2Cu3O7 taken from
Ref. [12] (a = 3.82 Å, b = 3.88 Å and c = 11.67 Å). We use
the local-density approximation (LDA) to density functional
theory as implemented within the Vienna Ab initio Simulation
Package (VASP) [13], with the default projector augmented
wave (PAW) pseudopotentials [14] with the following valence
electronic configurations: Y, 4s24p65s24d1; Ba, 5s25p64s2;
Cu, 3p64s13d10; and O, 2s22p4. After testing the convergence
of forces, phonon frequencies, and anharmonic coupling con-
stants, we chose a 15 × 15 × 10 k-point mesh in combination
with a cutoff energy of 800 eV. Since the ions should be in
their equilibrium positions for the calculation of the phonons,
we relax the internal coordinates until the forces on the ions
are less than 0.1 meV/Å. The resulting atomic positions are
compared with experiment in Table I and show satisfactory
agreement.

Next, we calculate the phonon eigenfrequencies and eigen-
vectors using density functional perturbation theory (DFPT)
[15]. IR radiation only excites phonon modes at the zone
center (q = 0), and consequently, we focus on these modes
within our investigation. The YBa2Cu3O7 unit cell contains
13 atoms and so has 39 phonon modes with the following
irreducible representations in the mmm point group: 5Ag ⊗
5B2g ⊗ 5B3g ⊗ 8B1u ⊗ 8B2u ⊗ 8B3u. Our calculated mode
frequencies are listed in Table II, together with those obtained
in other theoretical works [16] as well as from Raman/neutron
scattering and IR spectroscopy [17–21]. We note that the
largest difference between our results and other calculations
or experiments is less than �f = 0.9 Thz.

Finally, we calculate the anharmonic coupling constants.
The effective potential describing a polar IR mode (which will
be resonantly excited by the pump pulse) and a general phonon
mode G is, to fourth order,

V (QIR ,QG) = w2
IR

2
Q2

IR + w2
G

2
Q2

G

+ a3Q
2
IRQG + a4Q

2
IRQ2

G

+ g2
IR

4
Q4

IR + g2
G

4
Q4

G , (4)

where wIR and wG are the frequencies of the IR and G modes,
respectively, and a3, a4, gIR, and gG are anharmonic coupling
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TABLE II. YBa2Cu3O7 phonon mode frequencies (in THz)
obtained in this work (DFT∗), calculated using DFT† in Ref. [16],
and measured experimentally (EXP), collected from Refs. [17–21].

Symmetry DFT∗ DFT† EXP Symmetry DFT∗ DFT† EXP

Ag 3.7 3.6 3.5 B1u 3.9 3.9
4.5 4.5 4.4 4.9 5.0 4.7

10.7 10.2 10.0 5.9 5.8 5.8
12.5 12.2 13.1 7.4 6.5
14.4 14.2 14.9 7.6 7.2

10.0 9.7 9.0
16.9 16.5 16.9

B2g 2.1 1.9 2.1 B2u 2.7 2.5 2.5
4.5 4.2 4.3 4.5 4.0 3.8
7.3 6.7 6.3 5.0 4.6 4.7

11.7 11.6 11.1 5.6 5.3 5.8
17.9 17.3 17.4 8.7 8.1 8.5

10.9 10.8 10.6
18.0 17.4 18.0

B3g 2.4 2.4 2.5 B3u 2.4 2.4 2.4
4.3 4.2 4.2 4.9 4.8 4.7
9.4 8.8 9.1 5.4 5.1 5.7

11.2 11.0 11.3 10.5 10.1 10.3
16.4 15.8 15.8 10.7 10.3 10.8

15.4 14.8 14.4
16.5 15.9 16.4

constants (the fourth-order single-mode terms are always real
and positive, and so by convention their constants are written
as g2). As discussed above, the symmetry of the driven mode
determines which of the anharmonic coupling constants are
nonzero. For the case in which QIR is a polar mode from
the B1u irreducible representation of the mmm point group,
as in the experiments of Ref. [11], only a mode G of Ag

symmetry allows a3 �= 0, whereas G modes of all symmetries
have a4 �= 0.

We take the B1u mode at f = 16.9 THz, in which the in-
plane oxygen atoms displace relative to the Cu atoms along
the c axis [Fig. 1 (a)] to be the driven IR mode; this is the mode
that was driven experimentally in Ref. [11]. This mode, which
we refer to as B1u(17) in the following, has nonzero a3 cubic
coupling with the 5 Ag modes and a4 quartic coupling with
all 33 modes. We then map the DFT total energies, calculated
by freezing in appropriate combinations of phonon modes of
known amplitudes, on to the potential expression of Eq. (4)
to extract the coupling constants by performing least-mean-
square fits of the energy surfaces with ai and gi as the free
parameters.

In Table III we list the cubic coupling constants between
B1u(17) and all five Ag modes, as well as the quartic couplings
for the six B symmetry modes that have a quartic coupling

magnitude greater than 0.01 eV/Å
3

with the B1u(17) mode.
To allow for a direct comparison between couplings to modes
of different frequencies and between the cubic and quartic
anharmonicities, we make a coordinate transformation Q̃ =
ω Q and list also the corresponding renormalized coupling
constants ã3 = a3

ωGω2
IR

and ã4 = a4

ω2
Gω2

IR
.

TABLE III. Anharmonic coupling constants ai between B1u(17)
and other modes. All 5 Ag modes that show cubic coupling are
listed; of the remaining 28 modes, only those with a quartic coupling

magnitude with B1u(17) greater than 0.01 eV/Å
3

are given.

Cubic

f Symmetry a3 a4 |a3|/(ωRω2
IR)

(Thz) [eV/(
√

u Å)3] [eV/(
√

u Å)4]

3.7 Ag 0.04 0.00 0.12
4.5 Ag 0.02 0.01 0.05
12.5 Ag − 0.21 0.04 0.22
14.4 Ag 0.70 0.31 0.61

Quartic

f Symmetry a4 |a4|/(ω2
Rω2

IR)

(Thz) [eV/Å
3
]

2.1 B2g − 0.01 0.17
4.4 B3u − 0.01 0.07
7.3 B2g − 0.06 0.15
8.7 B3u − 0.07 0.14
9.4 B3g − 0.05 0.08
10.7 B2u − 0.07 0.10

We see that the Ag(14) mode exhibits the largest nominal
and renormalized cubic coupling constants and in addition the
strongest quartic coupling to B1u(17). One can understand this
qualitatively based on two factors: First, its pattern of atomic
displacements, shown in Fig. 1(b), is similar to that of the
B1u(17) mode, with relative Cu-O displacements along the c

axis, and second, its frequency is the closest of all the Ag

modes to that of the B1u(17) mode.
To illustrate the changes in the potential landscape caused

by the cubic and quartic anharmonicities, we show in Fig. 2
the potential V (QIR ,QG) for the B1u(17) IR mode coupled to
the Ag(14) mode [Fig. 2(a)] and the B2g(2) mode [Fig. 2(b)].
In Fig. 2(a) we set the quartic coupling a4 to zero to isolate
the effects of the cubic anharmonicity. In both cases the x

axis indicates the amplitude of the G mode, and the different
curves correspond to different amplitudes of the IR mode.
The expected shift of the minimum of the energy well to a
nonzero value of the G mode amplitude is seen clearly in
the cubic coupling case [Fig. 2(a)]. The sign of the coupling
constant determines whether the minimum occurs at positive
or negative G mode amplitude. Since the IR mode amplitudes
always appear as squared in the expression for the potential
energy, they do not affect the sign of the minimum position,
but the magnitude of the minimum shift is larger for a larger
IR mode amplitude. In Fig. 2(b) we see that renormalization
of the B2g(2) mode frequency by the quartic coupling causes it
to soften and, eventually, to become imaginary with increasing
IR mode amplitude, indicating a structural instability for large
amplitudes.

III. STRUCTURAL DYNAMICS

We now turn to the main task of the paper, the determination
of the response of the structure following pulsed excitation of
the B1u(17) mode resulting from phonon-phonon coupling.
To model this situation we treat each pair of anharmonically
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FIG. 2. Calculated potential landscapes V (QIR ,QG ) as a function
of the G mode amplitude for different IR mode amplitudes. (a) Cubic
coupling of the polar B1u(17) and A1g(14) modes. Excitation of the IR
mode displaces the potential minimum for the G mode to a nonzero
value. (b) Quartic coupling of the B1u(17) and B2g(2) modes. The
G-mode potential softens for small IR amplitude and evolves into a
symmetric double well with minima at nonzero G mode amplitude
at large IR amplitude.

coupled phonon modes as coupled classical oscillators [10]
and solve their equation of motion numerically to obtain the
time evolution of both modes after the excitation:

Q̈ + ∇ Q[V (QIR ,QG) − F (t)QIR] = 0. (5)

Here the vector Q contains the eigenvectors of both phonon
modes, the dots denote time derivatives, and ∇ Q is the
gradient operator acting on the mode amplitude [∇ Q =
(∂/∂QIR,∂/∂QG)]. To model the excitation of the IR mode in
the manner of the experimental investigations [9,11], we add
a pulselike driving term, F (t) = F0 cos(ωt)e−t2/(2σ 2). Here F0

is the pulse amplitude, ω is the pulse frequency, and σ is the
temporal width of the pulse envelope. For ultrashort pulses
(σ → 0) the driving term can be described by a δ function.
The experimental pulses, however, exhibit a temporal intensity
distribution of 0.3 ps (FWHM), which is of the order of the
period of the excited polar phonon mode. Consequently, we
use a finite σ0 = 0.18 ps obtained by converting the FWHM
value. We set ωIR to the frequency of mode B1u(17) and take the
driving force amplitude F0 = 30 meV/Å, which corresponds
to a peak electric field strength of 3.0 MV/cm, consistent with
the experimental value [9].

For the cubic coupling case we then solve explicitly the
following differential equations:

Q̈IR + ω2
IRQIR = F (t) − 2a3QGQIR − g2

IRQ3
IR , (6)

Q̈G + ω2
GQG = −2a3Q

2
IR − g2

GQ3
G , (7)

neglecting the quartic term since its inclusion does not alter
qualitatively or quantitatively the dynamics. To study the effect
of modes that couple only with quartic anharmonicity we solve

Q̈IR + ω2
IRQIR = F (t) − 2a4Q

2
GQIR − g2

IRQ3
IR , (8)

Q̈G + ω2
GQG = −2a4QGQ2

IR − g2
GQ3

G . (9)

A. Cubic anharmonicities

We begin by solving the cubic coupling equations [Eqs. (6)
and (7)] for the case of the B1u(14) IR pulse coupled to the
Ag(14) G mode. In Fig. 3(a) we show the time evolution of the
amplitudes of the IR and G modes together with the envelope
of the pump pulse F (t) (time t = 0 is set to the maximum of
the pump pulse). We see that on excitation of the B1u mode,
oscillations of the Ag(14) mode are induced through the cubic
anharmonic coupling. As shown in Ref. [11], the form of the
cubic coupling causes the Ag(14) mode to oscillate around a
nonzero displacement; in this case with pulse strength F0 =
30 meV/Å, the average displacement Q = −0.03

√
u Å. This

change in average structure has been referred to as a transient
structural distortion in the literature.

In Fig. 3(b) we show the Fourier transforms of the time-
dependent amplitudes of both modes. We obtain two main
peaks, at frequencies of 16.5 and 0 THz for the B1u(17) and
Ag(14) modes, respectively. We see that the frequency of the
B1u(17) mode is shifted by 0.5 THz from its eigenfrequency
as a result of the anharmonic coupling which renormalizes the
frequency according to Eq. (6):

ω̃IR = ωIR

√
1 + 2a3QG

ωIR
. (10)

Since a3 is negative, the frequency decreases as expected.
The small zero-frequency peak obtained for the Ag(14) mode
indicates the static displacement. We note that the small
oscillating part of Ag(14) also gives rise to an even smaller peak
at 14 THz; however, it is much weaker than the zero-frequency
peak and is not visible on the scale of Fig. 3(b).

Next, we vary the strength F0 of the pump pulse and show
in Fig. 3(c) the resulting maximum amplitudes of the B1u(17)
(blue line) and Ag(14) (orange line) modes together with
the average displacement of the Ag(14) mode [the average
displacement of the B1u(17) mode is always zero]. For pump
strengths up to the range studied previously, the maximum
and average displacements of the Ag mode are equal to each
other, consistent with a static off-centering, and follow the
linear increase of the maximum amplitude of the B1u mode.
At pump strengths larger than 2.0F0, however, we observe
a new behavior, with the maximum amplitude of the Ag(14)
mode increasing nonlinearly while its average amplitude starts
to saturate. Next, we analyze the dynamics of this strong-field
behavior.

The origin of the new behavior of the Ag(14) mode at
high pump strength is the shift in frequency of the B1u(17)
pump mode due to the mutual anharmonic coupling. At
the pump strength corresponding to the divergence between
the maximum and average values of the Ag(14) mode, the
frequency of the B1u(17) mode shifts so that it matches the

134307-4



EFFECTS OF INTENSE OPTICAL PHONON PUMPING ON . . . PHYSICAL REVIEW B 94, 134307 (2016)

(a)

(d)

(b) (c)

(e) (f)

B1 umax(17)

Agmax(14)
Agavg(14)

B1 umax(17)

Agmax(14)
Agavg(14)

F(t) B1 u(17) Ag(14)

0.0 0.5 1.0 1.5 2.0 2.5

- 0.5

0.0

0.5

t [ps]

Q
[
u

Å
]

B1 u(17)

Ag(14)

0 5 10 15 20
0.0

0.5

1.0

f [THz]

FF
T
[a
.u
.]

0.8 1.0 1.2

0.0

0.2

0.4

ω/ω0

Q
[
u

Å
]

0.0 1.0 2.0

0.0

0.5

σ/σ0

Q
[
u

Å
]

0.0 1.0 2.0 3.0

-1.0

0.0

1.0

F/F0

Q
[
u

Å
]

F(t) B1 u(17) Ag(14)

- 0.4 - 0.2 0.0 0.2 0.4 0.6

- 0.3

0.0

0.3

t [ps]

Q
[
u

Å
]

B1 umax(17) Agmax(14)
Agavg(14)

FIG. 3. (a) Time evolution of the B1u(17) (blue dashed line) and Ag(14) (solid orange line) phonon modes after excitation of the B1u(17)
mode by a pulse F (t) (pulse envelope shown by dotted green line). (b) Fourier transform of the time-dependent amplitudes from (a). The straight
lines mark the eigenmode frequencies of the uncoupled Ag(14) and B1u(17) modes. (c) Maximal amplitudes of the B1u(17) and Ag(14) modes
and average amplitude of the Ag(14) mode as a function of pump strength F relative to the reference FR . (d) Time evolution of the B1u(17)
(blue dashed line) and Ag(14) (solid orange line) modes after excitation with a pulse of strength 2.5F0. (e) Maximal and average amplitudes
as a function of pulse width σ relative to the value used in the previous calculation, σ0 = 0.18 ps. (f) Maximal and average amplitudes as a
function of pulse frequency ω relative to the resonance frequency of the B1u(17) mode ω0 = 17 THz.

eigenfrequency of the Ag(14) mode, and the resonant coupling
drives the amplified oscillations of the Ag(14) mode. We
illustrate this behavior in Fig. 3(d), which shows the amplitudes
of the two modes for F = 2.5F0. Coupling between the Ag

and B1u modes causes strong oscillation of the Ag mode
amplitude, which in turn shifts the frequency of the B1u mode
off resonance, so that the Ag amplitude oscillations decrease
and the cycle repeats.

In the remaining two panels of Fig. 3 we show the effect
of changing the pulse width σ [Fig. 3(e)] and the pulse
frequency ω [Fig. 3(f)]. As expected, we find that the effect
of increasing the pulse width is similar to that of increasing
the pulse amplitude since both contribute to an increase in
the pulse intensity. Typical resonance behavior for a driven
oscillator is seen in the dependence of the responses on the
pulse frequency [Fig. 3(f)], with the amplitudes dropping
off rapidly as the pump frequency is moved off resonance
(at ω = ω0) from the B1u(17) mode. We see also that the
maximum induced amplitude of the B1u(17) mode occurs at
a frequency slightly lower than its eigenfrequency because of
its anharmonic coupling to the Ag mode.

We find that the other phonon modes of Ag symmetry that
couple in cubic order to B1u(17) show similar behavior. For the
Ag(4) mode the induced quasistatic off-centering amplitude is
0.01

√
u Å after excitation of B1u by our reference pulse with

strength F0. For the two other Ag modes the static off-centered
amplitudes are half of this size. The dynamics of the mode
oscillation as a function of pulse strength, frequency, and width
is qualitatively similar for all modes. We note finally that in

a real system the excitation of the B1u(17) mode generates a
structure that is a superposition of the displacements caused
by all relevant Ag modes, rather than just the one considered
here.

Finally, we discuss our results with respect to the ex-
perimental findings of Ref. [9]. In Ref. [9], time-resolved
x-ray diffraction on optically pumped YBa2Cu3O6.5+x found
a quasistatic structural change corresponding to a reduction
in the Cu-apical-oxygen distance of 2.2 pm, which was
attributed to cubic anharmonic phonon-phonon coupling. This
is the same distortion pattern that we obtain in this work
for YBa2Cu3O7, suggesting that it should be found across
the entire yttrium barium copper oxide series and is at least
qualitatively independent of the doping concentration. We
note, however, that our calculations do not capture the second
finding of Ref. [9], that of induced changes in the inter- and
intraplane distances, since the smaller unit-cell size that we
use in this work does not allow this degree of freedom.

Induced changes in electronic and magnetic properties

We now discuss the effect of the structural modulations
induced by phonon excitation on the electronic and magnetic
properties. We focus in particular on the changes in the
magnetic exchange interactions and the density of states at the
Fermi level, both of which are believed to be relevant for super-
conductivity in cuprate superconductors [8,22]. We distinguish
between the effect of the change in the time-averaged structure
associated with the shift in the minimum of the potential well
to a nonzero value of the Ag(14) mode previously referred to
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FIG. 4. Calculated densities of states at the Fermi level NEF
as

a function of (a) the Ag(14) mode amplitude and (b) the B1u(17)
mode amplitude. The dashed vertical lines indicate the values of
the averaged Ag(14) mode amplitude [in (a)] and B1u(17) maximum
amplitude [in (b)] at our reference pump strength.

as a transient structural distortion (we call this the quasistatic
contribution) and the ongoing oscillations around this average
structure (which we call the oscillatory contribution) that are
dominated by the B1u(17) mode.

We begin with the density of states at the Fermi energy
NEF

. In the equilibrium structure, NEF = 4.14 states, with the
majority contribution (2.47 states) coming from the copper-
oxygen planes and smaller contributions from the copper ions
in the chains (0.64 state) and the apical oxygen atoms (0.41
state). (Note that the difference between the total and local
values occurs because the local contributions are obtained
from projecting the density of states into atomic spheres, so
interstitial contributions are not captured.) Figure 4(a) shows
the change in NEF

as a function of the amplitude of the
Ag(14) mode, with the vertical line indicating the value of
the quasistatic distortion at our reference pump strength. We
find a reduction in electron count of around −1.4% for the
negative amplitudes that are present in the quasistatic structure;
the density of states in the copper-oxygen planes is largely
unchanged, however. In Fig. 4(b) we show the corresponding
variation in NEF

as a function of the B1u(17) mode amplitude,
with the vertical lines indicating the maximum amplitudes at
our reference pulse strength. Here NEF

increases quadratically
with B1u(17) mode amplitude, reaching ∼2.7% difference at
the maximum amplitude, with the change dominated by the
states in the CuO2 planes. Consequently, although the time-
averaged amplitude of the polar B1u(17) mode is zero, its oscil-
lation causes a change in NEF

comparable in magnitude to that
caused by the quasistatic distortion and likely more relevant
for the description of the physics in the copper-oxygen planes.

Next, we evaluate the magnetic exchange interactions by
mapping our calculated DFT total energy differences onto
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FIG. 5. (a) Schematic of the two copper-oxygen planes of
YBa2Cu3O7 indicating the two magnetic exchanges, Jinter and Jintra,
that we consider in this work. Calculated magnetic exchange
interaction as a function of mode amplitude for (b) Ag(14), (c)
B1u(17), and (d) B2g(2) mode amplitudes. The vertical dashed lines
in (b) and (c) indicate the values of average and maximum mode
amplitude induced by the reference pulse for Ag(14) and B1u(17),
respectively. In (d) the vertical lines show the induced maximum
amplitude of B2g(2) after excitation of the system with a field pulse
four times stronger than the reference pulse. Note the different y-axis
scales.

a Heisenberg model using the approach of Refs. [23,24].
We use a simple Heisenberg model with only two magnetic
exchanges, Jinter and Jintra [Fig. 5(a)], as measures of the
exchange between and within the copper-oxygen planes,
respectively. In the ground-state structure we find that both
exchanges are antiferromagnetic, with Jinter = 11.5 meV and
Jintra = 7.0 meV. [Note that these values for the overdoped
system are smaller than those for underdoped cuprates, which
are typically on the order of 100 meV. Our calculations
for the parent compound YBa2Cu3O6 (not shown) indeed
reproduce these larger values.] In Fig. 5(b) we show Jinter

and Jintra as a function of the Ag(14) mode amplitude, again
with the vertical dashed line indicating the amplitude at the
quasistatic structure induced by our reference pulse. Both Jinter

and Jintra decrease, by around 13% and 5%, respectively. In
Fig. 5(c) we show our calculated values of Jinter and Jintra as
a function of the polar B1u(17) mode amplitude, again with
the vertical lines indicating the maximum amplitudes at our
reference pulse strength. We find a quadratic increase of both
magnetic exchanges with mode amplitude, with Jinter and Jintra

increasing by 17% and 122%, respectively, at the maximum
amplitude of B1u(17). These oscillatory changes exceed those
found for the quasistatic structure.

To summarize this section, we find that excitation of the
B1u(17) phonon mode causes a quasistatic decrease in both
the magnetic exchanges and the density of states at the Fermi
energy, accompanied by strong oscillations of these values.
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FIG. 6. (a) Time evolution of the B1u(17) (blue dashed line) and B2g(2) (orange line) phonon modes after excitation of the B1u(17) mode
by a pulse F (t) (pulse envelope shown by the dotted green line). (b) Fourier transform of the time-dependent amplitudes in (a). The straight
lines mark the mode frequencies of B2g(2) and B1u(17). Note that the spectra of B2g(2) is scaled by a factor of 100. (c) Maximum amplitudes
of the B2g(2) and B1u(17) modes after excitation with different pulse strengths F given relative to the reference value F0 = 3 MV/cm.
(d) Oscillation frequencies f of the B2g(2) and B1u(17) modes (relative to their unperturbed eigenfrequencies f0) as a function of excitation
pulse strength. Time evolution of the B2g(2) mode for a range of B1u(17) mode pulse strengths (e) below and (f) above the critical strength at
which the frequency of the B2g(2) mode becomes zero. Note that the time range is extended with respect to that shown in (a).

B. Quartic anharmonicities

In this section we analyze the coupling between the pumped
B1u(17) mode and the coupled B modes that do not allow cubic
coupling by symmetry in order to isolate the effects of the
quartic anharmonicities. Since quartic coupling renormalizes
the mode frequencies according to Eq. (3) we focus on the
B2g(2) mode, which has the largest renormalization due to its
low frequency. In Figs. 6(a) and 6(b) we show, respectively,
the time dependence of the amplitudes and the corresponding
Fourier transforms for the B2g(2) and B1u(17) modes after
excitation of the polar mode by our reference pulse of strength
F0 = 3 MV/cm. At this pulse strength, we see that the quartic
anharmonic coupling induces no noticeable oscillation of the
B2g(2) mode. The Fourier transform of the oscillation pattern
shows a peak at the original B1u(17) mode eigenfrequency
and a tiny peak at the B2g(2) frequency which is hardly visible
on this scale. Both frequencies are indicated by the vertical
black lines in Fig. 6(b).

Next, we investigate the effect of the pump strength and
show in Fig. 6(c) the evolution of the maximum amplitudes
for both modes as a function of the pump strength F relative
to the reference value F0. (Note that, since the cubic coupling
is zero by symmetry, the average displacement of both modes
is always zero.) As expected, the maximum amplitude of the
B1u(17) mode increases linearly with the pulse strength. The
behavior of the B2g(2) mode, however, is strikingly different.
Its maximum amplitude is at first independent of pump
strength (on this scale it is indistinguishable from zero), until
at F = 3.6F0 = 10.8 MV/cm it shows an abrupt nonlinear

increase, rapidly becoming comparable to the amplitude of
the B1u(17) mode. To understand this behavior, we show in
Fig. 6(d) the frequencies of the B1u(17) and B2g(2) modes as a
function of normalized pulse strength. We see that increasing
the pulse strength does not affect the frequency of B1u(17)
over the range studied. For B2g(2), however, we find that
the frequency decreases with pulse strength, corresponding
to the renormalization due to the quartic coupling [Eq. (3)]
and reaches zero at the pulse strength (∼3.6F0) corresponding
to the sharp increase in the maximum amplitude. At higher
pump strength the B2g(2) mode frequency is again finite and
increases slightly.

To better understand the nature of the oscillations in the
range of the critical pump strength we show in Figs. 6(e) and
6(f) the time-dependent amplitudes of the B2g(2) mode for
pulse strengths slightly below and above the critical value of
F = 3.6F0, respectively. For pulse strengths below the critical
value we see that the oscillations remain sinusoidal but show
a strong increase in wavelength and amplitude as the critical
value is approached. In contrast, for pulse strengths above the
critical value, the response is nonsinusoidal, and the oscillation
amplitudes are substantially higher (note the different y-axis
scale) due to the dynamical instability of the B2g(2) mode.
These large-amplitude oscillations of the B2g(2) mode have
a drastic effect on the YBa2Cu3O7 structure. From Fig. 1(c),
which shows the eigendisplacement of the B2g(2) mode, we
see that the induced structural change is a shear of adjacent
CuO2 bilayers in opposite directions in the a-b plane (the two
CuO2 layers within a bilayer shear in the same direction). The
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oscillations, shown in Fig. 6(f), reach amplitudes of 0.8
√

u Å,
which correspond to movements of the atoms in the BaO
plane of about 5 pm and of about 2 pm relative motion
of the BaO and CuO2 planes. Interestingly, the frequency
renormalization of the B2g(2) mode given by Eq. (3) suggests
imaginary frequencies for amplitudes larger than Qcrit

IR =
0.91

√
u Å of the B1u(17) mode. In our simulations, however,

we find that the instability manifests only at amplitudes of
the B1u(17) mode above QIR = 1.35

√
u Å [Figs. 6(c) and

6(d)]. This corresponds to the pulse strength at which the
amplitude of the B1u(17) mode exceeds the critical amplitude
for around half of the time; a maximum amplitude equal
to the critical value is insufficient. For further increasing
amplitudes of B1u(17), the time that must be spent above the
critical value in order for the instability to manifest increases
as tcrit. = 4 cos−1(Qcrit

IR /QIR)/(2πfIR) and eventually saturates,
reflected within Fig. 6(d) in the range beyond F = 3.6F0. (This
last result is obtained trivially from the time that a sinusoidal
oscillation spends above a specific amplitude.)

Finally, we discuss the oscillations in the electronic prop-
erties caused by the quartic coupling to the B2g(2) mode
for a pulse of 3.8F0 [Fig. 6(f)]. Since the B2g(2) mode
eigenvector consists of a shear of the two copper-oxygen planes
in the bilayer, we expect a strong effect on the interplane
exchange interactions, which we indeed see in Fig. 5(d): At
maximum amplitude Jinter reduces by 164% to −7.3 meV.
Jintra is largely unaffected by excitation of the B2g(2) mode, as
is the density of states at the Fermi energy (not shown). We
note that this shear motion induces an ultrafast oscillating
stress along the b direction. We extract the value of this
stress using the frozen-phonon method and obtain a value of
∼1 GPa for an amplitude of 0.8

√
u Å of the B2g(2) mode. In

addition to the distortion of the B2g(2) mode, fluctuations of
the exchange values caused by the B1u(17) mode also occur
here, at the correspondingly higher frequency. Consequently,
strong pumping will cause a temporal slow sign change
of the interlayer exchange interactions accompanied by fast
oscillations of the intralayer exchanges.

IV. SUMMARY AND DISCUSSION

In summary, we have computed the anharmonic phonon-
phonon couplings up to fourth order in YBa2Cu3O7 and
explored the structural dynamics induced by pulsed pumping
of an IR phonon mode. Consistent with previous work [9],
we found that cubic phonon-phonon coupling of type Q2

IRQG,
with G being a mode of Ag symmetry, dominates at lower ex-
citation strengths. In addition, we found several low-frequency
modes that exhibit a sizable quartic coupling of the form
Q2

IRQ2
G. Our computations of the effect of pulsed excitation of

an IR mode revealed that various kinds of structural dynamics
can be triggered in YBa2Cu3O7, depending on the pulse
strength. For low pulse strengths (F � 3 MV/cm), the cubic

coupling causes a quasistatic modulation of the structure,
whereas the quartic is not significant.

For moderate to large pulse strengths (F � 6 MV/cm), the
quasistatic displacement caused by the cubic coupling exhibits
additional large-amplitude modulations of the Ag mode. In
addition, for even stronger pulse strengths (F � 10.5 MV/cm)
the quartic coupling becomes activated, and the coupled
Bg(2) mode become imaginary, at which point its oscillation
becomes nonsinusoidal with large amplitude. These effects
were not discussed in earlier work, which used lower pulse
strengths, but are accessible, for example, with free-electron
lasers, for which field strengths reach up to 50 MV/cm. Indeed,
our predicted induction of a high-frequency dynamical shear
strain at high field provides a motivation for provision of
THz sources at free-electron lasers to allow experimental
exploration of this regime, where measurement of the induced
changes in the superconducting behavior could be valuable in
understanding the pairing mechanism.

In particular, we saw that while the induced changes in the
quasistatic structure do not have a strong effect on the elec-
tronic properties, the oscillating changes, particularly along
the eigenvector of the B1u mode, strongly modify the magnetic
exchange interactions, which are likely relevant for supercon-
ductivity [8]. While we emphasize that our calculations are for
the overdoped regime, the strong sinusoidal oscillation that
our simulations reveal in the intra- and interplanar magnetic
exchange interactions could be relevant for the observed signa-
tures of coherent transport above the equilibrium critical tem-
perature [5,6]. In addition to the superconducting properties,
it was recently suggested that coupled spin-lattice fluctuations
could be a source of magnetic quadrupolar order related to the
pseudogap phase of cuprate oxides [25]. Whether such an order
is suppressed or enhanced by an additional induced fluctuation
of the magnetic exchange interaction is an intriguing question,
and its experimental resolution could shed additional light on
the relevance of spin-lattice coupling in cuprates.

Finally, we note that the link between the dynamic and
quasistatic structural changes of either cubic or quartic anhar-
monic origin and the magnetic exchanges suggests nonlinear
phononics as a route to novel coupled phonon-magnon
behavior. An example of such a coupling could be the recent
work of Ref. [26], in which intense optical excitation of two
orthogonal phonon modes has been shown to excite a magnon.
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