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Microscopic modeling of the effect of phonons on the optical properties of solid-state emitters
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Avda. Vicuña Mackenna 4860, Santiago, Chile

3Department of Atomic Physics, Budapest University of Technology and Economics, Budafoki út 8., H-1111 Budapest, Hungary
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Understanding the effect of vibrations in optically active nanosystems is crucial for successfully implementing
applications in molecular-based electro-optical devices, quantum information communications, single photon
sources, and fluorescent markers for biological measurements. Here, we present a first-principles microscopic
description of the role of phonons on the isotopic shift presented in the optical emission spectrum associated
to the negatively charged silicon-vacancy color center in diamond. We use the spin-boson model and estimate
the electron-phonon interactions using a symmetrized molecular description of the electronic states and a
force-constant model to describe molecular vibrations. Group theoretical arguments and dynamical symmetry
breaking are presented in order to explain the optical properties of the zero-phonon line and the isotopic shift
of the phonon sideband.
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I. INTRODUCTION

Vibrations play a crucial role in nanosystems by modifying
their optical line shape, preventing them from being described
as simple two-level systems [1]. Several works have addressed
the electron-phonon coupling to model the effect of vibrations
on the optical properties of molecules [2], point defects [3], and
interband optical transitions in solids [4]. This interaction is
characterized, in most cases phenomenologically, by a spectral
density function [5–7] that is used to describe the dissipation
dynamics due to acoustic phonons in a two-level system [5],
the absorption [8] and low temperature effects on the zero-
phonon line transition [6] in quantum dots that are strongly
coupled to localized vibrations. There are few works that
treat the electron-phonon interaction with microscopic models
[9]. The latter approach is particularly accurate for atomistic
systems and highly demanded nowadays as researchers are
able to engineer nanoscale devices where effectively few
atoms are involved [10]. Therefore, a deep understanding of
this interaction is needed for controlling and engineering the
optical properties of such systems.

Here we consider a microscopic model to study the
electron-phonon interaction between the electronic states of
a single negatively charged silicon-vacancy (SiV−) center
in diamond and lattice vibrations. We focus on the effect
of phonons on the optical properties, i.e., the zero-phonon
line (ZPL) transition and the phonon sideband associated to
the emission or photoluminescence spectrum. On Sec. II we
introduce the electronic states of the SiV− center for which
the optical emission will be calculated. Section III describes
the vibrational degrees of freedom of a finite size lattice
and the electron-phonon interaction between vibrations and
the electronic states. Section IV introduces the model used
to calculate the emission spectrum taking into account the
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symmetries of the electronic wave functions and vibrations.
In particular, the spectral density function and its relation
to the emission spectrum is introduced. Section V discusses
the role of symmetry on the defect and finally Sec. VI takes
into account these considerations to write the spectral density
function for the SiV− center.

II. NEGATIVELY CHARGED SILICON-VACANCY
CENTER IN DIAMOND

In this section we present the bare ground and excited states
from which the optical transitions will take place. The SiV−

center is a point defect composed of six carbon atoms and
an interstitial silicon atom. The symmetry group associated to
this defect is the C3v+i group, a subgroup of the host crystal
symmetry group Td [11,12] (an equivalent group is D3 for
which the irreducible representations a1 and a2 are swapped).
In particular, the inversion symmetry with respect to the silicon
atom leads to irreducible representations (IR) of the C3v+i

group to be labeled by parity: A1g,A2g,Eg (g = gerade or even)
and A1u,A2u,Eu (u = ungerade or odd) representations [12].
The electronic structure of this defect can be represented by
one-electron hole system with electronic spin S = 1/2. In the
absence of external perturbations the relevant electronic wave
functions associated to the electron hole representation are

∣∣�(0)
gx,gy

〉 = eC
gx,gy, (1)

∣∣�(0)
ux,uy

〉 = 1√
1 + 2Nβ + β2

(
eC
ux,uy + βpSi

x,y

)
, (2)

where eC
gx,gy (gerade) and eC

ux,uy (ungerade) are sp3 linear com-
binations of single electron orbitals associated to the carbon
atoms [12], pSi

x,y are px,y orbitals associated to the silicon atom
(see Fig. 1), β is a coefficient that indicates the contribution
of the latter orbitals and it is estimated to be ≈0.13 by
ab initio calculations, and N = 〈pSi

x,y |eC
ux,uy〉. Thanks to

inversion symmetry the excited and ground state can also be
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FIG. 1. Schematic representation of the potential energy diagram.
The two parabolas represent the phononic potential of the ground
egx and excited eux states of the SiV− including vibrational levels.
Structure of the SiV− in diamond: six carbon atoms (dark gray) and
the interstitial silicon atom (green) embedded in a diamond lattice
(light gray). The molecular orbital representation of the electronic
states egx and eux are represented by red (blue) for the positive
(negative) sign of the electronic wave function.

labeled by parity. The degenerate ground states |�(0)
gx 〉 and

|�(0)
gy 〉 belong to the twofold IR Eg = {Egx,Egy}, respectively.

Meanwhile, the degenerate excited states |�(0)
ux 〉 and |�(0)

uy 〉
belong to the twofold IR Eu = {Eux,Euy}, respectively. These
ground and excited states are energetically separated by the
zero-phonon line energy EZPL = 1.68 eV [13]. Therefore, the
electronic structure associated to the negatively charged SiV−

is modeled by the following Hamiltonian:

He = 1
2EZPL

(∣∣�(0)
ux

〉〈
�(0)

ux

∣∣ − ∣∣�(0)
gx

〉〈
�(0)

gx

∣∣). (3)

We do not include the effect of spin-orbit interaction; neither do
we include the spin degree of freedom as they are not relevant
for determining the broad features of the optical line shape.

III. ELECTRON-PHONON HAMILTONIAN

In this section we derive a model for the electron-phonon
interaction between a single SiV− center and lattice vibrations
in a finite sized crystalline structure. First, we consider a
diamond lattice composed of NLat atoms including the SiV−

center at the origin. Atoms are arranged so that the whole
structure maintains the C3v+i symmetry of the point defect.
We introduce the normal coordinates that describe lattice
vibrations [1]

QLat
l =

NLat∑
i=1

∑
α={x,y,z}

√
MiuiαhLat

iα,l , (4)

where Mi is the mass of the ith ion and uiα is the displacement
of the ith ion in the α direction (x, y, or z). In this notation, ui is
the ion displacement vector from its equilibrium position R(0)

i ,
and hLat

iα,l are eigenvectors that satisfy the following eigenvalue

equation [1]:

NLat∑
j=

∑
β={x,y,z}

Diα,jβhLat
jβ,l = ω2

l h
Lat
iα,l , l = 1,...,3NLat, (5)

where Diα,jβ is the dynamical matrix associated with the ion-
ion potential interaction and ωl are the frequency associated
with the lth lattice mode. The dynamical matrix is given by [1]

Diα,jβ = 1√
MiMj

(
∂2VIon-Ion

∂uiα∂ujβ

)∣∣∣∣
R0

, (6)

where VIon-Ion is the ion-ion Coulomb interaction (see
Appendix B for further details). The electron-phonon inter-
action between the electronic states associated to this point
defect and lattice vibrations can be written as

Ve-ph(r,{Q}) =
3NLat−6∑

l=1

⎡
⎣3ND−6∑

l′=1

αl′l

(
∂Ve-Ion

∂QSiV
l′

)⎤
⎦QLat

l , (7)

where ND is the number of defect atoms (ND = 7 for the SiV−

center), Ve-Ion is the electron-ion Coulomb interaction between
one electron located at r and the NLat surrounding atoms, and
QSiV

l′ are the local normal coordinates of the SiV− center. The
factor αl′l is given by

αl′l = 〈
HSiV

l′ ,hLat
l

〉 =
ND∑
i=1

∑
α={x,y,z}

H SiV
iα,l′ hLat

iα,l , (8)

where HSiV
l′ center and hLat

l are the eigenvectors associated
to the vibrational modes of the SiV− and the finite lattice
structure. We assume that the electron wave functions are
nonzero only on the ND defect atoms; therefore, it is sufficient
to consider the inner sum on the defect atoms only. In
Appendix A we show a full derivation of the electron-phonon
interaction. Next, we promote the normal coordinates and the
corresponding momentum conjugate to operators as follows:

QLat
l =

√
�

2ωl

(b̂†l + b̂l), P Lat
l = i

√
�ωl

2
(b̂†l − b̂l), (9)

where the set of 3NLat − 6 independent boson creation b̂
†
l and

annihilation b̂l operators obey the commutation relation

[b̂l ,b̂
†
l′ ] = δll′ . (10)

Note that we only quantize vibrational modes, as translational
and rotational modes leave invariant the electron-phonon
interaction. Finally, by expanding the electron-phonon interac-
tion in the electronic basis |i〉 = {|�(0)

gx 〉,|�(0)
ux 〉} the following

electron-phonon Hamiltonian is obtained:

He-ph =
∑
i,l

λi,l|i〉〈i|(b̂†l + b̂l), (11)

where the electron-phonon coupling constants are given by

λi,l =
√

�

2ωl

3ND−6∑
l′=1

〈
HSiV

l′ ,hLat
l

〉
γi,l′ , (12)

γi,l′ = 〈i|
(

∂Ve-Ion

∂QSiV
l′

)∣∣∣∣
R0

|i〉. (13)
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To evaluate γi,l′ we used symmetrized Gaussian orbitals (see
Appendix C for details). On Eq. (11) we have only kept those
terms that shift the energy of the electronic states. Other terms
such as ∑

i �=j,l

λij,l|i〉〈j |(b̂†l + b̂l) (14)

are not considered. The latter terms make Hamiltonian (11)
analytically unsolvable for a direct diagonalization calculation
[6]. Nevertheless, these terms will be considered by means of
dynamical symmetry breaking.

IV. MODEL FOR THE EMISSION SPECTRUM

The fluorescence spectrum of the emitted radiation in
a thermal equilibrium state is determined by the spectral
intensity radiated per unit solid angle by an oscillating dipole
and it is given by [14]

dI

d

= ω4

0

8π2c3
|(n × d) × n|2 E(ω), (15)

E(ω) =
∫ ∞

−∞
〈σ−(t)σ+(0)〉eq e−iωt dt, (16)

where d is the dipole vector and n = r/|r| is the unitary vector
pointing in the direction of r. Therefore, we calculate the
emission spectrum associated to the electronic transition from
the excited |e〉 to ground state |g〉 as the Fourier transform of the
current-current correlation function at thermal equilibrium by
applying the Kubo formula [7,14] Eq. (16), where σ+ = |e〉〈g|,
σ− = |g〉〈e|,σ±(t) = U †(t)σ±(0)U (t), and U (t) = e−iHSBt/�.
The Hamiltonian HSB, known as the spin-boson Hamiltonian
[7], is given by

HSB = He + He-ph +
∑

l

�ωlb̂
†
l b̂l , (17)

where the first, second, and third term are the Hamiltonians of
the electronic states of the point defect [Eq. (3)], the electron-
phonon interaction to first order in the ion displacements
[Eq. (11)], and the phonon bath, respectively. The average
〈· · · 〉eq is taken over phonons, which are assumed to be
in thermal equilibrium. The electron-phonon interaction in
Eq. (17) describes acoustic, optical, and quasilocal phonon
modes coupled to the electronic states of the point defect.
Physically, during the emission or absorption processes, the
electronic charge changes its spatial distribution leading to a
change in the potential seen by the ions close to the charge
localization. Ions will seek for new equilibrium positions,
resulting in a relaxation process inducing lattice vibrations. In
order to determine how the phonon relaxation processes affect
the optical properties we introduce the polaron transformation
[7,15] given by

H ′ = eSHe−S, (18)

where

S =
∑
i,l

λi,l

�ωl

|i〉〈i|(b̂†l − b̂l). (19)

In the density operator formalism, the state of thermal
equilibrium that maximizes the von Neumann entropy

S(ρ̂) = −Tr(ρ̂ ln ρ̂) is given by ρ̂eq = e−βHSB/Z, where Z =
Tr(e−βHSB ) is the partition function, β = 1/kBT , T is the
temperature, and kB is the Boltzmann constant. Therefore,
the expectation value can be calculated as

〈σ−(t)σ+(0)〉eq = 1

Z
Tr(σ ′

−(t)σ ′
+(0)e−βH ′

SB ). (20)

Under these approximations the emission spectrum can be
analytically calculated as

E(ω) =
∫ ∞

−∞
e−i(ω−ωeg+�e−�g)t+�(t) dt, (21)

where ωeg = ωe − ωg is the bare electronic frequency tran-
sition, �i = ∑

l λ
2
i,l/(�2ωl) is the polaron shift, and �(t)

contains the effect of phonons on the optical line shape and is
given by

�(t) =
∫ ∞

0

J0(ω)

(�ω)2

[
coth

(
β�ω

2

)
(cos ωt − 1) − i sin ωt

]
dω,

(22)

and

J0(ω) =
∑

l

(λe,l − λg,l)
2δ(ω − ωl) (23)

is the spectral density function where λi,l is the expectation
value of the electron-phonon coupling between phonon modes
l and the electronic wave function |i〉. If the electronic states
interact with the same strength to phonons, both coupling
constants for the ground and excited states are similar and
the spectral density function is small leading to a transition
involving few phonons and resulting in a fluorescent shape
that closely resembles that of a phonon-free system. On the
contrary, if these two couplings are substantially different,
the change on electronic distribution, and, therefore, on the
potential seen by the ions is large and the emission spectrum
is greatly modified (Fig. 1).

V. ROLE OF INVERSION SYMMETRY ON THE EMISSION
SPECTRUM

The electron-phonon coupling constants depend crucially
on the atomic configuration, the symmetry of the point defect,
and the symmetry of the host material. As an example,
the fluorescent of the nitrogen-vacancy center (NV center)
and SiV− center in diamond are very different from each
other although they differ in one atom in their molecular
composition. The NV center has a broad emission ranging
from 637 nm zero-phonon line (ZPL) to 750 nm; meanwhile
the emission of the SiV− has a width of few nanometers at
the same temperature [16]. The symmetry of the point defect
is determined by the atomic configuration [17]. In the case
of the NV center, the nitrogen atom is substitutional and
its atomic configuration does not remain the same under
inversion, i.e., parity is not a good description for wave
functions and vibrations [18]. On the contrary, in the SiV−,
the silicon atom is interstitial between two vacancies and
its configuration remains the same under inversion [11], i.e.,
electronic wave functions and vibrations can be described by
parity. As the coupling constants λi,l are the integration of
three functions, its expectation value will be zero if the total

134305-3



ARIEL NORAMBUENA et al. PHYSICAL REVIEW B 94, 134305 (2016)
fr

eq
ue

nc
ie

s 
(T

H
z)

frequencies (m
eV)

K X L X W L

FIG. 2. Numerical phonon dispersion curves for diamond. Red
lines and black circles correspond to the numerical calculations
using the force-constant model to second order nearest-neighbor
interactions and experimental neutron-scattering data extracted from
[21]. The phonon frequencies are plotted as a function of the reduced
phonon wave vector between some symmetry points in the first
Brillouin zone.

product is odd. The lack of inversion symmetry in the NV
center allows in principle the contribution from all vibrational
modes, whereas the coupling constants λe,l and λg,l for the
SiV− can be very similar due to inversion symmetry. Indeed, in
the SiV− the ground state is a gerade (even) linear combination
of dangling bond atomic orbitals; meanwhile the excited state
is an ungerade (odd) function of these orbitals. These wave
functions might differ only by a phase leading to a very
similar electronic distribution, a small change upon electronic
transitions in the trapping potential seen by the ions, and
therefore a very small phonon contribution to the spectral
density function J0(ω).

VI. SPECTRAL DENSITY FUNCTION AND THE
EMISSION SPECTRUM

A quantitative analysis of the phonon modes can be per-
formed by considering a macromolecule composed of N ∼ 103

atoms where the defect is placed at its center as described in
Sec. III. The vibrational modes are calculated using a force-
constant model to second order nearest-neighbor interaction
[19,20] in order to better resemble the real phonon dispersion
relation of diamond [21] (see Fig. 2). See Appendix B for
further details. Using only a first order nearest-neighbor model
does not give an accurate description of the high density
areas for the acoustic bands from which arouses the main
contribution to the spectral density function (see Supplemental
Material Ref. [22]).

Vibrational modes of even parity (a1g, a2g , and eg phonons)
contribute to the spectral density function J0(ω) associated to
the transition |�(0)

ux 〉 −→ |�(0)
gx 〉 [see Fig. 3(a)] with the breath-

ing mode of symmetry a1g being the strongest contribution.
This peak also contains contributions from eg phonon modes
which contribute to the width of the peak. So far the motion
of the silicon atom does not play a role if we consider phonon
modes with even symmetry. However, recently an isotopic
shift of the phonon sideband was observed for different silicon
isotopes [23]: as the mass of the silicon atom increases, the
distance between the ZPL and the phonon sideband decreases

frequencies (meV)

frequencies (THz)

frequencies (THz)

frequencies (meV)

FIG. 3. Numerical spectral functions J0(ω) and Jeg(ω) for the
SiV− in diamond. (a) Spectral function J0(ω), where the blue
bar graph and the green line are the numerical estimation and
the fit spectral function obtained from simulations. The strongest
contribution is given by an a1g phonon mode (breathing mode) at
around ω0 = 37 meV. (b) Spectral function Jeg(ω), where the blue
bar graph and the green line are the numerical estimation and the
fit spectral function, respectively. The strongest contribution is given
by an a1u quasilocal phonon mode at around ω1 = 63.19 meV. A
second contribution of the Jeg(ω) spectral function is given at around
ω2 = 45.5 meV.

suggesting that a local vibrational mode primarily composed
of the silicon atom is involved. Such mode is necessarily
of character u (odd), and for symmetry reasons it should
not contribute to the coupling constants λe,l and λg,l if the
electronic states given in Eqs. (1) and (2) are used. This
indicates that inversion symmetry is broken and it is no
longer a good description of the wave functions. Inversion
symmetry can be broken by vibrations of character u, which
can dynamically mix both ground and excited states. External
electric fields can also break inversion symmetry. Global strain
does not mix ground and excited states as it only mixes
the states among each manifold [12]. In addition, ab initio
calculations support that inversion symmetry is not broken if
vibrations are not included. In this scenario, the new electronic
wave functions can be described by

|�g〉 =
√

1 − ε2
∣∣�(0)

g

〉 − εe+iθ
∣∣�(0)

e

〉
, (24)

|�e〉 =
√

1 − ε2
∣∣�(0)

e

〉 + εe−iθ
∣∣�(0)

g

〉
, (25)

where ε is a mixing parameter, θ is an arbitrary phase,
and |�(0)

g 〉,|�(0)
e 〉 are the electronic wave functions given in

Eqs. (1) and (2). A similar argument can be given by means of
the Herzberg-Teller effect which can also show a dynamical
symmetry breaking [24–26]. The spectral density function
J (ω) = ∑

l (λ�e,l − λ�g,l)
2δ(ω − ωl) can be explicitly cal-
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culated in order to incorporate the effect of the dynamical
symmetry breaking given by the mixing of the ground and state
states of the SiV− center. Using group theoretical arguments,
averaging over the phase θ , and evaluating in the small mixing
limit (|ε| 
 1) we find that (see Appendix D)

J (ω) = J0(ω) + 8ε2Jeg(ω), (26)

where J0(ω) is given by Eq. (23) and

Jeg =
∑

l

(λeg,l)
2δ(ω − ωl), λeg,l = 〈

�(0)
g

∣∣H(l)
e-ph

∣∣�(0)
e

〉
(27)

is the spectral density function that incorporates the contribu-
tion of phonon modes with odd symmetry. See Appendix D
for a derivation of the spectral density function Jeg(ω).
Figure 3(b) shows Jeg(ω) where a strong peak associated
to an a1u quasilocal phonon mode (a2u in D3 symmetry)
is observed with a frequency of ω28 = 63.19 meV, ω29 =
62.66 meV, and ω30 = 62.16 meV for isotopes 28Si , 29Si,
and 30Si, respectively. The ratio between these energies is
approximately ω28/ω29 ≈ 1.01 and ω28/ω30 ≈ 1.02 and has a
good agreement with experimental values (ω28/ω29 = 1.016
and ω28/ω30 = 1.036 [23]). However, the exact value for the
energy of this a1u quasilocal phonon mode can be better
estimated with more precise methods. The prominent sharp
feature of Jeg(ω) has also contributions from eu and a2u modes
where eu modes contribute approximately twice as much as
the a2u modes. The frequency of the quasilocal phonon mode
a1u has a strong dependence on the silicon mass. In this mode,
the silicon atom moves along the symmetry axis. In addition,
we observe that Jeg(ω) is considerably larger that J0(ω) and
strongly depends on the silicon contribution to the electronic
wave function [see Eq. (2)]. Only a small mixing parameter is
sufficient to make Jeg(ω) the largest contribution to the spectral
density function given in Eq. (26) (see Appendix D).

This microscopic procedure allows one to numerically
calculate the contribution of acoustic, optical, and quasilocal
phonon modes to the spectral density function. However, a
large number of atoms is required to have a better estimate of
the mode density and of the emission spectrum. Alternatively,
known models of the spectral density function can be
fitted to simplify the effect of phonons. Bulk phonons
have been modeled with a spectral density function of
the form [5] JBulk(ω) = 2αω1−s

c ωse−ω/ωc , where α is the
dissipation strength, ωc is a cutoff frequency, and s is
a dimensionless parameter characterizing the regimes:
sub-ohmic (s < 1), ohmic (s = 1), and super-ohmic (s > 1).
At low frequencies the contribution from acoustic phonon
modes to the SiV− can be modeled as J (ω) ∝ ω3 which
implies a super-ohmic regime (s = 3) [9]. For quasilocal

phonons JLoc1(ω) = J0
π

1
2 �

(ω−ωb)2+( 1
2 �)

2 [27], where J0 is the

coupling strength, � is a characteristic width, and ωb is the
frequency of the phonon. In the numerical estimation at
least two localized contributions JLoc1(ω) and JLoc2(ω) are
recognized at 63.19 meV and around 45.5 meV, respectively.
We fit Jeg(ω) to a spectral density function of the form
Jeg(ω) = JBulk(ω) + JLoc1(ω) + JLoc2(ω) [28]. We found,
however, that JLoc2(ω) is best fit to a Gaussian function as it
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te

ns
ity

 (a
.u

.)

phonon energy (meV)

T = 294 K

T = 4 K

FIG. 4. Numerical emission spectra of the SiV− in diamond.
The blue and red curves represent the numerical emission spectrum
obtained for T = 4 K and T = 296 K, respectively. The ZPL at
736 nm and the prominent sharp feature of the phonon sideband at
766 nm are reproduced. The peak at 766 nm is associated with the
a1u quasilocal phonon mode.

is probably composed of multiple quasilocal phonon modes.
The emission spectrum associated with Jeg(ω) is shown on
Fig. 4 and has good agreement with the observed isotopic
shift [23]. The largest contribution to the phonon sideband at
766 nm is due to the main peak in Jeg(ω) at 63.19 meV and it is
associated to an a1u quasilocal mode as previously discussed
[see Fig. 3(b)]. Changing the isotopic mass indeed shifts the
distance between the ZPL and this feature on the phonon
sideband confirming previous observations [23]. A second
contribution to the sideband is observed at 755 nm and is
associated with a peak in Jeg(ω) at 45.5 meV and does not have
a dependence on the silicon mass. Other peaks in the observed
experimental phonon sideband [29] can be associated to other
features in the spectral density function J0(ω) and Jeg(ω).
A peak at 796 nm (with no dependence on the silicon mass)
[23] might correspond to the highest phonon frequency of
the acoustic band of highest sound speed, close to the L

symmetry point of the measured dispersion relation [20,30].
Our second nearest-neighbor model over estimate mode

frequencies at higher frequencies and locates this points at
136.5 meV, frequency at which there seems to be a contribution
on the spectral function Jeg(ω) [see Fig. 3(b)]. A similar
argument applies for a contribution at 87 meV in the observed
phonon sideband corresponding to a 103.4 meV feature in
Jeg(ω). The model also allows one to calculate temperature
effects. As an example, we have plotted the emission spectrum
at 4 K and 297 K (see Fig. 4). Finally, we remark that the
isotopic shift is not possible to explain with phonons that
transform evenly under inversion. Therefore, a dynamical
symmetry breaking is needed, which can be caused by
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noninversion preserving perturbations such as external electric
fields or odd vibrational modes.

Further improvements of the current numerical estimations
can be performed by increasing the number of atoms around
the defect for which the defect electronic wave functions are
nonzero.

VII. CONCLUSIONS

In summary we have presented a microscopic model for
estimating the emission spectrum of the SiV− using the
Kubo formula and the spin-boson model. In addition we have
considered effects to second order on the spectral density
function via dynamical symmetry breaking. This spectral
density function is estimated using a force-constant model for
describing the vibrational modes and symmetrized electronic
wave functions constructed using group theoretical arguments.
This approach allows us to gain detailed insight on the
microscopic origin and the role of symmetries on the emission
spectra and the spectral density function, an approach which
is crucially different from, but validates, phenomenological
models presented in previous works [5,6,8]. These results
might be useful for understanding and engineering the optical
properties of color centers in solids by extending the analysis
to other deep and shallow centers coupled to phonons and
subject to instabilities such as dynamic Jahn-Teller effects and
external perturbations such as electric fields or strain.
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APPENDIX A: ELECTRON-PHONON INTERACTION

In this section we present a more detailed derivation of
the electron-phonon interaction used to model the optical
properties of the SiV− center. Using the normal coordinates
QLat

l defined in Eq. (4) the electron-phonon interaction can be
expanded as follows:

Ve-ph(r,{Q}) = V0 +
3NLat−6∑

l=1

(
∂Ve-Ion

∂QLat
l

)
QLat

l + · · · , (A1)

where only the 3NLat − 6 vibrational modes are considered, as
translational and rotational modes leave invariant the electron-
phonon interaction [1]. As we will focus on deep centers, i.e.,
center whose electronic wave functions decay quickly with
distance [31], it will be convenient to define local vibrational
modes involving only those atoms on which the electronic
wave functions are considered to be nonzero. These modes
can be obtained from group theoretical considerations [1,17] or
by numerically solving a small molecular system considering
only the atoms related with the defect structure using a force-

constant model [32] or ab initio calculations. These defect
normal coordinates are defined as

QSiV
l′ =

ND∑
i=1

∑
α={x,y,z}

√
MiuiαhSiV

iα,l′ , (A2)

where ND is the number of atoms of the defect (ND < NLat),
uiα is the displacement of the ith ion in the α direction
from its equilibrium position, and hSiV

iα,l′ are the eigenvectors l′
associated to the defect molecular vibrations of the ith ion in
the α direction. The local normal coordinates of the defect can
be written as a linear combination of the lattice normal modes
given in Eq. (4)

QSiV
l′ =

3NLat−6∑
l=1

αl′lQ
Lat
l , (A3)

where the parameter αl′l is given by Eq. (8). HSiV
l′ and hLat

l are
vectors with the same dimensionality and whose components
are given by

HSiV
l′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

hSiV
1x,l′

hSiV
1y,l′

hSiV
1z,l′
...

hSiV
NDz,l′

0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, hLat
l =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

hLat
1x,l

hLat
1y,l

hLat
1z,l

...
hLat

NDz,l

hLat
ND+1x,l

...

hLat
NLatz,l

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A4)

where H SiV
iα,l′ are obtained from group theoretical arguments

and H Lat
iα,l′ are numerically obtained by solving the eigenvalue

equation (5). Therefore, using the chain rule and neglecting
the constant term V0 on Eq. (A1) we recover electron-phonon
interaction given in Eq. (7).

APPENDIX B: FORCE CONSTANT MODEL TO SECOND
ORDER NEAREST NEIGHBOR

In this section we present the force constant model used
to numerically solve the vibrational modes associated to the
eigenvalue equation given in (5). Using the general valence
force field for diamond [19], we can extract the vibrational
dynamics of the system using the following expression for the
ion-ion interaction including up to second nearest-neighbor
interactions

VIon-Ion =
∑
ks∈K

Vks
, K = {kr ,krr ,krθ ,kθ ,kθθ }, (B1)

where the contributions to the ion-ion potential interaction are
given by

Vkr
= 1

2
kr

∑
〈ij〉

(δuij )2, (B2)

Vkrr
= krr

∑
〈ij〉,〈kj〉

(δuij )(δukj ), (B3)
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Vkrθ
= bkrθ

∑
〈ijk〉

(δuij )(δθijk), (B4)

Vkθ
= 1

2
b2kθ

∑
〈ijk〉

(δθijk)2, (B5)

Vkθθ
= 1

2
b2kθθ

∑
〈ijk〉,〈ljm〉

(δθijk)(δθljm), (B6)

where Vkr
is the potential energy associated with the bond

stretching of the first nearest neighbor 〈ij 〉, Vkrr
is the potential

energy associated with bond stretching of the bond pair 〈ij 〉
and 〈kj 〉 that share the atom j, Vkrθ

is the potential energy
associated with the bond stretching of the first nearest neighbor
〈ij 〉 that shares a bond with the bond-bending angle θijk, Vkθ

is the potential energy associated with the bond-bending angle
θijk such that i and k are nearest neighbor of j , and Vkθθ

is
the potential energy associated with the bond bending of the
angles θijk and θljm when no bond is shared. These interactions
depend on the geometrical distortions of the lattice

δuij = |ui − uj |, ûij = (ui − uj )/δuij , (B7)

δθijk = cos−1(ûij · ûkj ), (B8)

and the elastic constants kr ,krr ,krθ ,kθ ,kθθ . These elastic
constants are obtained from literature in the case of bulk
diamond [19,20] and from ab initio simulations for the SiV−

center. The parameter b = 1.95 Å for the point defect and
b = 1.54 Å for the bulk diamond. We use the following elastic
constants for the SiV− center:

kSiV
r = 45 N/m = 2.8087 eV/Å

2
, (B9)

kSiV
rr = 17.7 N/m = 1.1047 eV/Å

2
, (B10)

kSiV
rθ = 37.5 N/m = 2.3406 eV/Å

2
, (B11)

kSiV
θθ = 3.5 N/m = 0.2091 eV/Å

2
, (B12)

kSiV
θ = 47.23 N/m = 2.9479 eV/Å

2
. (B13)

APPENDIX C: ELECTRON-PHONON COUPLING
CONSTANTS AND GAUSSIAN ORBITALS

The electron-phonon coupling constants given in Eqs. (12)
and (13) can be numerically solved by estimating the following
integral:

〈i|
(
∂Ve-Ion

∂uiα

)∣∣∣∣
R0

|j 〉 =
∫
R3

ϕ∗
i (r)

(
∂Ve-Ion

∂uiα

)∣∣∣∣
R0

ϕj (r) dr, (C1)

where the electron-ion potential is modeled by a screening
Coulomb potential given by

Ve-Ion = −
ND∑
i=1

keZie
2

εD|r − Ri | , Ri = R(0)
i + ui , (C2)

where ke = 1/(4πε0) is the Coulomb constant, εD = 10 is
the diamond dielectric constant, and the effective charge
Zi = 3.25,4.15 for carbon and silicon atoms, respectively.
The electronic wave functions ϕi(r) are approximated by

symmetrized Gaussian orbitals in order to numerically solve
the integral (C1). In this approximation, the single atomic
orbitals for the carbon and silicon atoms are written as linear
combinations of the following Gaussian orbitals:

sa =
(

2a

π

)3/4

exp(−a|r − ra|2), (C3)

pak =
√

4π

(
2a

π

)3/4

ek · (r − ra) exp(−a|r − ra|2), (C4)

where ek = {x̂,ŷ,ẑ} for k = {x,y,z}. The integral (C1) can be
numerically solved using spherical coordinates (r,θ,φ) and the
seed integral is given by∫
R3

1

r
exp(−a|r − A|2) exp(−b|r − B|2) dr = S

erf(
√

c u)

u
,

(C5)

where

S =
(

2
√

ab

a + b

)3/2

exp

(
− ab

a + b
|A − B|2

)
, (C6)

c = a + b, u = a|A| + b|B|
a + b

, (C7)

erf(x) = 2√
π

∫ x

0
e−t2

dt. (C8)

Note that integrals involving p orbitals can be obtained by
taking the derivative of Eq. (C5) with respect to some of the
components of the ion positions A or B. The exponential
decay constants of the Gaussian orbitals (C3) and (C4) are
determined by minimizing the error on the radial probability
distribution with respect to the radial probability distribution of

the Slater orbitals. We obtain a = 1.7105 Å
−2

for the carbon
atoms and a = 2.9879 Å

−2
for the silicon atom.

APPENDIX D: DYNAMICAL SYMMETRY BREAKING
AND SPECTRAL DENSITY FUNCTION

In this section we derive the modified spectral density
function due to dynamical symmetry breaking. Let V (t) =
Vue

−iωpht be a periodic time-dependent operator which per-
turbs the localized electronic degree of freedom of SiV− center.
Using time-dependent perturbation theory we can define the
electronic wave functions given in Eqs. (24) and (25). As a
consequence of the mixing effect induced by this external
perturbation the effective electron-phonon coupling must be
calculated as follows:

λ�e,l − λ�g,l = f (ε)[λe,l − λg,l] + g(ε)λe,g,l, (D1)

where

f (ε) = 1 − 2ε2, g(ε) = 4ε
√

1 − ε2 cos θ. (D2)

The coupling constants λg,l, λe,l , and λeg,l are the electron-
phonon coupling constants associated to the unperturbed
electronic states |�(0)

g 〉 and |�(0)
e 〉, respectively. Here θ is an

arbitrary phase and ε is a mixing parameter approximately
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given by

ε ≈ 〈e|Vu|g〉
�(ωeg − ωph)

, (D3)

where Vu is the intensity of the periodic perturbation, �ωeg

is the electronic gap between the excited and ground states,
and �ωph is the energy of the phonon mode. For the SiV−

center �ωeg = 1.68 eV and Vu 
 �ωeg; therefore we expect
that |ε| 
 1. By symmetry considerations only phonons with
character odd or even contribute to the effective coupling

constants λe,l − λg,l or λe,g,l , respectively. As a consequence of
both symmetry constraints we deduce that (λe,l − λg,l)λe,g,l =
0 for each lattice mode l. Finally, taking the limit |ε| 
 1 and
averaging over the phase the spectral density function is

J (ω) =
∑

l

(
λφe,l − λφg,l

)2
δ(ω − ωl) = J0(ω) + 8ε2Jeg(ω)

(D4)

and we recover the spectral density function given in Eq. (26).
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