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Dynamic effects of quenched disorder on domain wall motion in magnetic nanowires
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The domain wall dynamics in magnetic nanowires is numerically studied with the Landau-Lifshitz-Gilbert
equation. Below the Walker breakdown threshold, the domain wall presents a stable propagation, while above
the threshold where the retrograde mode dominates, the oscillation period is controlled by the external field and
anisotropy. More importantly, the dynamic effects of quenched disorder on the domain wall motion are explored.
A continuous pinning-depinning phase transition is detected. The dynamic scaling form is analyzed with the data
collapse of the domain wall velocity, and both the static and dynamic critical exponents are extracted.
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I. INTRODUCTION

In the study of low-dimensional magnetic materials during
the past decade, much attention has been attracted in the
domain wall dynamics due to the potential applications in
data storage and logic devices [1–3]. The precisely controlled
domain wall displacement is a prerequisite for the opera-
tions, thus a thorough theoretical investigation is required
of the domain wall dynamics, especially that governed by the
Landau-Lifshitz-Gilbert (LLG) equation. Recent efforts have
led to some theoretical solutions in limiting cases, e.g., with the
assumption of small driving fields and the restriction of spin
motion to be almost in one plane [4–6]. There are experimental
evidences for the existence of the Walker threshold [7,8],
but the validity of the Walker theory varies under different
conditions [9–13]. Succedent research has revealed that by
the influence of spin waves on the domain wall propagation,
the simulation results deviate from the Walker theory if
the external field is in a certain regime below the Walker
breakdown threshold [14].

The retrograde breathing motion of a domain wall beyond
the Walker breakdown threshold is also analyzed, whereas
the theoretical solutions of the domain wall displacement
and oscillation period only exist without the Gilbert damping
[15], or with an approximation of the uniaxial magnetic
anisotropy [16]. The lack of numerical evidence indicates
that the understanding of the retrograde breathing behavior
is incomplete [17].

More importantly, various pinning effects are also signifi-
cant in manipulating the domain wall movement in a magnetic
nanowire. It is the numerical and experimental facts that
thickness inhomogeneities and geometrical constrictions can
pin a domain wall, and the depinning field depends on the
geometry of the material structures [18–21]. For instance,
the domain wall pinning in a notched magnetic wire can
be understood in a unified approximate theory [22], but the
criterion for the existence of a domain wall solution is not yet
known.

In particular, the domain wall motion described by the
LLG equation with quenched disorder remains a conundrum.
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In the past years, supported by the results from experiments
[23,24], the usual numerical analysis on the phase transitions
of the domain wall motion in ferromagnetic materials is
typically based on the Monte Carlo simulation, Edwards-
Wilkinson equation with quenched disorder (QEW), and
Hamiltonian equation of the φ4 theory [25–33]. The pinning
and depinning phases of the domain wall motion governed by
the LLG equation have been recently observed [34–36], and the
transition field in Tb/Co multilayer wires is linearly dependent
on the injecting current in experiments [37]. However, a deep
analysis on the possible phase transition is still lacking. In this
paper, we detect a continuous transition between the pinning
and depinning phases, especially with focus on analyzing the
dynamic scaling behavior and measuring the dynamic and
static critical exponents.

This paper is organized as follows. We give a description
of the magnetic model governed by the LLG equation in
Sec. II and present the simulation results of the domain wall
motion in a magnetic nanowire in Sec. III. In Sec. IV we study
the dynamic effects of quenched disorder in the domain wall
motion, with focus on the pinning-depinning phase transition
and the dynamic scaling behavior. The summary is included
in Sec. V.

II. THE MODEL

We consider a classical Heisenberg model with an
anisotropy on an one-dimensional (1D) lattice chain with the
Hamiltonian

H = −J
∑
〈ij〉

Si · Sj + D⊥
∑

i

S2
i,z

−D‖
∑

i

S2
i,x − Ms

∑
i

(H + hi) · Si , (1)

where Si is a three-dimensional magnetic moment of unit
length, and 〈ij 〉 denotes the sum over the nearest neighbors.
The hard z-axis anisotropy regulated by a positive D⊥ favors an
easy xy plane, while a positive D‖ describes the easy x axis.
Ms is the saturation magnetization, H is a constant external
magnetic field, and hi stands for the random field on each
magnetic moment.
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FIG. 1. A 1D head-to-head domain wall in a nanowire. δDW

denotes the domain wall width. H is a constant external magnetic
field along the x axis, which is considered to be the easy axis.

The dynamics of the spin model is described by the LLG
equation,

∂Si

∂t
= −γ Si × Heff

i + α

(
Si × ∂Si

∂t

)
, Heff

i = −∂H
∂Si

. (2)

Here Heff
i is the effective magnetic field, γ denotes the

gyromagnetic ratio, and α is the dimensionless Gilbert damp-
ing constant. If the temperature is above zero, the pinning-
depinning phase transition usually softens [26]. In this paper,
we only consider the magnetic system at zero temperature.

For a cylindrical system whose diameter is smaller than
the exchange length of the given magnetic material, or in
other words, for a quasi-1D system, the exchange interaction
dominates the stray field energy induced by the magnetic
charges on the edges. Thus, the system behaves effectively
as one-dimensional under certain conditions, e.g., for the
transverse domain wall, where the structure tends to be
homogeneous in the transverse direction [17,38]. Nevertheless,
other quasi-1D systems such as the vortex domain wall may
behave differently from the 1D system [39], and this issue
requires further study.

In this paper, we numerically solve the LLG equation on a
1D nanowire with the length of L = 20 000 lattice sites and an
antiperiodic boundary condition. The initial configuration is
shown in Fig. 1. Longer wires with L = 40 000 and 80 000 are
also used to avoid the finite-size effects, in case the domain
wall moves faster under a stronger external field. Besides,
the spin waves exist as a typical phenomenon of the LLG
equation [14]. They propagate much faster than the domain
wall and reflect when crossing the boundaries. The results
from simulations with L = 40 000 and 80 000 are consistent
so that the boundary effects resulted by the spin waves are
negligible.

The initial domain wall width is set to be δDW = π
√

A/K‖,
with the exchange constant A = 3.84 × 10−12 J/m, the easy
axis coefficient K‖ = 2 × 103 J/m3, following the electric
insulator yttrium iron garnet (YIG) [14,40]. The time, length,
and energy density are measured in units of (γMs)−1, δDW, and
μ0M

2
s , respectively, with γ = 3.51 × 104 m/(A · s) and Ms =

1.94 × 105 A/m. The exchange and anisotropy coefficients
in Eq. (1) are unitized as J = A/(μ0M

2
s a2) = 52.8,D‖ =

K‖/(μ0M
2
s ) = 0.0423, and D⊥ = K⊥/(μ0M

2
s ), with a =

1.24 nm according to the YIG lattice constant [14]. In this
paper, the Gilbert damping constant α and the anisotropy
constant D⊥ are treated as adjustable parameters. The external
field H and the random field hi are presented in unit of 0.001Ms

for convenience.

The domain wall is initially centered on the nanowire
with two domains of opposite orientations on both sides. The
simulation starts by switching on a driving magnetic field H
along the easy-x axis as shown in Fig. 1. During the dynamic
evolution, the domain wall may propagate and fluctuate. There
may be different definitions for the height function of the
domain wall [25,29,41], and we use the relatively standard
one [25,29],

h(t) = 1

2
· a

δDW

∑
i

Si,x(t). (3)

Here h(t) indicates the effective displacement of the domain
wall denoted by xDW(t), and the length is measured in unit of
δDW. The velocity of the domain wall is then calculated by

v(t) =
〈
dh(t)

dt

〉
, (4)

where 〈...〉 denotes the statistical average. Without the
quenched disorder, an equivalent definition of the domain wall
displacement xDW(t) is the location of the minimal Si,x [41].

III. OSCILLATION PERIOD WITHOUT QUENCHED
DISORDER

In this section, we consider the case of a zero random field,
i.e., hi = 0 in Eq. (1). According to the theoretical deduction
by Walker [4], under the assumption that Si is only a function
in z axis, the domain wall may either reach a stable state with
a constant velocity when the driving field H = |H| is below
the Walker breakdown threshold HWB, or shift to a retrograde
breathing mode with periodical oscillations when H is above
HWB [6,10,14,41].

In the past years, numerical study of the domain wall
propagation usually elides the small regime around HWB

and analyzes the domain wall dynamics below and above
HWB with different principles [6,41]. Some numerical results
deviate from the rigid Walker theory when H is in a certain
regime, HM < H < HWB,HM ≈ 2(D‖/D⊥)0.25HWB [10,14].
An obscure explanation is that as long as the domain wall
propagates, the spin wave presents as the local modulation
that radiates away from the domain wall center, yet this
phenomenon is absent in the Walker theory. The Gilbert
damping abates the spin-wave emission and disturbs the
stable propagation of the domain wall for H > HM [14].
Nevertheless, we enlarge the lattice and prolong the simulation
time until the domain wall motion reaches a steady state,
and our study explores more accurate results that support the
Walker theory in the entire regime below HWB [42]. In the
computations, we use the fourth-order Runge-Kutta method
and Gauss-Seidel-projection method for comparison [43], and
both methods lead to the same result.

Although the approximate theoretical solutions below the
Walker breakdown threshold have been studied in various
cases, with the assumptions of an uniaxial anisotropy, small
damping coefficients, or small driving fields, etc. [4–6,17], the
domain wall dynamics with driving fields above the threshold
remains a conundrum. The hybrid of the domain wall mobility
and spin-wave emission causes an obstacle in deducing a
general solution of the domain wall motion. The analysis of
the relation between the oscillation period and external field
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(a) (b)

FIG. 2. The relation between H and T with different hard axis coefficients is shown on a double-log scale. (a) For α = 0, the simulation
results conform with T = π/H . The inset displays the time dependence of the domain wall displacement with D‖ = 0.04 and 4, respectively,
while α = 0.001 and D⊥ = 4 are fixed parameters. (b) For α = 0.001, the simulation results are compared with the theoretical expression in
Eq. (5), and the vertical short dashed lines mark the values of HWB as T → ∞.

may contribute to the understanding of the domain wall motion
for H > HWB. In the past decade, some theoretical study has
deduced the solution of the oscillation period [15,16], yet there
is an approximation in the uniaxial magnetic anisotropy or an
assumption of zero damping. In order to understand deeper
how to control the oscillation period, we consider the biaxial
anisotropy and perform relevant numerical simulations.

Without the Gilbert damping (α = 0), one may equivalently
consider HWB to be zero, and the retrograde mode appears
when H > 0. As J is much larger than D⊥ in the following
analysis, the domain wall retrogrades to the initial position
after one period [41]. On the contrary, if J is smaller and
close to D⊥, the domain wall oscillates with an effective
displacement. Under the assumption of a broad domain wall,
i.e., J/D‖ 	 1, the theoretical solution concludes that the
oscillation period is only dependent on the driving field by
T = π/H [15], yet the easy and hard anisotropy coefficients
merely affect the amplitude of oscillation. The numerical
results of different D⊥ in Fig. 2(a) coincide with the relation
T = π/H denoted by the solid line.

When there exists a nonzero damping factor (α > 0), one
may introduce a polar angle θ and an azimuthal angle φ to
describe the motion of the magnetic moments in the spherical
coordinate. The macroscopic retrograde motion of the domain
wall is actually induced by the microscopic precession of the
magnetic moments [16]. The oscillation period is therefore
considered to be equivalent to the precession time of reversing
the magnetic moments in the domain wall. We derive the
theoretical expression of the period T as follows:

T = 2π (α2 + 1)√
4H 2(α2 + 1) − α2D2

⊥
. (5)

The deduction in Ref. [16] is under the assumption of the
uniaxial magnetic anisotropy, in other words, D = D‖ = D⊥.

However, according to our analysis with biaxial anisotropy
(D‖ 
= D⊥), the oscillation period is controlled by the damping
factor α, the external field H , and the hard anisotropy D⊥,
yet the easy anisotropy D‖ hardly affects the period. For
example, we display the domain wall displacement with
D‖ = 0.04 and D‖ = 4, respectively, in the inset of Fig. 2(a),
the two oscillation curves comply with the same period, yet
the amplitude is smaller for the larger D‖.

In Fig. 2(b), we display the simulation results of α = 0.001
and the theoretical curves of Eq. (5). The damping dissipates
a sort of energy on top of the spin-wave emission, which is
different from the case of α = 0. If the hard anisotropy energy
is stronger, the spins are more difficult to orient out of the
easy plane, thus the precession time for reversing a magnetic
moment is longer. In other words, T increases as D⊥ is larger
for α > 0. On the other hand, the easy anisotropy coefficient
D‖ favors the spins to rotate in the easy plane, and merely
affects the propagating distance of the domain wall.

One may notice that in the case of α � 1, Eq. (5)
indicates that the oscillation period T → ∞ as H →
α

√
D2

⊥/(α2 + 1)/2 ≈ HWB. In other words, if H = HWB,
the domain wall exhibits a uniform stable motion without
retrograding. Moreover, in the absence of the Gilbert damping
(α = 0), Eq. (5) leads to T → π/H and conforms to the result
stated in Fig. 2(a).

IV. DOMAIN WALL MOTION WITH QUENCHED
DISORDER

The impurities or lattice defects in the materials are usually
considered as quenched disorders, which may result in the
pinning phenomena in the propagation of the domain wall.
In this section, we describe the quenched disorder in a
typical and intuitive form by introducing the random field
hi in Eq. (1) following Refs. [28–33,44–46]. The direction of
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(a) (b)

FIG. 3. (a) The domain wall velocity is shown for different H with D⊥ = 4.23, α = 0.01, and 	 = 2. The thin lines display the pinning
state of H < 0.28 and depinning state of H > 0.28, separated by the red thick line at the transition field Hc = 0.28. (b) According to the
dynamic scaling form in Eq. (6), the data taken from (a) are collapsed onto two curves, respectively, with H below and above the transition
field. The inset displays the domain wall velocity in the steady state for H > Hc on a log-log scale.

hi is randomized, and the amplitude hi = |hi | is uniformly
distributed within an interval [−	,	]. The disorders in other
forms as random bond usually yield similar results [26]. The
parameter D⊥ = 100D‖ is fixed. The results are obtained with
the statistical averages of 5 000 to 10 000 samples.

Recent numerical analysis of the pinning phenomena in
nanowires governed by the LLG equation indicates that there
exists a phase transition between the extrinsic pinning state
and the depinning state [34], the pinning and depinning prob-
abilities of a current-induced domain wall are also explored in
experiments and numerical simulations [35,36]. However, the
intrinsic nature of the phase transitions is not yet known, and
the critical exponents are not measured.

Due to the influence of the disorder, the domain wall is not
able to maintain the stable drilling mode of the Walker theory.
For a smaller driving field H , the velocity of the domain wall
presents an exponential decay after an initial rising, and finally
reaches zero. This is known to be in the pinning phase. For a
larger driving field H , which is above a critical value of Hc, the
velocity will stabilize at a nonzero constant, which indicates
that the system is in the depinning phase. When the driving
field is at the critical value Hc, the dynamic system undergoes
a depinning phase transition, which is intrinsically dynamic.

According to our simulations, Hc is much smaller than
the Walker breakdown threshold HWB, which implies that it
is unable to pin the domain wall in the breathing mode for
H > HWB. We analyze the dynamic behavior of the domain
wall in the pinning state for H < Hc, and the depinning state,
i.e., the stable sliding state for H > Hc.

Within the microscopic timescale tmic, the dynamic be-
havior of the domain wall velocity is nonuniversal, such as
the initial rising in the very early times. The disorder in the
lattice may produce local spin waves that retard the rising of
the velocity within tmic. But the local spin waves are weak
and annihilated within a short distance, hence they hardly
affect the domain wall propagation after the velocity rises

to the maximum. A larger damping constant α impedes the
propagation of the spin waves, hence essentially reduces the
time consumed for the rising of the velocity. We set α = 0.01,
which is larger than that used in Sec. III, and display the
dynamic behavior of the domain wall velocity in Fig. 3(a). The
units of 	 and H are both set to be 0.001Ms for convenience.
The driving field H plays the role of the control parameter.
In Fig. 3(a), the velocity preserves at a constant value when
H is above Hc ≈ 0.28, or displays a visible drop after an
initial microscopic relaxation process when H is below Hc.
Therefore, the critical driving field Hc is in the region of
(0.27,0.29), thus Hc is about 0.28.

In the nonequilibrium relaxation dynamics, there may exist
a dynamic scaling form [25,47], which is characterized by a
growing spatial correlation length ξ (t) ∼ t1/z, with z being the
dynamic critical exponent. For the domain wall dynamics, the
order parameter is the domain wall velocity v, the dynamic
scaling form is written as

v(t,τ ) = τβF [ξ (t)τ ν], (6)

where τ = (H/Hc − 1),β and ν are the static critical expo-
nents. In simple words, v(t,τ )τ−β is controlled only by the
scaling variable ξ (t)τ ν .

With the numerical data of different H in Fig. 3(a), the data
collapses are performed according to Eq. (6), respectively,
for H < Hc and H > Hc, and the results are shown in
Fig. 3(b). In the computations, data up to a microscopic
time scale tmic ∼ 200 are skipped. For H < Hc, the velocity
exponentially decreases to zero, while for H > Hc it remains
as a constant. The data collapse includes the regimes that
the driving field deviates from Hc. For H close to the critical
driving field Hc, the values of τ ν are small, thus the simulations
should be performed for quite a long time to obtain a reasonable
data collapse. Therefore, those data from H = 0.26 to 0.30 are
not included in Fig. 3(b).
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For H > Hc, the scaling function F [ξ (t)τ ν] in Eq. (6) is a
constant, and the domain wall velocity v ∼ τβ . In other words,
the velocity is governed only by the static exponent β, and the
critical exponents z and ν are actually absent in the dynamic
scaling form. Thus, we may adjust Hc and β to generate a
reasonable data collapse, which is shown in Fig. 3(b). The
critical point Hc is estimated to be 0.28. According to our
analysis, the data collapse for H > Hc is quite sensitive to β.
Therefore, we may confidently determine the static exponent
β = 0.30 with a tolerance of ±0.01. Alternatively, one may
compute the average velocity v over time t , and plot it as
a function of τ on a double-log scale as shown in the inset
of Fig. 3(b). The slope of the curve yields also β = 0.30.
The results of β obtained with both methods are naturally in
agreement.

In order to measure the static exponent ν and the dynamic
exponent z in the pinning state for H < Hc, we take Hc = 0.28
and β = 0.30 as input, and adjust the values of ν and z to
collapse the data according to the dynamic scaling form in
Eq. (6). As is shown for the regime of H < Hc in Fig. 3(b), the
corresponding critical exponents are estimated to be ν = 1.3
and z = 2.4.

The critical exponents are crucial identifications of the
universality classes [46,48], which depend on the mechanism
of dynamics, the structure of systems, the dimension of spins,
etc. The depinning phase transition is usually of second-
order for the QEW equation, Ising model, and φ4 theory
[25,26,29,33,49]. The numerical values of the static exponents
are reported to be β = 0.25 and ν = 1.33 for the 2D QEW
equation [49], β = 0.30 and ν = 1.02 for the 2D random-field
Ising model with a driving field [29], and β = 1.06 and ν =
0.70 for the 2D random-field φ4 theory [33]. In our paper, we
explore a similar continuous phase transition in 1D nanowires.
The Heisenberg model with an anisotropic energy governed

by the LLG equation is in a universality class different from
those of the 2D QEW equation, 2D random-field Ising model
with Monte Carlo simulation, and 2D random-field φ4 theory
governed by the Hamiltonian equation. Yet some values of the
exponents are relatively close to each other.

In particular, the dynamic exponent z = 2.4 for the LLG
equation is larger than that of the empirical models, e.g.,
compared with z = 1.33 for the DRFIM [29], z = 1.43 for
the QEW equation [49], and z = 1.95 for the φ4 theory [33].
Since the dynamic evolution is slow, the computer time for
simulating the LLG equation is several orders of magnitude
longer than that for the Ising model. To obtain more accurate
values of the critical driving field and critical exponents, the
maximum evolution time of the domain wall motion should
be extended to the scale of t ∼ 107 or more. Hence, there
is a requirement of more efficient numerical methods for
simulations, and abundant computer resources in the further
study of the phase transitions. Furthermore, the influence of
anisotropic coefficients on the universality class remains an
interesting but undeveloped topic.

To calculate the statistical fluctuation of the domain wall
position, we define the fluctuation function,

ω2(t) = 〈h(t)2〉 − 〈h(t)〉2. (7)

Here ω2(t) includes the dynamic evolution of the background
which may lead to a deviation from the scaling behavior in
the very short-time regime. Therefore, we redefine a pure
fluctuation function Dω2(t) by subtracting the contribution
of the background,

Dω2(t) = ω2(t) − ω2
b(t), (8)

where ω2
b(t) is actually the line susceptibility of the background

computed from simulations starting from the fully ordered
state without a domain wall. To further explore the influence

(a) (b)

FIG. 4. (a) The pure fluctuation function Dω2(t) is displayed for 	 = 2 at Hc = 0.28 and 	 = 10 at Hc = 1.4. The curve for 	 = 10
is shifted up by a factor of 5 for clarity. The dashed lines indicate the direct measurements of slope, while the red solid lines represent the
power-law fitting with logarithmic corrections to scaling, c = 1.14 for 	 = 10 and c = 5.01 for 	 = 2. (b) The transition field Hc is plotted
for different disorder strengths, with α = 0.01 denoted by circles and α = 0.001 denoted by triangles. The two red circles correspond to the
fluctuation analysis for 	 = 10 and 2 in (a). The short dashed lines indicate the linear fittings. In both (a) and (b), D⊥ = 4.23.
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of the bulk on the scaling behavior, we also perform the
simulation from a completely disordered state. The result
shows that h(t) stabilizes at a constant value after a microscopic
time for relaxation, therefore the contribution of the bulk can
be neglected in Eq. (8).

At the transition point τ = 0 and for a sufficiently long
nanowire, the scaling analysis of the pure fluctuation function
yields

Dω2(t) ∼ t2ζ/z, (9)

where ζ is similar to the roughness exponent in the 2D
magnetic systems and describes the strength of the statistical
fluctuation. A direct measurement of the slope from Fig. 4(a)
gives 2ζ/z = 2.13 for 	 = 2, and 2ζ/z = 2.14 for 	 =
10. With the logarithmic correction to scaling, i.e., ξ (t) ∼
[t(lnt + c)]1/z, the results are refined to 2ζ/z = 2.29 with
c = 5.01 and 2ζ/z = 2.38 with c = 1.14, thus ζ = 2.75 and
2.86, respectively.

In Fig. 4(b), the phase transition field Hc is plotted for
different strengths of the random fields with the damping factor
α = 0.001 and 0.01. The phase transition field increases with
the disorder augment almost linearly. This relation is similar
to that of the 2D random-field Ising model, and the 2D clock
model with quenched disorder [31].

V. SUMMARY

In summary, we have investigated the domain wall dynam-
ics in magnetic nanowires governed by the LLG equation. In
the absence of quenched disorder, we focus on the numerical
solution below and above the Walker breakdown threshold. To
understand the underlying behavior of the domain wall motion
in the periodic breathing mode for H > HWB, we theoretically
deduce the expression of the oscillation period by introducing

the biaxial anisotropy coefficients, and numerically verify how
the period is controlled by the driving field, damping and hard
anisotropy.

More importantly, we analyze the dynamic effects of
quenched disorder, and detect a pinning-depinning phase
transition of the domain wall motion in nanowires. For
different strengths of the driving field H , the dynamic system
exhibits the pinning and depinning phases below and above
a critical driving filed Hc. We perform the dynamic scaling
form analysis, and show the data collapse in the two phases.
The critical driving filed Hc is linearly dependent on the
strength of the disorder. In the depinning phase for H > Hc,
the domain wall velocity reaches a constant after a microscopic
time scale, the static critical exponent β is determined to be
0.30. According to the data collapse for H < Hc, another
static exponent and the dynamic exponent are estimated to
be ν = 1.3 and z = 2.4.

Finally, we emphasize that if the quenched disorder is
introduced to the quasi-1D, -2D, or -3D magnetic systems,
the domain wall motion may be different from the 1D model
as mentioned in Sec. II [17,38]. The dynamic effects of the
quenched disorder destroy the homogeneity of the magnetic
materials. For a cylindrical quasi-1D or -2D system, the
uniformity in the perpendicular directions of the domain wall
motion is disturbed by the disorder, hence the self-similarity in
these directions is absent. We are working on further research
of the phase transition on cylindrical and 2D magnetic systems,
which will be described elsewhere.
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