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Intervalley scattering of graphene massless Dirac fermions at 3-periodic grain boundaries
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We study how low-energy charge carriers scatter off periodic and linear graphene grain boundaries oriented
along the zigzag direction with a periodicity three times greater than that of pristine graphene. These defects
map the two Dirac points into the same position, and thus allow for intervalley scattering to occur. Starting from
graphene’s first-neighbor tight-binding model we show how we can compute the boundary condition seen by
graphene’s massless Dirac fermions at such grain boundaries. We illustrate this procedure for the 3-periodic
pentagon-only grain boundary, and then work out the low-energy electronic scattering off this linear defect. We
also compute the effective generalized potential seen by the Dirac fermions at the grain boundary region.
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I. INTRODUCTION

Chemical vapor deposition (CVD) of graphene on metal
surfaces [1–4] is currently viewed as one of the most
promising scalable methods for economically producing large
and abundant high-quality monolayer graphene sheets. It is
thus greatly important to fully understand and control the
behavior of electrons on this form of graphene.

CVD graphene, as any other solid grown by chemical vapor
deposition, is generally a polycrystal composed by several
grains with distinct crystallographic orientations. These grains
are separated by grain boundaries (GBs) [5–10] which due to
the sp2 bonding structure of carbon atoms in graphene are
typically made of pentagonal, heptagonal, and octagonal rings
of carbon atoms [5–8,10]. Grain boundaries generally intercept
each other at random angles, being neither periodic nor perfect
straight lines.

The properties of CVD graphene flakes are strongly influ-
enced by the quantity, distribution, and microscopic character
of its grain boundaries [11,12]. Each type of grain boundary
exhibits distinctive chemical [13,14], mechanical [15,16], and
electronic [17–19] properties.

This is particularly evident in what concerns the electronic
transport in CVD graphene. For instance, there is abundant
experimental evidence that the details of the CVD-growth
recipes used to synthesize CVD graphene flakes greatly
constrain its transport properties [1,2,4,7,20]. Furthermore, ap-
plication of strain and chemical decoration are also expected to
strongly influence CVD-graphene transport properties [21,22].
In particular, as shown by several recent experiments probing
the transport properties of single grain boundaries [13,17–19],
the electron-scattering off a grain boundary is determined
by the its microscopic details and the relative orientation of
the grains it separates [23].

Observation and probing of graphene grain boundaries
has been constantly refined in recent years, as shown by a
quick survey of the recent literature in the field [20,24–26].
More interestingly, several promising new methods of con-
trolling and manipulating the position, orientation, and micro-
scopic configuration of grain boundaries have been recently
unveiled [27–30]. Some of these methods allow for the creation
of periodic and straight grain boundaries [28–30], whose
transport properties have been extensively investigated theoret-
ically [31–37]. This widens the prospects for the engineering
of graphene-based electronic devices that take advantage of the

scattering properties of these grain boundaries, to manipulate
graphene electrons’ various degrees of freedom, such as its
valley quantum number.

Following these recent advances, in this paper, we will focus
our attention on the electronic properties of a particular class of
periodic and linear grain boundaries that is often disregarded
in the literature. Namely, we will investigate grain boundaries
with periodicities such that both Dirac points (on each side of
the GB) are mapped into the � point of the projected Brillouin
zone; see Ref. [23] for a brief discussion of their properties.
Due to this mapping of the Dirac points, such grain boundaries
allow for intervalley scattering of low-energy charge carriers.
In what follows we will show how we can work out the low-
energy electronic scattering off such GBs, and will see how
the intervalley scattering depends on the system’s microscopic
details.

To keep things simple, we have chosen to investigate
zigzag-aligned linear grain boundaries separating two grains
with the same orientation (also referred to in the literature
as degenerate or zero-misorientation-angle grain boundaries).
Several such GBs were proposed in the context of ab initio
works both on graphene and on boron nitride: the t7t5 grain
boundary [38], the 7557 grain boundary [39], and the 8484
grain boundary [40]. Their transport properties have been
recently investigated under the perspective of the tight-binding
model [37].

In what follows we will concentrate on studying a simplistic
but illustrative grain boundary representative of the above
class. We will consider a pentagon-only-like grain bound-
ary [34,35] with a periodicity three times greater than that
of pristine graphene (along the zigzag direction; see Fig. 1).
As desired, such a periodicity ensures that the Dirac points
are mapped into the � point as discussed above; see Fig. 2. In
the remaining of this text we will call this GB the 3-periodic
pentagon-only grain boundary.

This particular grain boundary must be seen as a minimal
model representing the general class of zigzag-aligned 3-
periodic grain boundaries (such as the t7t5, the 7557, and the
8484 grain boundaries [38–40]). Synthesis of grain boundaries
in this class may be facilitated by CVD deposition of graphene
on polycrystalline substrates with linear grain boundaries
with the appropriate periodicity (i.e., ≈7.4 Å). Decoration
of other grain boundaries [e.g., the zz(558)] with periodic
arrays of molecules may also give rise to 3-fold periodic grain
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FIG. 1. Scheme of a 3-periodic pentagon-only grain boundary.
Notice that its unit cell has a periodicity of 3u1 along the x direction.
The lattice vectors used are 3u1 = 3a(1,0) and u2 = (−1,

√
3)a/2.

The hopping parameters at the defect alternate in value reading (in
units of t) ξ1, ξ2, and ξ3.

boundaries that allow for intervalley scattering of low-energy
charge carriers.

As is well known, graphene’s low-energy charge carriers
behave as massless Dirac fermions. These are governed by
a Hamiltonian composed of two copies of the 2D Dirac
Hamiltonian, each one of them valid around one of the two
Dirac points [41]. In this limit the grain boundary essentially
acts as a one-dimensional line that imposes a boundary
condition on the Dirac spinors living on the semiplanes above

FIG. 2. Pristine (and infinite) graphene energy spectrum pro-
jected along the ky direction (perpendicular to the defect). In green, the
spectrum of pristine graphene (with the lattice vector along the zigzag
direction given by u1). Its Dirac points are located at kxa = ±2π/3.
In red, the folded spectrum arising from choosing the lattice vector
along the zigzag direction to be 3u1. In this case, we can clearly see
that the two Dirac points are mapped into kxa = 0.

and bellow the grain boundary. Such boundary condition will
result in a discontinuity in the spinors across the defect and
will control its scattering properties [33,34]. Alternatively, the
grain boundary can also be thought of as a finite-width strip
containing a generalized potential that constrains the dynamics
of the massless Dirac fermions [34–36].

The specific form of the boundary condition seen by the
massless Dirac fermions at the 3-periodic pentagon-only grain
boundary is determined by the details of its microscopic tight-
binding model. In calculating it, we will follow the method-
ology developed for the cases of the pentagon-only, zz(558),
and zz(5757) grain boundaries [34,35]. Below, we show that
the boundary condition obtained from the tight-binding gives
rise, in the low-energy limit, to a boundary condition explicitly
introducing intervalley scattering. Furthermore, we will show
how, starting from the grain boundary’s microscopic details,
we can determine the generalized potential associated with
viewing the grain boundary as a finite-width strip with a
potential constraining the Dirac fermions’ dynamics.

Before proceeding, we detail the structure of this text.
In Sec. II we discuss general properties of Dirac fermion
scattering off 3-periodic grain boundaries. In Sec. III we solve
the electronic scattering off a 3-periodic pentagon-only grain
boundary: we start by computing the tight-binding boundary
condition matrix relating electronic amplitudes on each side of
the grain boundary (see Sec. III A); we then derive the bound-
ary condition matrix seen by the low-energy charge carriers
(i.e., by the massless Dirac fermions) at the grain boundary (see
Sec. III B); finally, in Sec. III C we compute the transmission
probabilities for different choices of the microscopic hopping
parameters at the grain boundary. We close with Sec. IV where
we review the main results of the paper.

II. GENERAL PROPERTIES OF LOW-ENERGY
ELECTRON TRANSPORT ACROSS A 3-PERIODIC

GRAIN BOUNDARY

Let us start by considering the case of a general 3-periodic
grain boundary, i.e., a grain boundary with a periodicity (and
orientation) defined by the vector R = nu1 + mu2, where
n,m ∈ N and n + m is a multiple of 3; see Fig. 1 where n = 3
and m = 0. The presence of such a grain boundary in graphene
breaks the translation symmetry along the direction perpen-
dicular to the grain boundary. Furthermore, the periodicity of
these grain boundaries happens to fold the first Brillouin zone
in such a way that the two Dirac points are mapped into the
� point of the projected Brillouin zone. It is thus natural to
expect that intervalley scattering off these nanostructures is
generally allowed at low energies.

As a consequence, when addressing the problem of elec-
tronic scattering across such kind of grain boundaries, we need
to consider both valleys. Instead of working with two separate
copies of the Dirac Hamiltonian Hν = vF (νσ1 ∂x + σ2 ∂y)
valid in the vicinity of each Dirac point Kν=±, we have to work
with both copies simultaneously, i.e., with the Hamiltonian

H = vF (τ3 ⊗ σ1 ∂x + τ0 ⊗ σ2 ∂y), (1)

where τi and σi (i = 1,2,3) stand for the 2 × 2 Pauli matrices
acting, respectively, on the valley and pseudospin degrees of
freedom, while τ0 and σ0 stand for the 2 × 2 identity matrix.
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In the above equation (and in the remaining of this text) we
have set � = 1. As we are considering a Hamiltonian that is
independent of (real) spin, we will always omit the spin degree
of freedom.

The presence of a periodic grain boundary in a graphene
flake imposes a discontinuity between the Dirac fermion’s
spinors on each of the grain boundary’s sides [33–36].
However, grain boundaries that are 3-periodic also connect
the two valleys through nonzero intervalley scattering matrix
elements. For simplicity, let us consider the case of a zigzag-
aligned (i.e., x-aligned) 3-periodic grain boundary located at
y = 0. Such a grain boundary imposes the following general
boundary condition on the Dirac spinors:

	(x,0+) = M	(x,0−), (2)

where 	(r) = [ψ+(r),ψ−(r)]T are 4-spinors since ψ± =
[ϕa±(r),ϕb±(r)]T stands for the 2-spinor describing Dirac
fermions living in the K± valley. The 4 × 4 matrix M can
be written in the general form

M =
[
M++ M+−
M−+ M−−

]
, (3)

where M±± (M±∓) are 2 × 2 matrices controlling the valley-
preserving (intervalley) scattering across the grain boundary.

The matrix M must satisfy the flux conservation condition
M†JyM = Jy , where Jy = τ0 ⊗ σy stands for the conserved
current along the direction perpendicular to the grain boundary.
This stems from the Hermiticity of the tight-binding Hamil-
tonian (that enforces current conservation at the GB in the
tight-binding model). Furthermore, whenever we deal with
nonmagnetic grain boundaries, the boundary condition must
as well be time-reversal invariant T −1MT = M. Recall that
the time-reversal operation exchanges the two Dirac cones and
applies complex conjugation, T = τ1 ⊗ σ0 C.

A Dirac fermion from the Kν valley (ν = ±1), incoming
from y = −∞ (see Fig. 1), will be partially transmitted and
partially reflected at the grain boundary. In the absence of
a potential difference between the two sides of the grain
boundary, the wave function reads

	L(r) = 	ν,>
q,s (r) + ρν,ν 	ν,<

q,s (r) + ρ−ν,ν 	−ν,<
q,s (r) (4a)

on the lower half plane (i.e., y < 0), while for the upper half
plane (i.e., y > 0) we have

	U (r) = τν,ν 	ν,>
q,s (r) + τ−ν,ν 	−ν,>

q,s (r). (4b)

In Eq. (4) the 	
ν,≶
q,s (r) are 4-spinors which read

	+,>
qs (r) = 1√

2
[s e−iθ+

q , 1, 0, 0]T ei(qxx+qyy), (5a)

	−,>
qs (r) = 1√

2
[0, 0, s e−iθ−

q , 1]T ei(qxx+qyy), (5b)

	+,<
qs (r) = 1√

2
[s e−iθ̄+

q , 1, 0, 0]T ei(qxx−qyy), (5c)

	−,<
qs (r) = 1√

2
[0, 0, s e−iθ̄−

q , 1]T ei(qxx−qyy). (5d)

In the above expressions r = (x,y), q = (qx,qy), while θν
q

and θ̄ ν
q = −θν

q stand for the complex phases of, respectively,

νqx + iqy and νqx − iqy . Furthermore, s stands for the
sign of the energy, distinguishing electrons and and holes,
while ρ±,± (ρ±,∓) and τ±,± (τ±,∓) respectively stand for
the valley-preserving (intervalley) reflection and transmission
coefficients.

Since the conserved current associated with a given
propagating mode is the same for all modes, then the four
transmission and reflection probabilities are simply given by
Tνη = |τνη|2 and Rνη = |ρνη|2, for ν = ±1 and η = ±1. The
transmission and reflection coefficients are obtained by solving
the system of linear equations originating from imposing the
boundary condition Eq. (2) on the wave function written in
Eqs. (4) and (5). Therefore, the transmission and reflection
probabilities will not only depend on the angle of incidence
of the electron into the GB, but will also (strongly) depend
on the microscopic properties of the grain boundary through
the matrix elements of M. Below, following Refs. [34,35], we
will show how can we compute the boundary condition matrix
M from the tight-binding model of the grain boundary.

However, before proceeding we will briefly discuss an often
useful alternative viewpoint for such scattering problems (see
Ref. [34,35]). Instead of considering that in the low-energy
limit the grain boundary simply imposes a discontinuity on
the massless Dirac fermions’ spinors along a line parallel to
the x axis, we will consider that the grain boundary can be
viewed as a finite strip of width W that exists in |y| < W/2
and extends along the x direction; see right-hand side of Fig. 3.
On each side of this strip the Dirac fermions will be governed
by Eq. (1), while inside the strip there will also be a general
local potential of the form

V =
3∑

α,β=0

Vαβ τα ⊗ σβ. (6)

The equivalence between these two viewpoints becomes
obvious when we integrate out the Dirac equation in the finite-
width strip (i.e., between −W/2 < y < W/2) while satisfying
the constraint W × Vαβ → vαβ as W → 0. As we show in
detail in Appendix C, this integration gives rise to the following

FIG. 3. Schematic representation of the two perspectives used
to analyze how graphene’s low-energy charge carriers scatter off a
grain boundary. On the left-hand side, the massless Dirac fermions
are constrained by 	(x,0+) = M	(x,0−), which gives rise to a
discontinuity of the Dirac spinors at the line separating the two
half planes [where the Dirac Hamiltonian governs the physics:
H = vF � · p, with � ≡ (τ3 ⊗ σ1,τ0 ⊗ σ2)]. On the right-hand side,
these two half planes are separated by a finite-width strip where the
Dirac fermions are subject to a generalized potential V.
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boundary condition matrix:

M = e
−i

τ0⊗σ2
vF

V
, (7)

which allows us to connect the matrix elements of M
(determined from a tight-binding microscopic model) and the
effective generalized local potential felt by the Dirac fermions
inside the finite-width strip.

Within this perspective, there are two interfaces at which
we must ensure the continuity of the wave function, namely
	(x,−w−) = 	(x,−w+) and 	(x,w−) = 	(x,w+), where
w = W/2. These two equalities correspond to eight conditions
(	 are 4-spinors) that will determine the eight unknown
scattering coefficients (region inside the strip requires four
additional coefficients).

III. THE 3-PERIODIC PENTAGON-ONLY
GRAIN BOUNDARY

In what follows we will make the statements of the previous
section concrete by investigating the electronic transport across
the 3-periodic pentagon-only grain boundary (see Fig. 1).
We will start by briefly sketching how can we compute the
tight-binding boundary condition matrix relating the wave
function above and below the grain boundary [35,37]; see
Sec. III A. From that result we will then compute the boundary
condition matrix seen by the massless Dirac fermions at
the grain boundary; see Sec. III B. Finally, in Sec. III C we
will work out the scattering problem and analyze the valley-
preserving and intervalley transmittance for specific sets of
microscopic parameters defining the 3-periodic pentagon-only
grain boundary.

A. The tight-binding model for the grain boundary

Consider a first-neighbor tight-binding model for electrons
in the pz orbitals of graphene, where we define the pristine
honeycomb direct lattice vectors as (see Fig. 1) u1 = a(1,0)
and u2 = (−1,

√
3)a/2. As we want to study a zigzag-oriented

grain boundary with periodicity 3u1, we choose a bulk unit cell
defined by the lattice vectors 3u1 and u2 as sketched in Fig. 1.
Fourier transforming along the 3u1 direction diagonalizes
the system’s Hamiltonian with respect to the variable m,
introducing the quantum number kx . The corresponding bulk
tight-binding equations can then be written as

− ε

t
A(n) = W

†
AB(n − 1) + B(n), (8a)

−ε

t
B(n) = A(n) + WAA(n + 1), (8b)

where Z(n) = [Z1(n),Z2(n),Z3(n)]T for Z = A,B and the
matrix WA is defined in Eq. (A1).

Equation (8) can be condensed in the form of a transfer
matrix equation [34,35] relating amplitudes at the atoms of
the unit cell located at r = (n − 1)u2 with the amplitudes at
the atoms of the unit cell located at r = nu2. Such an equation
reads

L(n) = T(ε,kx)L(n − 1), (9)

with L(n) = [A1(n),B1(n),A2(n),B2(n),A3(n),B3(n)]T , while
the transfer matrix T(ε,kx) is given by

T(ε,kx) = RQ1 Q2 RT . (10)

In the above equation, matrix R is simply used to
change from the basis {B1,B2,B3,A1,A2,A3} into the basis
{A1,B1,A2,B2,A3,B3}. This matrix is written in Eq. (A4),
while matrices Q1 and Q2 are written in Eq. (A3).

As was shown in Ref. [37], we can employ a basis
transformation L̃(n) = �(kx)L(n) that makes the transfer
matrix block diagonal, T̃ = diag[Th,Tl−,Tl+]. We will use
the notation L̃(n) = {Ah,Bh,Al−,Bl−,Al+,Bl+} to identify the
elements of a vector in this basis. The three matrices Th, Tl−,
and Tl+ on the diagonal of T̃ are 2 × 2 matrices that depend
on both ε and kxa. They are written in Eq. (A6), while the
matrix �(kx) is written in Eq. (A5). Each one of the Th, Tl−,
and Tl+ matrices correspond to one of the three propagation
modes of the problem. Around kxa = 0 two of these modes are
low-energy (corresponding to each of the two Dirac cones),
while the other one is a high-energy mode; see Appendix A 1.

In a similar way, we can compute the boundary condition
matrix that relates electronic amplitudes below and above the
3-periodic pentagon-only grain boundary (see Fig. 1). We start
by writing the tight-binding equations in the grain boundary
region [34,35,37] (we neglect out-of-plane relaxations in the
GB region):

− ε

t
A(1) = W

†
AB(0) + B(1), (11a)

−ε

t
B(0) = D(0) + WAA(1), (11b)

−ε

t
D(0) = B(0) + σ ′

xD(0) + A(0), (11c)

−ε

t
A(0) = D(0) + W

†
AB(−1), (11d)

−ε

t
B(−1) = A(−1) + WAA(0), (11e)

where the matrix σ ′
x is written in Eq. (A8). Note that σ ′

x

depends both on kxa and on the hopping parameters at the
grain boundary, ξ1, ξ2, and ξ3.

We can express these equations (see Appendix A 2) as a
boundary condition equation connecting the electronic wave
function on the two sides of the grain boundary:

L(1) = ML(−1). (12)

The boundary condition matrix M above is a 6 × 6 matrix
given by

M = RN1N2N3N1N2R
T , (13)

where, for the sake of simplicity, we have omitted the
dependence of the matrices M and Ni on ε/t , kx , and ξi .
The matrices Ni are written in Eq. (A10).

Finally, we can write the boundary condition matrix M
in the basis uncoupling the three pairs of modes of the
transfer matrix, M̃ = �(kxa)M[�(kxa)]−1. By inspecting the
boundary condition Eq. (12) in this basis, L̃(1) = M̃ L̃(−1),
we readily conclude that, in general, M̃ mixes all the three
modes of the transfer matrix (both the high-energy and the
two low-energy ones).
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B. The boundary condition in the low-energy approximation

At very low energies, ε → 0, and very near the Dirac points,
k → Kν = (0,−1)ν4π/(3

√
3a), the matrix M̃ acquires a

somewhat simple form; see Eq. (B1). In this limit, the
high-energy modes are evanescent, one of them increasing and
the other one decreasing exponentially with n; see Eq. (B2)
and subsequent paragraph. Since we must require the wave
function to be normalizable, we conclude that when ε → 0
and k → Kν the wave function must have the following form:

L̃(n) ≈ l̃(n) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ah(n)

0

Al−(n)

Bl−(n)

Al+(n)

Bl+(n)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, for n > 0, (14a)

and

L̃(n) ≈ l̃(n) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

Bh(n)

Al−(n)

Bl−(n)

Al+(n)

Bl+(n)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, for n < 0, (14b)

where, in order to keep the notation lighter, we have omitted
the dependence on kx of both the vectors L̃ and l̃, and of the
amplitudes A and B.

We can now substitute Eq. (14) in the boundary condition
L̃(1) = M̃ L̃(−1) to eliminate the high-energy modes from
our problem, ending up with an effective boundary condition
that only involves the low-energy modes. Such a manipulation
generates an effective boundary condition matrix Meff that we
can express in terms of the matrix elements of M̃ as follows:

Meff =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

M̃33 − M̃32M̃23

M̃22
M̃34 − M̃32M̃24

M̃22
M̃35 − M̃32M̃25

M̃22
M̃36 − M̃32M̃26

M̃22

M̃43 − M̃42M̃23

M̃22
M̃44 − M̃42M̃24

M̃22
M̃45 − M̃42M̃25

M̃22
M̃46 − M̃42M̃26

M̃22

M̃53 − M̃52M̃23

M̃22
M̃54 − M̃52M̃24

M̃22
M̃55 − M̃52M̃25

M̃22
M̃56 − M̃52M̃26

M̃22

M̃63 − M̃62M̃23

M̃22
M̃64 − M̃62M̃24

M̃22
M̃65 − M̃62M̃25

M̃22
M̃66 − M̃62M̃26

M̃22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (15)

The matrix Meff for the case of the 3-periodic pentagon-only
grain boundary is written in Eqs. (B3) and (B4).

As is widely known, in the low-energy continuum limit the
tight-binding amplitudes, C(r), can be expressed in terms of
slowly varying fields, ψc(r), as

C(r) ≈
∑
ν=±1

eiKν ·rψν
c (r). (16)

We can thus cast the tight-binding 4-spinor valid
at low energies, �(r) = [Al−(r),Bl−(r),Al+(r),Bl+(r)]T ,
in terms of slowly varying Dirac fields as �(r) ≈
[eiK−·rψ−(r),eiK+·rψ+(r)]T , where ψν(r) = [ψaν

,ψbν
]T .

We can finally write the boundary condition that Dirac
fermions see at the 3-periodic pentagon-only grain boundary
as 	(x,0+) = M	(x,0−), where 	(r) = [	−(r),	+(r)]T =
[ψa− (r),ψb− (r),ψa+ (r),ψb+ (r)]T .

In the case of the 3-periodic pentagon-only grain boundary,
the matrix M (see Appendix B) reads

M =

⎡⎢⎢⎢⎢⎣
0 1 0 0

−1 f 0 g∗ ei 2π
3

0 0 0 1

0 g e−i 2π
3 −1 f

⎤⎥⎥⎥⎥⎦, (17)

where f ≡ f (ξ1,ξ2,ξ3) and g ≡ g(ξ1,ξ2,ξ3) are written in
Eq. (B4).

Interestingly, in Eq. (17) we clearly see that the off-diagonal
blocks of matrix M, those which control the intervalley
scattering, are not a priori zero. We can thus conclude that in
general this grain boundary gives rise to intervalley scattering.

In particular, the intervalley scattering mixes the ψb component
of one valley with the same component of the other valley.

Notice that when all three hoppings are equal (i.e., ξ1 =
ξ2 = ξ3 = ξ ), we get back to the simple case of the pentagon-
only grain boundary (with periodicity p = 1) that, as we
know [34], does not give rise to intervalley scattering. Owing
to the fact that f (ξ,ξ,ξ ) = ξ and g(ξ,ξ,ξ ) = 0 [see Eq. (B4)],
its boundary condition matrix reads

M =

⎡⎢⎢⎢⎣
0 1 0 0

−1 ξ 0 0

0 0 0 1

0 0 −1 ξ

⎤⎥⎥⎥⎦. (18)

But this is natural since in such a case we are effectively
dealing with a grain boundary with periodicity u1 which
maps the projected Dirac points into distinct values of kx ;
see Fig. 2. Similarly, when we set ξ1 = ξ2 = ξ and ξ3 = 0, we
recover the case of the zz(558) grain boundary, which owing
to its periodicity of 2u1 also maps the projected Dirac points
into distinct values of kx , which ends up blocking intervalley
scattering [31–37].

Moreover, there are a few cases where, despite the 3-
periodicity of the grain boundary, intervalley scattering is
suppressed. In these cases, the microscopic details of the
grain boundary, i.e., the precise values of ξ1, ξ2, and ξ3,
force g(ξ1,ξ2,ξ3) = 0, thus forbidding intervalley scattering.
Examples of such cases are ξ3 = −3ξ1 and ξ2 = ξ1; ξ3 =
−ξ1/3 and ξ2 = −ξ1/3; and ξ3 = ξ1 and ξ2 = −3ξ1.
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In the context of the perspective where we consider the grain
boundary to be a finite-width strip with a generalized potential
[see Eq. (6) and end of Sec. II], we show in Appendix C
that the generalized potential originating from the 3-periodic
pentagon-only grain boundary both has valley-preserving
terms [such as V00 (a scalar potential) and V01 (a constant gauge
potential)], and valley-mixing terms (such as V10, V20, V11, and
V21). As a consequence, in general, a 3-periodic pentagon-only
grain boundary will not only generate intervalley scattering,
but it will also prevent the existence of an angle of perfect
transmission (see Appendix C).

C. The transmittance

As discussed in Sec. II we can now compute the trans-
mission and reflection coefficients τ±±, τ±∓, ρ±±, and ρ±∓.
In particular, the transmission probability for an incoming
electron living on the K+ (K−) valley to be transmitted into the
same valley is given by T++ = |τ++|2 (T−− = |τ−−|2), while
the probability for it to be transmitted into the other valley is
given by T−+ = |τ−+|2 (T+− = |τ+−|2).

In Eq. (B6) we write the expressions of the τ++, τ−+, τ+−,
and τ−−, for the 3-periodic pentagon-only grain boundary with
general hoppings (in units of t) ξ1, ξ2, and ξ3. These were
obtained by solving the system of linear equations defined
by 	(x,0+) = M	(x,0−) where M is given by Eq. (17). In
Fig. 4 we have plotted the transmission probabilities T±± and
T±∓ for the case where the hopping parameters are ξ1 = 0.1,
ξ2 = 0.4, and ξ3 = 0.8.

For a 3-periodic pentagon-only grain boundary with the
above hopping parameters, the intervalley scattering is weak,
with the intervalley transmission probabilities being consid-
erably smaller than the valley-preserving ones. However, this
picture can be greatly modified if we choose an appropriate set
of hopping parameters at the grain boundary. As an example,

FIG. 4. Massless Dirac fermions’ transmission probabilities for
the 3-periodic pentagon-only grain boundary in terms of the angle of
incidence, θ . The T−− (T+−) [T−+ (T++)] stands for the probability of
transmission of an incident Dirac fermion living on the K− [K+]
valley to be transmitted into the K− (K+) valley. The hopping
parameters at the grain boundary were set to ξ1 = 0.1t , ξ2 = 0.4t ,
and ξ3 = 0.8t .

FIG. 5. Same as in Fig. 4, but now with the hopping parameters
at the grain boundary set to ξ1 = 1.1t , ξ2 = 0.05t , and ξ3 = 2.2t .

in Fig. 5 we plot the transmission probabilities for a case where
ξ1 = 1.1, ξ2 = 0.05, and ξ3 = 2.2, which shows much stronger
intervalley scattering than Fig. 4.

This robust increase of the intervalley transmission (com-
pare Figs. 4 and 5) can be traced back to a strong amplification
of the terms V10 and V11 of the generalized potential existent
inside the strip that mimics the effect of the grain boundary
in the low-energy limit. Such an amplification (by nearly
two orders of magnitude) gives rise to a set of generalized
potential terms of similar magnitudes, thus increasing the
amount of valley mixing of the eigenmodes living inside
the strip. The stronger the valley mixing of these modes,
the more the electron’s valley quantum number rotates while
propagating inside the strip, and thus more wave function
weight is transferred between valleys while the Dirac fermion
propagates inside the strip.

Finally, we must note that, as we can quickly infer from the
above results (where we have considered different sets of val-
ues for the hopping renormalizations ξi), the scattering proper-
ties of the grain boundary are strongly dependent on the micro-
scopic details at the grain boundary, as previously remarked
by other studies [34,35,37]. Such behavior points towards the
possibility of making use of this kind of nanostructure to
control and explore the valley degree of freedom of graphene.
Chemical decoration of the grain boundary region and appli-
cation of strains and of electric and magnetic fields all likely
modify the electronic scattering off these grain boundaries,
thus suggesting their usage as sensors and current switchers.

IV. CONCLUSION

To close, let us briefly summarize the contents of this paper.
We have started by analyzing in general terms the low-energy
charge carrier transport across zigzag-aligned degenerate 3-
periodic grain boundaries. We have then demonstrated such
results by working out the low-energy charge transport across
a 3-periodic pentagon-only grain boundary. In particular,
starting from its microscopic tight-binding model, we have
derived the boundary condition seen by the massless Dirac
fermions at such grain boundary. With it we have calculated
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the scattering coefficients, from which we concluded that the
valley-preserving and intervalley scattering probabilities are
highly responsive to external manipulation through control of
the grain boundary’s microscopic details. We have also made
use of the generalized potential representation of the grain
boundary to gain insight into the obtained results.
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APPENDIX A: TIGHT-BINDING MODEL

In this appendix we will give details of the derivations
presented in Sec. III A concerning the microscopic tight-
binding model of monolayer graphene with a 3-periodic
pentagon-only grain boundary. The calculations below closely
follow what was done in Ref. [37]. In Sec. A 1 we concentrate
on the calculations leading to the bulk transfer matrix, while
in Sec. A 2 we focus on the calculations giving rise to
the tight-binding boundary condition that originates from
the presence of the 3-periodic pentagon-only grain boundary.

1. The tight-binding equations at the bulk

The matrix WA present in the bulk tight-binding equations
[see Eq. (8)] reads

WA =

⎡⎢⎣ 1 1 0

0 1 1

e3ikxa 0 1

⎤⎥⎦. (A1)

The bulk tight-binding equations [see Eq. (8)] can be cast in
the form [

B(n)

A(n)

]
= Q1

[
A(n)

B(n − 1)

]
, (A2a)

[
A(n)

B(n − 1)

]
= Q2

[
B(n − 1)

A(n − 1)

]
, (A2b)

where the matrices Q1 and Q2 read

Q1 = −
[

ε
t
I3 W

†
A

−I3 0

]
, (A3a)

Q2 = −
[

ε
t
(WA)−1 (WA)−1

−I3 0

]
, (A3b)

with I3 standing for the 3 × 3 unit matrix.
Equation (A2) can be written in the form of a transfer

matrix, as was done in Eq. (9), where the transfer matrix is
given by Eq. (10). The matrix R present in the latter equation
reads

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0

1 0 0 0 0 0

0 0 0 0 1 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A4)

This matrix simply changes from the basis
{B1(n),B2(n),B3(n),A1(n),A2(n),A3(n)} into the basis
{A1(n),B1(n),A2(n),B2(n),A3(n),B3(n)}.

The matrix �(φ) enforcing the basis change that uncouples
the modes of the transfer matrix reads

�(φ) = 1√
3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 − e−i(φ−2π/3)i
√

3
1+eiπ/3 0 e−i2(φ−2π/3)i

√
3

1+e−iπ/3 0

0 1 0 − e−i(φ−2π/3)i
√

3
1+eiπ/3 0 e−i2(φ−2π/3)i

√
3

1+e−iπ/3

1 0 −e−i(φ−π/3) 0 −e−i(2φ+π/3) 0

0 1 0 −e−i(φ−π/3) 0 −e−i(2φ+π/3)

1 0 −e−i(φ+π/3) 0 −e−i(2φ−π/3) 0

0 1 0 −e−i(φ+π/3) 0 −e−i(2φ−π/3)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A5)

where φ = kxa.
In this basis, the three 2 × 2 matrices in the diagonal of the

transfer matrix T̃(ε,kxa) are noted by Th, Tl−, and Tl+. The
matrix

Th(ε,kxa) = 1

1 + eikxa

[
−1 −ε

ε −2 − 2 cos(kxa) + ε2

]
(A6a)

corresponds to the high-energy mode when we are around
kxa = 0. Similarly, the matrices corresponding to the low-
energy modes (one from each Dirac point) read

Tl−(ε,kxa) = ϒ(kx)

[−1 −ε

ε e
−i(kx a− π

3 )−1
f (kx ) + ε2

]
, (A6b)
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Tl+(ε,kxa) = �(kx)

[−1 −ε

ε e
−i(kx a+ π

3 )−1
g(kx ) + ε2

]
, (A6c)

where we have defined ϒ(kx) and �(kx) as

ϒ(kx) = eiπ/3 − e−ikxa

1 − 2 cos(kxa)
, (A7a)

�(kx) = e−iπ/3 − e−ikxa

1 − 2 cos(kxa)
. (A7b)

2. The tight-binding equations at the grain boundary

The matrix σ ′
x present in the tight-binding equations at the

grain boundary region [see Eq. (11)] reads

σ ′
x =

⎡⎢⎣ 0 ξ1 ξ3e
−3ikxa

ξ1 0 ξ2

ξ3e
3ikxa ξ2 0

⎤⎥⎦, (A8)

where ξ1, ξ2, and ξ3 stand for the hopping parameters at the
grain boundary region as represented in Fig. 1.

Equation (11) can be condensed in the form[
B(1)

A(1)

]
= N1

[
A(1)

B(0)

]
, (A9a)

[
A(1)

B(0)

]
= N2

[
B(0)

D(0)

]
, (A9b)

[
B(0)

D(0)

]
= N3

[
D(0)

A(0)

]
, (A9c)

[
D(0)

A(0)

]
= N1

[
A(0)

B(−1)

]
, (A9d)

[
A(0)

B(−1)

]
= N2

[
B(−1)

A(−1)

]
, (A9e)

where the matrices N1, N2, and N3 are 6 × 6 matrices which
read

N1 = −
[

ε
t
I3 (WA)†

−I3 0

]
, (A10a)

N2 = −
[

ε
t
(WA)−1 (WA)−1

−I3 0

]
, (A10b)

N3 = −
[(

ε
t
I3 + σ ′

x

)
I3

−I3 0

]
. (A10c)

The above matrices depend on the reduced energy, ε/t , on
the longitudinal momentum, kx , and on the hopping parameters
at the defect, ξ1, ξ2, and ξ3.

APPENDIX B: THE BOUNDARY CONDITION MATRIX IN THE CONTINUUM APPROXIMATION

When ε → 0 and k → Kν = (0,−1)ν4π/(3
√

3a), the boundary condition matrix (expressed in the basis uncoupling the
modes of the transfer matrix T) M̃ reads

M̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0

−1 − 8
3 (ξ1 + ξ2 + ξ3) 0 2

3 (−ξ1 + ξ2e
−iπ/3 + ξ3e

iπ/3) 0 2
3 (−ξ1 + ξ2e

iπ/3 + ξ3e
−iπ/3)

0 0 0 −eiπ/3 0 0

0 2
3 (ξ1e

iπ/3 + ξ2e
−iπ/3 − ξ3) eiπ/3 − eiπ/3

3 (ξ1 + ξ2 + ξ3) 0 2
3 (ξ1e

iπ/3 − ξ2 + ξ3e
−iπ/3)

0 0 0 0 0 −e−iπ/3

0 2
3 (ξ1e

−iπ/3 + ξ2e
iπ/3 − ξ3) 0 2

3 (ξ1e
−iπ/3 − ξ2 + ξ3e

iπ/3) e−iπ/3 − e−iπ/3

3 (ξ1 + ξ2 + ξ3)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(B1)

In this limit, the 2 × 2 matrixTh describing the high-energy
modes of the transfer matrix T̃ [see Eq. (A6a)] reads

Th(0,0) = −
[

1
2 0

0 2

]
. (B2)

It is then straightforward to understand what will be the
relation between the high-energy modes’ amplitudes L̃(i)
at position i, and the amplitudes L̃(j ) = T̃

n
L̃(i) at position

j = i + n: since 1/2 < 1, the upper high-energy mode, i.e.,

ψhu
= {1,0}T , is going to decrease exponentially with n, while

the lower one, i.e., ψhl
= {0,1}T , is going to exponentially

increase because 2 > 1.
Therefore, the requirement that the wave function be

normalizable implies that L̃(n) must have the form of Eq. (14).
Hence, as described in the main text, we can then eliminate the
high-energy modes from the problem, and write the effective
boundary condition seen by a low-energy electron (hole)
incoming from infinity into the 3-periodic pentagon-only
grain boundary. In particular, the matrix Meff(ε = 0,kxa = 0)
obtained

134201-8



INTERVALLEY SCATTERING OF GRAPHENE MASSLESS . . . PHYSICAL REVIEW B 94, 134201 (2016)

from Eq. (15) reads

Meff =

⎡⎢⎢⎢⎢⎢⎣
0 e−i 2π

3 0 0

−e−i 2π
3 e−i 2π

3 f 0 g∗

0 0 0 ei 2π
3

0 g −ei 2π
3 ei 2π

3 f

⎤⎥⎥⎥⎥⎥⎦, (B3)

where f ≡ f (ξ1,ξ2,ξ3) and g ≡ g(ξ1,ξ2,ξ3) can be written as

f (ξ1,ξ2,ξ3) = ξ 2
1 + ξ 2

2 + ξ 2
3 + (ξ1ξ2 + ξ1ξ3 + ξ2ξ3)

2(ξ1 + ξ2 + ξ3)
, (B4a)

g(ξ1,ξ2,ξ3) = e−iπ/3ξ 2
1 − ξ 2

2 + eiπ/3ξ 2
3 + 2(e−i2π/3ξ1ξ2 + ξ1ξ3 + ei2π/3ξ2ξ3)

2(ξ1 + ξ2 + ξ3)
. (B4b)

The boundary condition seen by the massless Dirac fermions is finally given by substituting Eq. (16) in �(mu1 + u2) =
Meff �(mu1 − u2). Since Kν · u2 = −ν2π/3, such condition can be recast as

	(x,0+) = �Meff(0,0) � 	(x,0−), (B5)

where 	(x,y) = [ψa− ,ψb− ,ψa+ ,ψb+ ]T (we have omitted the dependence of the ψ components on x and y) and � ≡ exp[i 2π
3 τ3 ⊗

σ0]. Equation (B5) can be written as 	(x,0+) = M	(x,0−) with M given in Eq. (17).
Finally, the transmission coefficients τ++, τ+−, τ−+, and τ−− for the 3-periodic pentagon-only grain boundary can be shown

to have the following analytic expressions:

τ−− = −e−iθ sin θ
ξ 2

1 + ξ 2
2 + ξ 2

3 + ξ1ξ2 + ξ1ξ3 + ξ2ξ3 − 4eiθ (ξ1 + ξ2 + ξ3)

−i4(ξ1 + ξ2 + ξ3) + i3ξ1ξ2ξ3 + 2 sin θ
[
ξ 2

1 + ξ 2
2 + ξ 2

3 + (ξ1ξ2 + ξ1ξ3 + ξ2ξ3)
] , (B6a)

τ−+ = e−iθ sin θ
−ei2π/3ξ 2

1 − ξ 2
2 − e−i2π/3ξ 2

3 + 2(e−i2π/3ξ1ξ2 + ξ1ξ3 + ei2π/3ξ2ξ3)

−i4(ξ1 + ξ2 + ξ3) + i3ξ1ξ2ξ3 + 2 sin θ
[
ξ 2

1 + ξ 2
2 + ξ 2

3 + (ξ1ξ2 + ξ1ξ3 + ξ2ξ3)
] , (B6b)

τ+− = eiθ sin θ
e−i2π/3ξ 2

1 + ξ 2
2 + ei2π/3ξ 2

3 − 2(ei2π/3ξ1ξ2 + ξ1ξ3 + e−i2π/3ξ2ξ3)

−i4(ξ1 + ξ2 + ξ3) + i3ξ1ξ2ξ3 + 2 sin θ
[
ξ 2

1 + ξ 2
2 + ξ 2

3 + (ξ1ξ2 + ξ1ξ3 + ξ2ξ3)
] , (B6c)

τ++ = eiθ sin θ
ξ 2

1 + ξ 2
2 + ξ 2

3 + ξ1ξ2 + ξ1ξ3 + ξ2ξ3 + 4e−iθ (ξ1 + ξ2 + ξ3)

−i4(ξ1 + ξ2 + ξ3) + i3ξ1ξ2ξ3 + 2 sin θ
[
ξ 2

1 + ξ 2
2 + ξ 2

3 + (ξ1ξ2 + ξ1ξ3 + ξ2ξ3)
] . (B6d)

It is possible to show that, for the 3-periodic pentagon-only
grain boundary with any hopping parameters values ξ1, ξ2, and
ξ3, the intervalley scattering is always the same for incoming
electrons either living on the valley K− or on the valley K+,
i.e., T+− = |τ+−|2 = |τ−+|2 = T−+.

Similarly, we can also show that τ+−(θ ) = τ−+(π − θ ),
and thus the transmission plots (see Figs. 4 and 5) are always
symmetric (upon interchanging of valley) over the θ = π/2
angle.

APPENDIX C: THE BOUNDARY CONDITION MATRIX IN
TERMS OF THE GENERALIZED POTENTIAL

In this appendix we will show how can we connect the two
perspectives discussed in Sec. II for the low-energy electronic
scattering off a periodic grain boundary. In particular, we
will show how can we compute the generalized potential V
in Eq. (6) in terms of the boundary condition matrix M
originating from the tight-binding model of the grain boundary.

As discussed in Sec. II, in the low-energy continuum limit
of the tight-binding model we can see the grain boundary as
a finite-width strip where the Dirac fermions are governed by

the following Hamiltonian:

H = vF (τ3 ⊗ σ1,τ0 ⊗ σ2) · p + V, (C1)

where the τi and σi (i = 1,2,3) stand for the 2 × 2 Pauli
matrices acting on, respectively, the valley and the pseudospin
degrees of freedom. Similarly, τ0 and σ0 stand for the 2 × 2
identity matrix acting on each of these subspaces. Note that in
the above equation (and in the remaining of this appendix) we
have set � = 1.

The term V in Eq. (C1) stands for a generalized potential
acting on graphene’s massless Dirac fermions. By forcing
this generalized potential V to be Hermitian [see general
expression in Eq. (6)] we ensure that the boundary condition
matrix M conserves the flux, M†JyM = Jy , as required.
Furthermore, the time-reversal invariance of M (whenever
the grain boundary is nonmagnetic) is ensured by requiring
that V is also time-reversal invariant.

Given this, and before proceeding, let us briefly analyze
the effect of each of the terms Vαβ on the eigenmodes living
inside the finite-width strip. The terms V0β act equally on both
valleys. The term proportional to V00 represents an electrostatic
potential analogous to that generated by gating graphene or by
the presence of charge impurities in the vicinity of the graphene
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flake. The term V03 is a mass term equivalent to that originating
whenever the atoms of each sublattice have different on-site
energies. Terms proportional to V01 and V02 are analogous
to the x and y components of a vector potential Ax and Ay

arising from the presence of a magnetic field perpendicular to
the graphene layer. The terms V3β can be viewed as analogous
to those originating from a pseudomagnetic field generated by
deformations of the honeycomb lattice. All the other terms, Viβ

(with i = 1,2 and β = 0,1,2,3), give rise to eigenstates that
live in both valleys simultaneously (see below), thus giving
rise to intervalley scattering.

We will now show how we can express the boundary
condition matrix M in Eq. (2) in terms of the generalized
potential V. We shall start by using the fact that the problem
is translation invariant along the grain boundary direction, ex ,
so that we can write the eigenspinors as

�(x,y) = φ(y)eiqxx, (C2)

which allows us to rewrite Eq. (C1) as

vF

(
τ3 ⊗ σ1qx + τ0 ⊗ σ2(−i∂y) + V

vF

)
φ(y) = εφ(y).

(C3)

This expression can be cast as

∂yφ(y) = iP̂φ(y), (C4)

where the operator P̂ reads

P̂ = τ0 ⊗ σ2

vF

(ε τ0 ⊗ σ0 − vF qx τ3 ⊗ σ1 − V). (C5)

Integrating the differential equation, one obtains the fol-
lowing relation between the two sides of the strip:

φ(W ) = eiW P̂φ(0), (C6)

which, if we take the limit W V → v when W → 0 [34], then
becomes

φ(0+) = Mφ(0−). (C7)

In Eq. (C7) the boundary condition matrix M reads

M = e
−i

τ0⊗σ2
vF

v
, (C8)

with v reading

v =
3∑

α,β=0

vαβτα ⊗ σβ, (C9)

where vαβ = W Vαβ .
The generalized potential V will be Hermitian if all the

vαβ are real numbers. Time-reversal symmetry requires that
v02 = v12 = v22 = v30 = v31 = v33 = 0. Therefore, v reads

v = τ0 ⊗ (v00 σ0 + v01 σ1 + v03 σ3)

+ τ1 ⊗ (v10 σ0 + v11 σ1 + v13 σ3)

+ τ2 ⊗ (v20 σ0 + v21 σ1 + v23 σ3)

+ v32 τ3 ⊗ σ2. (C10)

Thus, the argument of the exponential in Eq. (C8) can be recast
as

− i
τ0 ⊗ σ2

vF

v = − i

vF

[τ0 ⊗ (v00 σ2 − iv01 σ3 + iv03 σ1)

+ τ1 ⊗ (v10 σ2 − iv11 σ3 + iv13 σ1)

+ τ2 ⊗ (v20 σ2 − iv21 σ3 + iv23 σ1)

+ v32 τ3 ⊗ σ0]. (C11)

In order to determine which generalized potential terms are
present whenever we have a boundary condition matrix as that
of Eq. (17) we can use Lagrange-Sylvester interpolation [42],
which allows us to express the function of a diagonalizable
matrix A as

f (A) =
k∑

i=1

f (λi)Ai, (C12)

where λi are the eigenvalues of the matrix A. The matrices Ai

stand for the Frobenius covariants of matrix A [42]. These are
given by

Ai =
k∏

j=1( �=i)

1

λi − λj

(A − λj I ), (C13)

where I identifies the identity matrix.
By computing v = f (M) ≡ ivF ln(M), we will be able

to express the coefficients vαβ as functions of f (ξ1,ξ2,ξ3)
and g(ξ1,ξ2,ξ3) appearing in the expression for the boundary
condition matrix M, Eq. (17). The nonzero terms of the gener-
alized potential originating from the 3-periodic pentagon-only
grain boundary read (the principal value of the logarithm was
taken)

v00 = 1

2

∑
ν=±1

Wν, (C14a)

v01 = 1

4|g|
∑
ν=±1

YνWν, (C14b)

v10 = gr

2|g|
∑
ν=±1

ν Wν, (C14c)

v11 = −gr

4|g|
∑
ν=±1

νZνWν, (C14d)

while v20 = v10 gi/gr and v21 = v11 gi/gr . All the other
potential terms are zero: v03 = v13 = v23 = v32 = 0 (time-
reversal-symmetric); v02 = v12 = v22 = v30 = v31 = v33 = 0
(non-time-reversal-symmetric). Above we have used the defi-
nitions

W± ≡ 1

X±
ln

[
Z± + X±
Z± − X±

]
, (C15a)

X± ≡
√

−4 + f 2
r + |g|2 ± 2fr |g|, (C15b)

Y± ≡ |g|2 ± fr |g|, (C15c)

Z± ≡ fr ± |g|, (C15d)

where |g| ≡
√
g2

r + g2
i , while fr ≡ f (ξ1,ξ2,ξ3),

gr ≡ Re[g(ξ1,ξ2,ξ3)], and gi ≡ Im[g(ξ1,ξ2,ξ3)]; see Eq. (B4).
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We can readily conclude from the above expressions
that, for a general choice of the hopping parameters of the
3-periodic pentagon-only grain boundary, ξ1, ξ2, and ξ3,
the Dirac fermions will feel a generalized potential both
containing terms that do not mix the valleys (namely, v00 and
v01), and terms that do mix valleys (such as v10, v11, v20, and
v21). Let us briefly examine the implications of the presence
and absence of these terms.

Start by noting that when we force ξi → ξ the valley-
mixing terms vanish (i.e., v10,v11,v20,v21 → 0), and only
the valley-preserving terms (v00 and v01) are present inside
the strip. As a consequence, there will be no intervalley
scattering, just as expected: remember that when ξi = ξ

we recover the pentagon-only grain boundary which has
a periodicity that does not map the Dirac points into the
same kxa, thus forbidding low-energy intervalley scatter-
ing [34,35]. This can be also concluded from the bound-
ary condition matrix M expression when ξi = ξ [given
in Eq. (18)]: it has no off-diagonal (intervalley scattering)
elements.

When ξi = ξ there will always be an angle θ̃ with perfect
transmittance, i.e., with T = 1. This can be understood by
noting that for this particular angle of incidence θ̃ it is possible
to perfectly match the wave function immediately inside the
strip (at y = −W/2+) and that immediately outside the strip
(at y = −W/2−) without the need to use reflected modes.
As argued in Ref. [35], we can see this by comparing the
spinors of the modes inside the strip (Dirac modes subject
to a generalized potential with the terms v00 and v01; these
are nonchiral due to v01 �= 0) and the spinor of the incident
mode: for the angle θ̃ the incident mode’s spinor is exactly

equal to that of a positive-propagating mode inside the
strip.

Let us now focus on the valley-mixing terms of the
generalized potential V. Both the terms v10 and v20 give rise
to a shift of the energy cones along the ky direction (which
causes a deflection of the incoming mode), resembling what
happens when a constant gauge potential term v02 is present.
The latter term’s eigenstates (as well as those of v01 terms)
have a well-defined valley quantum number, but are nonchiral
(pseudospin not aligned with momentum). Similarly, the v10

and v20 eigenstates are nonchiral. More importantly, and unlike
what happens with the gauge term v02 (and v01), the terms
v10 and v20 mix the two valleys; i.e., their eigenstates do not
have a well-defined valley quantum number. Similarly, we can
also show that both the terms v11 and v21 open a gap in the
spectrum, resembling what happens when a mass term (i.e.,
v30) is present. However, unlike the latter, the former potential
terms’ eigenstates are both nonchiral and mix the two valleys.

The fact that (for general values of the hopping renormal-
izations ξi) there are valley-mixing potential terms inside the
strip implies that its modes do not have a well-defined valley
quantum number; i.e., strip eigenstates live in both valleys.
Therefore, a wave function (living only on the valley ν = ±)
incoming from y = −∞ will in general require reflected
modes (in both valleys) in order to match the wave function
inside the strip. That is, in general there will not be an angle of
perfect transmission (of low-energy carriers) at the 3-periodic
pentagon-only grain boundary, i.e., T = Tν,ν + T−ν,ν �= 1.
Only for very particular cases, and by fine-tuning the values
of the hopping parameters at the grain boundary, will perfect
transmission occur.
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