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Effective production of orbital quantum entanglement in chaotic quantum
dots with nonideal contacts

E. H. Santos and F. A. G. Almeida
Departamento de Fı́sica, Universidade Federal de Sergipe, 49100-000 São Cristóvão, Sergipe, Brazil
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We study orbital entanglement production in a chaotic quantum dot with two-channel leads by varying the
opacity of the contacts in the unitary and orthogonal Wigner-Dyson ensembles. We computed the occurrence
probability of entangled states (squared norm) and its concurrence (entanglement level). We also define an
entanglement production factor to properly evaluate the entanglement behavior in the system considering effective
aspects. The results are numerically obtained through (i) integrations over random matrix ensembles (exact results)
for the scenario of one contact ideally fixed and (ii) random matrix simulations for arbitrary contact opacities
(sampling). Those outcomes are in mutual agreement and indicate that the optimum effective production of
orbital entanglement is achieved when both contacts are ideal and the time-reversal symmetry is broken.
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I. INTRODUCTION

Entanglement is an exclusive intriguing quantum feature
and has no correspondent in classical physics [1,2]. One system
is said to be entangled if it is uniquely described by one single
nonseparable wave function. In other words, it is impossible
to represent each particle (or subsystem) individually by a
quantum state in an entangled system. It is not easy to actually
probe and control entanglement [3] and, besides being highly
relevant on its own, it has also been widely investigated as
a resource in quantum information processing protocols [4],
such as quantum cryptography [5,6], quantum communication
[7,8], and quantum simulation [9].

Thereby, developing reliable methods for entanglement
production and manipulation in solid state systems is of great
interest [10–24]. Special attention has been given to using
charge carriers (e.g., electrons) as a resource for entanglement.
For instance, the electron entanglement can be used in a circuit
element of a quantum information processor allowing the
entanglement production to provide the teleportation of qubit
states across a chip [25]. Recently, Bell inequality has been
studied for electrons separated by 1.3 km [26].

Quantum dots are composed of a metal grain connected
to two point contacts through which a current is generated
[27]. This setup can be seen as an open cavity (scattering
center) attached to two leads (wave guides). A scheme for
this model is illustrated in Fig. 1. Experimentally, it takes
a lot of effort to actually produce quantum dots featuring
a particular shape. For this reason, it is more realistic to
deal with generic quantum dots, which can be modeled as
chaotic cavities. This framework can be further generalized
when one considers nonideal contacts. Thus, the probability
for electrons to tunnel through a barrier in the lead is given by
its transparency. Moreover, a quantum dot has been proposed
as a quantum entangler of electrons in mesoscopic systems
[18]. The main idea is that the incoming amplitudes of the two
electrons are mixed by the quantum dot (scattering process),
producing an output two-electron state that can be either
orbitally entangled (one of the electrons is reflected while
the other is transmitted) or not (both of them reflected or
transmitted). This orbital entanglement has been theoretically
investigated in the presence and absence of time-reversal

symmetry (TRS) [13,28–30] through a bipartite-entanglement
quantifier, such as concurrence [31]. However, because the
scattering process is chaotic, the output state is random and
the entanglement quantifier has no sense if the entangled state
does not occur. The probability that the entangled output state
occurs is given by its squared norm. This quantity and its
correlation with the concurrence are investigated in previous
works [29,30]. However, it is necessary to establish another
parameter that takes into account the entanglement production
in an effective way, combining simultaneously the squared
norm and the concurrence. In this work we present a quantity
with this purpose, namely entanglement production factor,
which embodies a suitable framework to study entanglement
generation in the quantum dot. Moreover, it allows us to
find a different scenario for optimization of the effective
orbital entanglement production that has not been addressed
in previous works. The results are numerically obtained by
means of integrations over random matrix ensembles (exact
results) for the scenario of one contact ideally fixed and through
random matrix simulations for arbitrary contact opacities
(sampling).

This paper is organized as follows. In Sec. II we introduce
the general framework for studying entanglement production
in quantum dots. We provide some probabilistic considerations
about the quantities involved in the entanglement production
in Sec. III. The exact approach is discussed in Sec. IV. In
Sec. V we outline the numerical procedure used here. Our
main results are shown in Sec. VI and in Sec. VII we draw out
our conclusions.

II. PHYSICAL SETUP

We begin with a simple model for a two-lead quantum
dot (see Fig. 1) based on Ref. [28]. An electron can tunnel
through each contact with a certain rate given by the α-
contact transparency �α , with α = 1 or 2. The opacity γα is
then oppositely defined as γα = √

1 − �α . Once the electron
reaches the chaotic cavity, it may be reflected to the same lead
or transmitted to another.

The scattering matrix (S matrix) relates the output am-
plitudes with the incoming ones and defines how they are
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FIG. 1. Schematic drawing of a quantum dot attached to two
leads. Each lead features a given opacity value γ . The current can
flow when a voltage is applied to the contacts. The circle denotes the
scattering chaotic cavity with β symmetry.

distributed in each channel. Note that the S matrix is unitary
[32] (S−1 = S†) since the current must be conserved. This
matrix is given from the series association of the three
scattering centers of the system, namely contact 1, chaotic
cavity, and contact 2, respectively. The chaotic cavity has
a corresponding scattering matrix S0, which is random and
governed by the circular Wigner-Dyson ensembles. In this pa-
per we consider two different ensembles: orthogonal (β = 1)
and unitary (β = 2). The circular orthogonal ensemble rep-
resents the electron dynamics in chaotic cavity with time-
reversal and spin-rotation invariance, while the unitary circular
ensemble is related to the broken time-reversal invariance. The
spin-rotation invariance is irrelevant for β = 2. For β = 1 the
matrix S0 must also be orthogonal (S0 = ST

0 ), while for β = 2
it is solely unitary. The effective S matrix for the whole system
can then be expressed as [33,34]

S =
(

r t′
t r′

)
= R + T(1 − S0R)−1S0T, (1)

where the elements of r and t (r′ and t′) are 2 × 2 blocks of
reflection and transmission, respectively, for electrons coming
from the left (right) lead. Furthermore, T = diag(t1,t1,t2,t2)
and R = diag(r1,r1,r2,r2) stand out as deterministic matri-
ces associated with the contacts, where rα = iγα and tα =√

1 − γ 2
α for contact α. The eigenvalues of the transmission

matrix t†t, τ1 and τ2, yield the general properties of quantum
transport [27,35].

The entangled output state can be generated if two electrons
occupy different leads after the scattering process. The chance
that this state occurs is given by its squared norm [29]

N = τ1 + τ2 − 2τ1τ2. (2)

On the other hand, an appropriate entanglement quantifier
for this bipartite state is the concurrence [31], which for this
system can be expressed by [18]

C = 2

√
(1 − τ1)τ1(1 − τ2)τ2

τ1 + τ2 − 2τ1τ2
. (3)

Furthermore, N and C are correlated through the rule [29]
N (1 + C) < 1. Thereby we can define an entanglement
production factor,

η ≡ NC = 2
√

(1 − τ1)τ1(1 − τ2)τ2, (4)

which provides a better signature for entanglement production,
since C does not yield an appropriate description when the
output state featuring two electrons occupying different leads
does not occur. For instance, if τ1 = τ2 = 0 or 1, C = 1, while
N = 0. In this situation, although the concurrence reaches its
maximum value, entanglement is not generated. Indeed, in this
case we have η = 0. On the other hand, if τ1 = 0 and τ2 = 1,
C = 0, while N = 1, meaning that the state corresponding
to one electron at each lead certainly occurs. However, this
state is separable and then, again, there is no entanglement
production (η = 0). Therefore, one can assume that η measures
the effective orbital entanglement production. A more detailed
interpretation of η is presented in Sec. III.

Due to the chaotic nature of the system, one cannot precisely
predict the output state after electrons have gone through the
scattering process. Consequently, the transmission eigenvalues
are random variables and thus it becomes necessary to perform
a statistical analysis of C, N , and η in order to properly
understand the entanglement properties of this system. This
is carried out in the following sections.

III. PROBABILISTIC CONSIDERATIONS ABOUT
THE ENTANGLEMENT PRODUCTION

For a more formal justification of η definition, we rely on
the probability theory. First, we consider an output scattered
state given by

|out〉 = A20|2,0〉 + A11|1,1〉 + A02|0,2〉, (5)

where |n1,n2〉 is the normalized state for nj electrons in the
guide j . Alternatively, the state |out〉 can also be represented
in terms of the occupation in the channels of each guide
|n11n12,n21n22〉, with njl being the number of electrons in
the channel l of the guide j (see Fig. 1).

The situation in which there are electrons in only one of the
guides corresponds to one of the states |2,0〉 = |11,00〉 and
|0,2〉 = |00,11〉, which are separable.

On the other side, the case in which there is one electron in
each guide corresponds to the state |1,1〉, which is an overlap
of the states |10,10〉, |10,01〉, |01,10〉, and |01,01〉, in which
the individual states of each guide are qubits, |10〉 and |01〉.
Because concurrence is an entanglement quantifier of bipartite
states [31], it only measures the entanglement between the
orbitals of the two guides when there is only one electron
in each guide. Thus, in order to quantify the entanglement of
qubits in this system, it is necessary to determine the projection
of the total output state onto the state |1,1〉. Let us denote
this projection state by |qubits〉 = |1,1〉〈1,1|out〉 = A11|1,1〉.
Notice that N = |A11|2 is the squared norm presented in
Eq. (2).

Reference [36] presents a probabilistic interpretation for
the concurrence by showing numerically that this quantity can
be obtained through a subtraction of probabilities. Below is an
overview of this interpretation based on the state |1,1〉.

To obtain the concurrence of this state one needs a unitary
transformation in which

U|1,1〉 =
√

PEC|EC〉 +
√

PDC|DC〉,
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where

|EC〉 = 1√
2

(
eiαEC |10,10〉 + eiγEC |01,01〉), (6)

|DC〉 = 1√
2

(
eiαDC |10,01〉 + eiγDC |01,10〉). (7)

Here |EC〉 (|DC〉) is the state for electrons occupying equiv-
alent (distinct) channels in their respective guides with equal
probability. Moreover, αEC,γEC,αDC, and γDC are parameters
of the transformation operator U. Notice that |EC〉 and |DC〉
are maximally entangled (C = 1), and for particular values
of the parameters of U those states correspond to Bell states.
Then, PEC and PDC are the probabilities related to the states
|EC〉 and |DC〉, respectively. Although there are more than
one transformation that satisfy these conditions, the Wooters
concurrence C corresponds to the higher value of |PEC − PDC|
among all possible transformations:

C = max |PEC − PDC|.
Let us now review this probabilistic interpretation for

the quantification of entanglement taking into account that
although the state |1,1〉 is normalized, the projection of
the output state results in a nonnormalized state: |qubits〉 =
A11|1,1〉. Applying the unitary operation yields

U|qubits〉 = A11U|1,1〉 = A11

√
PEC|EC〉 + A11

√
PDC|DC〉.

Hence, we notice that the probabilities related to the states
|EC〉 and |DC〉 are NPEC and NPDC, respectively. This result
can be understood with the fundamentals of probability theory
(more specifically, conditional probability).

The probability of a qubit state (one electron in each guide)
after scattering occurs is given by P (qubits) = ||qubits〉|2 =
|A11|2 = N . If this state occurs, then we apply the transfor-
mation U generating an overlap of states with conditional
probabilities P (EC|qubits) = PEC and P (DC|qubits) = PDC.
Therefore, the joint probability of qubit states occurring after
scattering and the U transforms this state to |EC〉 is given by

P (qubits, DC) = P (qubits)P (EC|qubits) = NPEC.

Similarly, for U to generate the state |DC〉,
P (qubits,DC) = P (qubits)P (DC|qubits) = NPDC.

By maximizing the absolute value of subtraction of joint
probabilities, it follows that

max |P (qubits,EC) − P (qubits,DC)| = N max |PDC − PDC|
= NC = η.

Notice that since the qubits state is not normalized, the
maximization of the absolute value of the subtraction of
probabilities did not generate C, as it did for the normalized
state |1,1〉. The following conclusions can be determined by
analogy to the considerations of the probability theory: (i) N

is the probability of qubits state (one electron in each guide)
occurring after scattering, (ii) C is the entanglement factor
conditioned to the occurrence of qubits state after scattering,
and (iii) η = NC corresponds to the joint entanglement factor
which involves simultaneously the occurrence of qubits state
and how entangled it is. This probabilistic interpretation

reinforces the idea presented in the previous section, that is,
η is the effective quantifier for the production of the orbital
entanglement in this system, which is more convenient than
the concurrence, since entanglement only exists if the state of
one electron in each guide occurs.

IV. EXACT APPROACH

Let us assume the scenario where one contact is ideal and
the other has arbitrary opacity: either γ1 = 0 and γ2 = γ or
γ1 = γ and γ2 = 0. In this situation, the joint probability
density functions (JPDFs) of transmission eigenvalues are
known for orthogonal [37] and unitary [30] ensembles. We
denote these JPDFs by P (β)

γ (τ1,τ2) so that

P (1)
γ (τ1,τ2) = (γ 2 − 1)8 ∑4

i,j=0 Aij (γ )(1 − τ1)i(1 − τ2)j

[1 − γ 2(1 − τ1)]6[1 − γ 2(1 − τ2)]6
,

(8)

where Aij are the elements of the matrix

A =

⎛
⎜⎜⎜⎝

0 0 6 12γ 2 2γ 4

0 −12 −12γ 2 52γ 4 12γ 6

6 −12γ 2 −108γ 4 −12γ 6 6γ 8

12γ 2 52γ 4 −12γ 6 −12γ 8 0
2γ 4 12γ 6 6γ 8 0 0

⎞
⎟⎟⎟⎠

and

P (2)
γ (τ1,τ2) = 3

4
(1 − γ 2)5 |τ1 − τ2|√

τ1τ2

×1 + 2
3γ 2(2 − τ1 − τ2) + γ 4(1 − τ1)(1 − τ2)

[1 − γ 2(1 − τ1)]7/2[1 − γ 2(1 − τ2)]7/2
.

(9)

Using those JPDFs one can obtain the average of an
arbitrary function of τ1 and τ2, F (τ1,τ2),

〈F 〉 =
∫ 1

0

∫ 1

0
F (τ1,τ2)P (β)

γ (τ1,τ2)dτ1dτ2, (10)

or its probability density function (PDF), P (F ) =
〈δ[F − F (τ1,τ2)]〉,

P (F ) =
∫ 1

0

∑
τ̃2

P (β)
γ (τ1,τ̃2)∣∣ ∂F (τ1,τ2)
∂τ2

∣∣
τ2=τ̃2

∣∣dτ1, (11)

where τ̃2 = τ̃2(F,τ1) are the roots of F = F (τ1,τ2) for fixed
τ1 and F .

Since N , C, and η are functions of τ1 and τ2, we compute
their averages and PDFs through Eqs. (10) and (11) via
numerical integration. One can find analytical results for
P (1)

γ (C) in Ref. [37]. Moreover, Ref. [30] contains analytical
derivations for the JPDF of C and N for β = 2.

V. NUMERICAL SIMULATION

Since the JPDF of the transmission eigenvalues is unknown
for arbitrary γ1 and γ2, the exact PDFs of C, N , and η

cannot be obtained through the steps outlined in the previous
section. However, numerical simulations based on random
matrix theory can be useful to overcome this issue with a great
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FIG. 2. Average concurrence versus opacities for (a) β = 1 and
(b) β = 2.

level of precision and efficiency. In the following, we provide
a simple and brief description of the algorithm used for the
simulation. A more detailed explanation for this method can
be found in Refs. [28,34,38].

The first step is to set the main parameters β, γ1, and γ2.
Right after that, S0 is randomly generated by the routine found
in Ref. [39]. The S matrix is obtained through Eq. (1) and
then the transmission eigenvalues τ1 and τ2 are computed.
Using Eqs. (2), (3), and (4) we finally obtain C, N , and η.
The corresponding averages and PDFs are extracted through
several realizations of this algorithm.

VI. RESULTS AND DISCUSSION

Our results are disposed into three groups. Section VI A
presents general results for two contacts with arbitrary opac-
ities while in Sec. VI B we choose one of the contacts to be
ideally fixed. In Sec. VI C we discuss the results for symmetric
contacts.

A. Contacts with arbitrary opacities

Now we run the protocol described in the previous section,
sample-by-sample, in order to discuss the behavior of the
concurrence, squared norm, and entanglement factor for
different opacity configurations. A similar analysis of the
average concurrence for β = 1 and 2 can be found in Ref. [28].

The behavior of 〈C〉 is illustrated in Fig. 2. Note that the
maximum value of the average concurrence increases with β

and it takes place when one contact is opaque and the other
is ideal (see Table I). Results for 〈N〉 are depicted in Fig. 3,
which shows that its values increases with β too. Moreover,
its maximum occurs for ideal contacts in both β values. A
similar feature can be observed in Fig. 4 for 〈η〉, thus indicating
that the maximum entanglement production occurs for ideal
contacts. Furthermore, Fig. 4 shows that 〈η〉 is greater for a
fixed ideal contact than for symmetrical contacts. This feature

TABLE I. Maximum values of 〈C〉, 〈N〉, and 〈η〉 for β = 1,2
symmetries including their respective γ2 value for γ1 = 0.

β (γ2,〈C〉) (γ2,〈N〉) (γ2,〈η〉)
1 (1,0.44) (0,0.60) (0,0.20)
2 (1,0.50) (0,0.67) (0,0.23)

FIG. 3. Average squared norm versus opacities for (a) β = 1 and
(b) β = 2.

suggests that in order to carry out a thorough analysis on the
maximization of entanglement production, it becomes more
appropriate to work along the curve with a single ideal contact.

B. One ideal contact

Taking into account what was discussed in the previous
Sec. VI A, here we consider a single ideal contact and analyze
the optimization of entanglement production as we tune
the opacity of the other. For simplicity we set γ1 = 0
since the physical quantities studied here are invariant under
the exchange of the guides. Some properties of this situation
are available in Refs. [28–30,37]. This paper is in accordance
with their results and includes the analysis of η, which allows
us to get more information about the entanglement production.

Figures 5(a) and 5(b) address the behavior of 〈C〉 and
〈N〉, respectively. The average concurrence and squared norm
take higher values for β = 2. Note that, regardless of β, the
average concurrence (squared norm) reaches its maximum
when the second contact is opaque (ideal). It means that most
entangled states are prone to occur with lower probabilities.
Nevertheless, probability embodies a great significance for an
effective entanglement production.

As discussed in Sec. II, η stands out as a convenient
parameter as it simultaneously gives us information about
the entanglement degree and probability. Its average is shown
in Fig. 5(c), at which it is clear that 〈η〉 is a monotonically
decreasing function of γ2 for β = 1 and β = 2. Moreover,

FIG. 4. Average entanglement factor versus opacities for (a)
β = 1 and (b) β = 2.
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FIG. 5. Averages of (a) concurrence, (b) squared norm, and (c) entanglement production factor versus the opacity of contact 2. Contact 1
is fixed as ideal (γ1 = 0). Solid lines represent numerical integration of Eq. (10) while scatter plots address the simulation data.

〈C〉, 〈N〉, and 〈η〉 have higher magnitudes for β = 2. Thereby
breaking the TRS is the best way to drive the entanglement
production. Maximum values of 〈C〉, 〈N〉, and 〈η〉 are available
in Table I.

In order to carry out a more detailed analysis, we also
compute the PDFs, which are exposed in Fig. 6 for γ1 = 0 in
both symmetric cases. From Fig. 6(a) it is clear that the PDF
of C becomes more sensitive to γ2 when β = 2. Figure 6(b)
shows P (N ) can assume an irregular shape, especially for
β = 1 and small γ2 values. The shape of P (N ) becomes more
regular as β and γ2 increase. It is worth mentioning there is a
singularity when N = 1

2 . This can be predicted theoretically
[38] by evaluating N as a function of τ1 and τ2 [see Eq. (2)]: a
singularity can take place when ∂N

∂τ1
= 0 = ∂N

∂τ2
, implying τ1 =

τ2 = 1
2 = N . Furthermore, Fig. 6(c) shows that the maximum

value of η is 1
2 , in agreement with Eq. (4), since η reaches its

maximum when τ1 = τ2 = 1
2 = η.

C. Reasonable entanglement production for nonideal contacts

Previously we addressed the scenario of a single ideal con-
tact. Although results show that the maximum entanglement
production occurs for two ideal contacts with broken TRS,

Fig. 4 shows that 〈η〉 has small variations in regions not so
far from its maximum (ideal contacts) for β = 2. This feature
is particularly important since it is difficult to produce ideal
contacts. However, a 〈η〉 value near to its maximum (ideal
contacts) can be obtained by means of a remarkable decrease
in the transparency values of the contacts. For instance, setting
γ1 = γ2 = 0.312 for broken TRS is equivalent to a 9.73%
transparency reduction of the contacts compared to the ideal
case (� = 1 − γ 2). This configuration produces 〈η〉 = 0.227,
which represents only 2% loss compared to its highest value.
This property can motivate an experimental implementation
of the contacts with no major losses in the entanglement
production.

In addition to averaging out the quantities of interest, it
is also important to check what happens to the PDFs in
this situation. Again, we choose γ1 = γ2 = 0.312 to perform
this analysis. Figure 7 shows the PDFs for C, N , and η

compared to the case of ideal contacts. We see that these
functions are less sensitive to the opacity from about 0 to
0.327, especially P (C). Considering that the PDF carries full
statistical information of a random variable, this feature con-
firms the good strategy to produce entanglement for nonideal
contacts.

FIG. 6. PDFs of (a) concurrence, (b) squared norm, and (c) entanglement production factor. One of the contacts is ideal (γ1 = 0), while
the other has an opacity γ2 represented by the numbers labeling the curves. The two symmetries are in order from top to bottom. Solid lines
represent numerical integration of Eq. (11), while scatter plots represent simulation data.
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FIG. 7. PDFs of (a) concurrence, (b) squared norm, and (c) entanglement production for β = 2 and symmetric contacts γ = γ1 = γ2. Solid
lines represent numerical integration of Eq. (11), while scatter plots represent simulation data. Dashed lines are merely guides for the eye.

VII. CONCLUSIONS

We studied the statistics of orbital entanglement production
in a chaotic quantum dot with nonideal leads for orthogonal
and unitary Wigner-Dyson ensembles. There is a noteworthy
agreement between the results obtained through numerical
integration (exact results) and simulation (sampling). We
showed that the concurrence is maximized when one of
the contacts is ideal and the other is opaque, in agreement
with a previous work [28]. However, in this situation the
transmission eigenvalues are null, τ1 = τ2 = 0, and thus the
squared norm and entanglement production factor as well,
N = 0 = η, thereby asserting that entanglement production is
not effective in this situation. On the other hand, for β =
1 and 2, maximum entanglement production occurs when
the two contacts are ideal, yielding 〈η〉 ≈ 0.20 and 0.23,
respectively. Therefore, broken TRS is far more efficient
for entanglement production. In addition, if the contacts are
ideal the entanglement production is barely affected to small

variations in the transparency of the contacts. This feature
suggests that even for nonideal high-transparency contacts, it
is still possible to produce entanglement close to its maximum.

It is important to reinforce that the study presented in
this paper is valid for conductors whose phase coherence of
charge carriers is preserved. Although it is possible to study
quantum transport in systems with few scattering channels in
experiments, it is not possible to neglect decoherence effects
[40]. Consequently, we believe that an important future work is
the study of the properties of orbital entanglement in quantum
dots taking into account decoherence effects.
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