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Role of interlayer coupling for the power factor of CuSbS2 and CuSbSe2
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The electronic and transport properties of bulk and monolayer CuSbS2 and CuSbSe2 are determined by
using density functional theory and semiclassical Boltzmann transport theory, in order to investigate the role
of interlayer coupling for the thermoelectric properties. The calculated band gaps of the bulk compounds are
in agreement with experiments and significantly higher than those of the monolayers, which thus show lower
Seebeck coefficients. Since also the electrical conductivity is lower, the monolayers are characterized by lower
power factors. Therefore, interlayer coupling is found to be essential for the excellent thermoelectric response of
CuSbS2 and CuSbSe2, even though it is weak.
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I. INTRODUCTION

CuSbS2 and CuSbSe2 are currently being discussed as
promising materials for solar cell applications due to their
high absorption coefficients, nontoxic nature, low cost (abun-
dant elements), and environmental friendliness [1,2]. The
thermoelectric properties have been studied only recently,
demonstrating high values of the Seebeck coefficient (S) and
power factor (S2σ ), where σ is the electrical conductivity [3,4].
Thermoelectric devices can be used for energy harvesting by
converting waste heat into electricity and can find applications
in electronic refrigeration, for example [5]. The efficiency of a
thermoelectric material is characterized by the dimensionless
figure of merit ZT , where T is the temperature and Z =
S2σ/κ , with thermal conductivity κ being the sum of electronic
(κe) and lattice (κl) contributions. A high value of ZT therefore
requires high S2σ and low κ . Since both S and σ are given
by the band structure and vary oppositely under doping [6],
good thermoelectric properties are often found in narrow band
gap semiconductors with a rather small amount of available
charge carriers, such as CuBiS2 [7], CuGaTe2 [4], PbTe [8],
and Bi2Te3 [9].

In general, the behavior of a thermoelectric material is
determined by the dominating scattering mechanism [10].
Only few materials exist with ZT � 1 before nanostructuring
and/or optimization of the carrier concentration to increase
S2σ [11,12]. Nanostructuring is an effective tool to boost the
thermoelectric performance, because κl can be reduced by
enhancing the phonon scattering [13,14]. For the same reason,
two-dimensional semiconductors are promising materials for
thermoelectric devices [15–17]. In nanostructured Bi2Se3,
for example, ZT can be enhanced by 40% as compared
to the bulk [18,19], nanocrystalline Bi0.52Sb1.48Te3 shows
an improvement of more than 50% [20], and in monolayer
SnSe the maximal ZT value as a function of the chemical
potential can be several times that of the bulk material [21].
Recent investigations have demonstrated also for other layered
compounds that thermoelectric behavior can be strongly
modified in a monolayer geometry, for example, in the cases
of MoS2 and WS2 [22]. For this reason, in the present paper
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we use first-principles calculations along with semiclassical
Boltzmann transport theory to compare the electronic and
thermoelectric properties of bulk and monolayer CuSbS2 and
CuSbSe2 (see Fig. 1).

II. METHODOLOGY

First-principles calculations employing the WIEN2k code
[23] are performed to optimize the lattice parameters (see the
results in Table I) and atomic positions of bulk CuSbS2 and
CuSbSe2 (starting from the values given in Refs. [24,25]) until
the forces acting on the atoms have decreased to less than
0.01 eV/Å. The obtained a and b lattice parameters are used
for building the monolayers, for which the atomic positions are
optimized again. The spin orbit coupling can play an important
role for the electronic structure in the case of heavy elements
and thus is taken into account in our calculations. We use
the modified Becke-Johnson (mBJ) method [26], because it
is known to provide accurate band gaps for semiconductors
[27,28], and include the van der Waals interaction by means of
the approach of Ref. [29]. For the Brillouin zone integration
in the bulk and monolayer cases, respectively, 7 × 12 × 3 and
13 × 8 × 1 k meshes are used. The energy cutoff is given by
RmtKmax = 7 and muffin-tin radii of 2.27aB , 2.47aB , 1.85aB ,
and 2.11aB are employed for Cu, Sb, S, and Se, respectively.
In addition, the wave functions inside the atomic spheres are
expanded up to �max = 10 and the Fourier expansion of the
charge density is limited by setting Gmax = 12.

The transport properties are calculated by solving the Boltz-
mann transport equation within the rigid band (which assumes
that the band structure of the host is not altered by doping, and
only the chemical potential changes) and constant relaxation
time (which assumes that the relaxation time has no energy
dependence, which is valid for temperatures up to about 700 K
[4]) approximations, as implemented in the BoltzTraP code
[30]. Dense 52 × 85 × 22 (bulk) and 98 × 62 × 1 (monolayer)
k meshes are used to obtain accurate carrier group velocities,
which determine the transport properties. This approach has
been employed successfully in previous studies to screen
the potential candidates of thermoelectric materials [31–33].
Using the transport function σ (E) = N (E)v2(E)τ , which
depends on the density of states N (E), Fermi velocity v(E),

2469-9950/2016/94(12)/125440(6) 125440-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.94.125440
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FIG. 1. Crystal structure of bulk and monolayer CuSbX2 (X = S
and Se).

and relaxation time τ , we have

σ (T ) = −e2
∫ ∞

−∞
dE σ (E)

df (E − μ,T )

dE
, (1)

S(T ) = − e

T σ (T )

∫ ∞

−∞
dE σ (E)(E − μ)

df (E − μ,T )

dE
, (2)

and

κe(T ) = − 1

T

∫ ∞

−∞
dE σ (E)(E − μ)2 df (E − μ,T )

dE
, (3)

where μ is the chemical potential and f is the Fermi function
[34].

III. RESULTS AND DISCUSSION

Bulk CuSbS2 and CuSbSe2 are orthorhombic with space
group Pnma (No. 62) and have four Cu, four Sb, and eight
S/Se atoms in the unit cell (see Fig. 1). The optimized
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FIG. 2. Band structure and density of states of bulk and monolayer CuSbS2 and CuSbSe2.
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TABLE I. Lattice parameters and band gaps of CuSbS2 and
CuSbSe2.

CuSbS2 CuSbSe2

Bulk Monolayer Bulk Monolayer

a (Å) 6.06 6.06 6.50 6.50
b (Å) 3.82 3.82 4.01 4.01
c (Å) 14.26 14.87
Eg (GGA) 0.74 0.34 0.49 0.15
Eg (mBJ) 1.02 0.47 0.78 0.21
Eg (Expt.) 1.38 [37] 1.05 [37]

distance between the Sb atoms of neighboring atomic layers
is 2.00 and 2.08 Å for CuSbS2 and CuSbSe2, respectively, in
reasonable agreement with the experimental values (2.05 and
2.14 Å [35]). The band structures and densities of states in
the top row of Fig. 2 show that the valence band is composed
mostly of Cu states and the conduction band of Sb states.
The band gap is found to be indirect, in agreement with the
theoretical results in Refs. [4,36] and the experimental results
in Refs. [37,38]. The bottom row of Fig. 2 addresses CuSbS2
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FIG. 3. Seebeck coefficient, electrical conductivity, electronic
contribution to the thermal conductivity, and power factor as a
function of the hole (p) and electron (n) densities for bulk CuSbS2

(solid line) and CuSbSe2 (dashed line).

and CuSbSe2 monolayers. We find direct (CuSbS2) and
almost direct (CuSbSe2) band gaps at the � point, which are
smaller than those of the bulk compounds, in agreement with
Ref. [39] for CuSbS2. This behavior is different from MoS2,
for example, where the band gap increases in a monolayer.
In MoS2, the S atoms are located at the van der Waals gap,
whereas the local environment of the Mo atoms is the same in
the bulk compound and monolayer. As a consequence, the S
dominated valence band edge is shifted to lower energy in the
monolayer but not the Mo dominated conduction band edge.
In CuSbS2 and CuSbSe2, on the other hand, both S/Se and Sb
atoms are located at the van der Waals gap so that a similar
effect does not appear. Table I summarizes the calculated and
experimental band gaps of bulk and monolayer CuSbS2 and
CuSbSe2. The results show that the mBJ method provides
much better agreement of the band gaps with experiments
than the generalized gradient approximation (GGA) within
the Perdew-Burke-Ernzerhof parametrization.

Since the BoltzTraP code calculates the transport coeffi-
cients relative to the relaxation time, we determine τ = 1.1 ×
10−14 s for both CuSbS2 and CuSbSe2 from the experimental
mobility of μ = 20 × 10−4 m2/V s [2,40], using ne2τ/m =
σ = neμ. Figure 3 shows the variation of S under hole and
electron doping of bulk CuSbS2 and CuSbSe2. The absolute
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FIG. 4. Seebeck coefficient, electrical conductivity, electronic
contribution to the thermal conductivity, and power factor as a
function of the hole (p) and electron (n) densities for monolayer
CuSbS2 (solid line) and CuSbSe2 (dashed line).
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FIG. 5. Power factor of bulk and monolayer CuSbS2 and CuSbSe2

at the hole concentration that maximizes the value at 300 K in each
case.

value of S decreases in both cases with increasing doping
and is always higher at 500 K than at 300 K by a similar
amount, except for high doping. Our results for bulk CuSbS2

are quantitatively similar to those of the calculations reported
in Ref. [4], and the value of S = 300 μV/K obtained for bulk
CuSbSe2 at 300 K and a hole doping of 5.2 × 1019 cm−3

agrees well with experiment (S = 375 μV/K) [3]. We further
observe that σ increases in both compounds with the doping
(see Fig. 3) being higher for electron than for hole doping
and showing almost no temperature dependence. As a result,
S2σ increases in each case towards a maximum at high
doping, with electrons behaving favorably over holes. We
note that beyond the constant relaxation time approximation,
increasing carrier concentration and temperature will lower
τ and therefore will enhance S2σ . We have also calculated
the thermoelectric properties of bulk and monolayer CuSbS2

by artificially increasing the band gap by 0.3 eV and find
only a small effect on the data. Therefore, the exact value of
the band gap is not critical for predicting the thermoelectric
performance in the range of carrier concentrations under
investigation.

Figure 4 shows for monolayer CuSbS2 and CuSbSe2 that
the absolute value of S decreases for increasing doping above
a certain threshold, being again higher at 500 K than at 300 K,
as expected. The hole and electron densities given in Fig. 4
are obtained from the areal densities of the two-dimensional
materials by multiplication with the thickness of the monolayer
(5.20 Å for CuSbS2 and 5.47 Å for CuSbSe2) in order to
enable comparison with the bulk results in Fig. 3. There
are no experimental data for the monolayers available for
comparison. Also in the monolayer case σ increases with
the doping, showing hardly any difference between CuSbS2

and CuSbSe2 (and being smaller than in the bulk because
of modified dispersions at the valence and conduction band
edges; see Fig. 2). As a consequence, the trends observed for
S2σ agree qualitatively with those discussed previously for
the bulk compounds. However, the values are reduced because
of lower values of σ . Figure 5 presents S2σ as a function
of the temperature at the hole concentration that maximizes
the value at 300 K (6 × 1020 cm−3 for bulk and monolayer
CuSbS2, 5 × 1020 cm−3 for bulk and monolayer CuSbSe2,
respectively). We observe that the curves are almost identical

for CuSbS2 and CuSbSe2 in the whole temperature range,
being significantly lower for the monolayers than for the bulk
compounds.

IV. CONCLUSION

First-principles calculations have been combined with
Boltzmann theory to study the electronic and transport
properties of bulk and monolayer CuSbS2 and CuSbSe2. The
electronic band structures turn out to be similar for the two
bulk compounds and for the two monolayers. However, the
nature of the band gap switches from indirect in the bulk
to direct in the monolayer case. Interestingly, the band gap
is smaller in the monolayers than in the bulk compounds,
because both S/Se and Sb atoms are located at the van
der Waals gap of the layered structure so that the valence
and conduction band edges are similarly affected by the
transition into a two-dimensional geometry. This behavior
distinguishes CuSbS2 and CuSbSe2 significantly from other
two-dimensional materials, in particular, from the transition
metal dichalcogenides. High power factors make CuSbS2 and
CuSbSe2 promising materials for thermoelectric applications,
the best performance being achieved for hole doping of
6 × 1020 cm−3 for CuSbS2 and 5 × 1020 cm−3 for CuSbSe2.
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APPENDIX

Results of numerical convergence tests are shown in Figs. 6
and 7.
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FIG. 7. Recalculation of Fig. 2 with finer k meshes of 8 × 13 × 3 (bulk) and 15 × 9 × 1 (monolayer), demonstrating convergence of the
results.
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