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We present a numerical path-integral iteration scheme for the low-dimensional reduced density matrix of a
time-dependent quantum dissipative system. Our approach simultaneously accounts for the combined action of
a microscopically modeled pure-dephasing-type coupling to a continuum of harmonic oscillators representing,
e.g., phonons, and further environmental interactions inducing non-Hamiltonian dynamics in the inner system
represented, e.g., by Lindblad-type dissipation or relaxation. Our formulation of the path-integral method allows
for a numerically exact treatment of the coupling to the oscillator modes and moreover is general enough to
provide a natural way to include Markovian processes that are sufficiently described by rate equations. We apply
this new formalism to a model of a single semiconductor quantum dot which includes the coupling to longitudinal
acoustic phonons for two cases: (a) external laser excitation taking into account a phenomenological radiative
decay of the excited dot state and (b) a coupling of the quantum dot to a single mode of an optical cavity taking
into account cavity photon losses.
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I. INTRODUCTION

Practically every quantum system experiences some kind
of coupling to its environment and in many cases a realistic
modeling requires the inclusion of quantum dissipative pro-
cesses [1,2]. Such interactions with the environment typically
lead to a decay of quantum mechanical coherence within
the subsystem of interest that is known as decoherence or
dephasing and often affects the dynamics in a non-negligible
way. When the system-bath coupling becomes strong or when
the environmental correlation decay becomes slow, it can be
insufficient to treat the environment as a constant entity simply
acting on the system but instead the reaction of the external
degrees of freedom to the system dynamics also has to be
considered. Accounting for these non-Markovian effects in
a complete and correct way is not an easy task as besides
the system dynamics also the finite bath-memory has to be
incorporated in the equations of motion. A powerful and
widely used method that allows such an exact treatment is
provided by the path-integral approach [3–6], which exactly
takes into account the environment excitations via the so-
called influence functionals for the degrees of freedom of
the quantum system [7]. This formalism has been applied
in a variety of fields of both physics and chemistry such
as energy transfer dynamics [8–16], Landau-Zener transi-
tions [17,18], quantum mechanical Brownian motion [19],
and semiconductor quantum dots with and without optical
driving [20–25]. Moreover, it has been applied to systems
with bosonic and fermionic baths [26,27], Ohmic and super-
Ohmic [23] environments and can also be used to include
multiple baths. However, in some cases the path-integral
approach becomes impractical, because depending on the type
of environmental interaction the influence functional cannot
always be obtained easily. On the other hand, a completely
microscopic description of the environment is not always
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necessary because many dissipative processes are well known
to be correctly described in the Markov limit and a simplified or
even parametric treatment of the environment is sufficient. In
these cases a realistic modelling is usually achieved by simply
adding phenomenological non-Hamiltonian contributions to
the equations of motion of the reduced system as it is done,
e.g., in the Lindblad formalism [2].

In this paper, we show that in a new generalized for-
mulation the framework of the path-integral method allows
to treat such non-Hamiltonian dynamics on equal footing
with the Hamiltonian part of the equations of motion and
can therefore also be used for models that describe some
parts of the environment by phenomenological rates, while
fully accounting for all non-Markovian effects induced by
other couplings. This is not obvious, because the path-
integral method usually relies on describing the dynamics
in terms of the time-evolution operator, which yields purely
Hamiltonian dynamics. More specifically here we present the
path-integral formalism for a finite dimensional system that
exhibits arbitrary non-Hamiltonian relaxation and a coupling
to an arbitrary number of microscopic harmonic oscillator
modes that is of the pure-dephasing type, i.e., the coupling
does not induce transitions between the finite basis states.
After defining the model and establishing our new formalism
in Sec. II we apply it to a strongly confined semiconductor
quantum dot coupled to a continuum of longitudinal acoustic
phonons in Sec. III. The new method allows for an unbiased
study of the interplay of the carrier-phonon coupling with the
presence of radiative decay that is due to external field modes
even in the regime of high temperatures and strong driving
that is presented in Sec. III A. By exemplarily comparing the
path-integral calculations with a Markovian master equation
we also show that the new formalism can serve as an important
benchmark tool. In Sec. III B, we then study the dynamics
of a quantum dot coupled to a single photon mode inside
a microcavity and compare the results with a previously
developed hybrid approach. Finally, Sec. IV summarizes and
concludes the paper.
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II. MODEL AND NUMERICAL METHOD

Our generic model consists of a few level system with a
pure-dephasing type coupling to a continuum of harmonic
oscillators. Further interactions between the few level system
and the environment can be accounted for by additional
non-Hamiltonian contributions to the equations of motion.
The dynamics of the statistical operator for the total system
consisting of the N states of the few level system belonging to
the subspace HN and the oscillatory modes belonging to the
subspace Hosc is given by the dynamical equation

d

dt
ρ̂ = 1

i�
{Ĥ ,ρ̂}− + L[ρ̂], (1)

where {.,.}− denotes the commutator. The Hamiltonian

Ĥ = ĤN + Ĥosc (2)

consists of an arbitrary N -dimensional time-dependent Hamil-
tonian ĤN acting only on the N states {|ν〉} ∈ HN and

Ĥosc = �

∑
j

ωj b̂
†
j b̂j + �

∑
νj

(
γ ν

j b̂
†
j + γ ν∗

j b̂j

)|ν〉〈ν|, (3)

which describes the interaction with the harmonic oscillators.
Here, the symbol γ ν

j denotes the coupling constant for the
coupling between the state |ν〉 and the bosonic mode j with
energy �ωj that is created (destroyed) by b̂

†
j (b̂j ). Note that

for simplicity, we treat the mode index j as being discrete even
though the presented formalism can account for an arbitrary
number of modes. The pure-dephasing type of the coupling
often dominates for systems where the states of the few level
system are energetically well separated such that inter-state
transitions induced by the bosonic modes can be neglected.

While we denote Hilbert space operators with “hat” signs,
the operator L[ρ̂] appearing in Eq. (1) represents a Liouville
space operator [28], i.e., a linear mapping between such oper-
ators, that allows the inclusion of non-Hamiltonian dynamics.
In the following, we indicate such Liouville operators by
putting the Hilbert space operator they act on into square
brackets for clarity. Here, L[ρ̂] is assumed to keep the parts
of ρ̂ belonging to the subspace Hosc invariant and to only
act on the few level system HN . We further assume that
while L[·] can be time-dependent, for simplicity it should
be local in time. In principle, it would be possible to relax
this assumption. However, depending on the memory depth
of L[·], this could increase the total memory time and thus
the numerical cost of the path integral algorithm. Moreover,
in many cases it is advisable to require certain conditions for
the operator L[·] such that important physical properties of the
density matrix are preserved. All of these conditions mentioned
above are enforced when L[·] has the so called Lindblad
form [2]

L[ρ̂] =
∑

i

γi(t)

(
Âi ρ̂Â

†
i − 1

2
{ρ̂,Â

†
i Âi}+

)
, (4)

where the operators Âi represent operations within HN , the
factors γi(t) denote possibly time-dependent relaxation rates,
and {.,.}+ is the anticommutator. However, we would like to
stress that the presented formalism does not depend on L[·] to
have this specific form.

Initially, the system is assumed to be in a product state of the
states {|ν〉} and a thermal distribution of the oscillator modes
ρ̂th, i.e.,

ρ̂(t = t0) = ˆ̄ρ(t = t0) ⊗ ρ̂th. (5)

The reduced density matrix of the N level subsystem

ˆ̄ρ(t) = Trosc(ρ̂(t)) (6)

is obtained by tracing out all the degrees of freedom belonging
to the subspace Hosc. In the following, we will derive a dis-
cretized representation of ˆ̄ρ(t) that is applicable for numerical
calculation and does not require further approximations to the
model given above.

A. Derivation of the path-integral solution

We start by separating the right-hand side of the master
equation Eq. (1) into two Liouville operators LN [·] and Losc[·]
that are given by

LN [ρ̂] = 1

i�
{ĤN ,ρ̂}− + L[ρ̂], (7)

Losc[ρ̂] = 1

i�
{Ĥosc,ρ̂}−, (8)

and write the master equation as

d

dt
ρ̂ = LN [ρ̂] + Losc[ρ̂]. (9)

Keeping the accuracy linear in a small time step �t the
propagation of the statistical operator to a time t + �t can
be performed by applying LN [·] and Losc[·] subsequently and
we can write

ρ̂(t + �t) = ÛMt [ρ̂(t)]Û † + O(�t2). (10)

Here, we have used the fact that the dynamics described by
Losc[·] is purely Hamiltonian and therefore can be expressed
in terms of the time evolution operator

Û = exp

(
− i

�
Ĥosc�t

)
. (11)

Further, we have introduced the time-ordered operator

Mt [·] = T exp

( ∫ t+�t

t

LNdt ′
)

[·], (12)

which acts as a generalized time evolution operator that
describes the evolution of the few level system including
the non-Hamiltonian part of the dynamics in the absence of
the oscillator coupling from time t to t + �t . Importantly,
the representation of these operators in terms of the matrix
exponentials fulfills the necessary conservation requirements
at each time step, such as a unitary evolution for the
Hamiltonian dynamics.

We can now use the relation Eq. (10) recursively to find an
expression for the statistical operator at time t starting from the
initial time t0. By inserting several identity operators

∑
ν |ν〉〈ν|

acting on HN at different time steps tl = t0 + l�t , where the
summation

∑
ν runs over all states of the few level system, we
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arrive at a discretized representation

ρ̂νnμn
=

∑
ν0...νn−1

μ0...μn−1

Ûνn
. . . Ûν1 ρ̂ν0μ0Û

†
μ1

. . . Û †
μn

n∏
l=1

Mνl−1μl−1
νlμl

(13)

for the matrix elements of the statistical operator, which we
denote by

ρ̂νlμl
= 〈νl |ρ̂(tl)|μl〉. (14)

We have written

Ûν = 〈ν|Û |ν〉 (15)

for the diagonal elements of the time-evolution operator Û that
are operators acting on the subspace Hosc and also introduced
the symbol

Mνl−1μl−1
νlμl

= 〈νl |Mt [|νl−1〉〈μl−1|]|μl〉, (16)

which represents the matrix elements of the operator that
results when Mt is applied to the canonical basis operator
|νl−1〉〈μl−1|.

We can now use the results of previous work [23] where
using a path-integral method and a representation of the
oscillatory modes in terms of coherent states the trace over
the oscillators for an operator of the same form as the one
in Eq. (13) has been performed. Tracing out in this way the
oscillator degrees of freedom we finally obtain the elements
of the reduced density matrix ˆ̄ρ at the nth time step

ρ̄νnμn
= Trosc

(
ρ̂νnμn

)

=
∑

ν0...νn−1
μ0...μn−1

ρ̄ν0μ0 exp
(
Sμn...μ1

νn...ν1

) n∏
l=1

Mνl−1μl−1
νlμl

, (17)

where all summations run over the N states of HN and the
influence functional Sμn...μ1

νn...ν1
incorporates the memory of the

oscillator modes in the dynamics of the few-level system. For
simplicity, here, we only give the expression for the influence
functional for the special case where the coupling constants γ ν

j

are all either purely real or purely imaginary. A more general
representation for the influence functional that does not make
use of this assumption can be found in Ref. [23]. The functional
reads

Sμn...μ1
νn...ν1

=
n∑

l=1

l∑
l′=1

Sνlνl′μlμl′ (18)

with

Sνlνl′μlμl′ = −Kνl′ νl
(tl − tl′) − K∗

μlμl′ (tl − tl′)

+K∗
νlμl′ (tl − tl′) + Kνl′μl

(tl − tl′) (19)

and the memory kernels

Kνlμl′ (τ ) = 2
∫ ∞

0
dω

Jνlμl′ (ω)

ω2
(1 − cos(ω�t))

×
[

coth

(
�ω

2kBT

)
(cos(ωτ )) − i sin(ωτ )

]
(20)

and

Kνlμl
(0) =

∫ ∞

0
dω

Jνlμl
(ω)

ω2
×

[
coth

(
�ω

2kBT

)

× (1 − cos(ω�t)) + i sin(ω�t) − iω�t] (21)

where we have introduced the spectral density

Jνμ(ω) =
∑

j

γ ν
j γ

μ∗
j δ(ω − ωj ). (22)

It should be noted that the last term in Eq. (21) induces a
polaronic shift of the energy levels of the few-level system.

B. Evaluation of the path-integral expression

Obtaining the reduced density matrix at the nth time
step from Eq. (17) requires the summation over N2n single
contributions, which quickly becomes unfeasible even for very
small N . Each of the single summands represents a possible
path, i.e., a trajectory through the subspace HN ⊗ HN given
by the configurations at each time-step (νn,μn) . . . (ν1,μ1),
which is the reason that the summation scheme is called
a numerical path-integration method. To efficiently use this
expression also for the iteration over many time-steps it is
necessary to exploit the finite memory time of the system
of oscillator modes that is reflected by a finite decay time
of the memory kernels [Eqs. (20) and (21)]. This allows
a truncation of the influence functional Sμn...μ1

νn...ν1
, efficiently

making it only depend on the states of the nc most recent
time-steps (νn,μn) . . . (νn−nc+1,μn−nc+1). Such a truncation
can be exploited by combining the path-integral method with
the augmented density matrix approach [4,5], which applies
also in the present case when including non-Hamiltonian
dynamics. The augmented density matrix can be thought of as
a 2nc dimensional tensor of weights for the different possible
configurations of the most recent nc time steps and can be
calculated iteratively in each time step following the relation

ρμn...μn−nc+1
νn...νn−nc+1

= Mνn−1μn−1
νnμn

×
∑
νn−nc

μn−nc

exp
(
Sμn...μn−nc

νn...νn−nc

)
ρμn−1...μn−nc

νn−1...νn−nc
. (23)

This explicit iteration yields a numerical effort that is linear
in the total number of time steps and requires the calculation
and storage of only N2nc (compared to N2n) weights and thus
removes the restriction to a limited number of iteration steps
in Eq. (17) that we mentioned above.

The decay time of the memory kernels is determined by
the spectral density of the harmonic oscillator coupling J (ω),
which can be classified by its low-frequency behavior into
sub-Ohmic coupling where J (ω) ∼ ωa with a < 1 as ω → 0,
Ohmic coupling where a = 1 and super-Ohmic coupling
where a > 1. The Ohmic case marks the borderline between
a sub-Ohmic environment inducing exponential relaxations
and the super-Ohmic case which is characterized by non-
exponential typically only partial relaxations that entail a
variety of non-Markovian dynamical effects [3]. The presented
formalism can also deal with the latter super-Ohmic case [23]
that is realized in the examples in this article for the coupling
of acoustic phonons in a crystal solid where a = 3.
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Finally, we would like to note that the inclusion of non-
Hamiltonian dynamics in Eq. (1) does not increase the required
memory depth nc compared to the case of purely Hamiltonian
dynamics as long as the former part of the dynamics does not
involve a memory time that is longer than the one induced
by the harmonic oscillator coupling. Here, this is obviously
fulfilled as the operator L[·] in Eq. (1) is assumed to be
local in time. Notably, this also means that the numerical
cost is practically not increased by adding non-Hamiltonian
contributions.

III. APPLICATION: DYNAMICS OF A SEMICONDUCTOR
QUANTUM DOT

In this section, we utilize the extended path-integral formal-
ism to calculate the dynamics of an optically coupled strongly
confined semiconductor quantum dot (QD) and also compare
the results with those of some established methods. For
circularly polarized light with a central frequency close to the
excitonic resonance, a QD can be described for many purposes
in good approximation as a two-level system consisting of the
crystal ground-state |0〉 and an exciton state |X〉 with energy
�ωX given by the Hamiltonian

ĤQD = �ωX|X〉〈X|. (24)

Apart from the optically induced coherent dynamics which we
will describe specifically in the corresponding two subsections
also the coupling to the lattice vibrations of the surrounding
solid state material needs to be taken into account. For
the strongly confined GaAs-based QD considered here the
deformation potential coupling to longitudinal acoustic (LA)
phonons represents the predominant impact of the phonon
environment [29] and has the same form as Eq. (3) where the
index j refers to the wave vector q of the LA phonon modes.
The coupling constants γ ν

q are given by γ 0
q = 0 for the ground

state and γ 1
q = γ e

q − γ h
q for the exciton state with

γ e(h)
q = 	e(h)(q)

|q|De(h)√
2Vρ�ωq

(25)

being the coupling constants for the electron (e) and hole (h)
coupling to the q phonon mode. Here, the form factors 	e(h) are
assumed to be spherically symmetric and Gaussian as applies
for a parabolic confinement potential and the deformation
potential constants De = 7.0 eV and Dh = −3.5 eV, the
mass density ρ = 5370 kg/m3 as well as the sound velocity
cs = 5110 m/s for GaAs are taken from the literature [30]. The
mode volume V simply represents a normalization constant
for the summation over the phonon modes in Eq. (3). The
spectral density of the phonon coupling given in Eq. (22) is
only nonvanishing for ν = μ = 1 and in this case reads

J11(ω) = ω3

4π2ρ�c5
s

(
Dee

−ω2a2
e /(4c2

s ) − Dhe
−ω2a2

h/(4c2
s )77

)2
,

(26)

where the sound velocity enters via the linear phonon disper-
sion relation ωq = cs |q| and ae(h) denote the root mean square
of the Gaussian wave function extensions of the electron and
hole, respectively. Here we set ae = 4.0 nm, which can be
interpreted as the QD radius and set ae/ah to 1.15.

We would like to point out that there have been many
suggestions to simulate the QD dynamics under the influence
of the carrier-phonon interaction outlined above including
correlation expansions [31,32], analytical solutions for delta
excitation [33], an exact diagonalization approach [34],
quantum jump approaches [35] and various forms of master
equations [36–42] some of which account for contributions
of arbitrarily high order in the dot-phonon coupling with the
help of the polaron transformation [22,43–46]. This variety of
methods is also a result of the many different optical excitation
scenarios that are discussed for QDs which can range from
weak cavity couplings to strong pulsed laser excitation. The
path integral approach presented here provides a numerical
scheme that allows to deal with all of these situations without
introducing further approximations to the model formulated
above.

A. Laser-driven quantum dot with radiative decay

As a first example for an application of our new method we
consider the QD dynamics that is driven by an external laser
field and affected by both the phonon-induced relaxation and
the radiative decay of the exciton state that reduces the exciton
lifetime. As the radiative decay is known to be reasonably
described as a Markov process in a good approximation it can
be included by a Lindblad contribution to the master equation.
In the rotating frame, the contribution to the Hamiltonian for
the laser driven QD reads after applying the common dipole
and rotating wave approximations

Ĥdot-light = 1
2 �f (t)

(|0〉〈X| + |X〉〈0|) − �|X〉〈X|, (27)

where f (t) is the envelope function of the laser field referred
to as field strength and � is the detuning of the laser from the
polaron-shifted exciton resonance. The radiative decay of the
exciton state is treated as a phenomenologically damping rate
accounted for by a Lindblad type operator in the form of Eq. (4)
with a single transition Â1 = |0〉〈X| and a corresponding
damping rate γ (cf. Ref. [45]).

Figure 1 shows the time-dependent exciton occupation
of the QD under resonant and off-resonant cw excitation
as indicated. In the absence of the phonon interaction (left
column) our computational scheme exactly reproduces known
analytical results exhibiting damped Rabi oscillations. For
off-resonant excitation [cf. panel (c)], of course, the amplitude
of the oscillations is reduced and the Rabi frequency is
increased as can be seen in Fig. 1(c). The radiative decay
also influences the stationary exciton occupation for γ > 0,
which is given by [47]

C∞
X,noph. = f 2

2f 2 + γ 2 + (2�/�)2
(28)

and decreases from its maximum value of 0.5 with an
increasing damping rate and an increasing detuning. This
simple application without the phonon interaction serves as a
proof of principle that the formalism presented here correctly
incorporates non-Hamiltonian dynamics of Lindblad-type
within the framework of the path-integral method.

In the other limiting case where γ = 0, but the phonon cou-
pling is included the results obtained from the presented for-
malism coincide with previous path-integral calculations [23]
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FIG. 1. Time-dependent exciton occupation CX of a QD calcu-
lated by the path-integral formalism for constant driving with field
strength f = 1.0 ps−1 for resonant [(a) and (b)] and detuned [(c) and
(d)] excitation (� = 1.0 meV) for different values of the radiative
decay rate (see legend). Left column: without phonon interaction,
right column: including phonon interaction at temperature T = 100 K
in addition to the radiative decay.

that did not yet allow to account for any non-Hamiltonian
dynamics. This can be seen explicitly from the orange curve
for γ = 0 in the right column of Fig. 1 where calculations that
include the phonon coupling for a temperature of T = 100 K
are shown. As known from previous simulations at such
high temperatures the Rabi oscillations are almost completely
damped by the phonon scattering.

As for the radiative damping also the phonon coupling
strongly affects the stationary value of the exciton occupation
that is reached at long times. It can be seen that for fixed γ

the stationary value C∞
X is slightly decreased by the phonon

coupling for resonant excitation while it is increased for
off-resonant excitation. The reason for this is that while the
radiative decay always drives the QD towards the ground
state and thus away from the exciton, off-resonant excitation
with positive detuning enables phonon-assisted transitions
between the laser dressed states that yield a higher exciton
occupation [41,46,48–53]. As it can be seen in Fig. 1, this
feature prevails when the phonon induced relaxation between
photon dressed states is combined with the radiative decay of
the exciton state discussed here.

Figure 2 shows the combined influence of the radiative de-
cay and the phonon-interaction by plotting the time-dependent
exciton occupation under positively detuned cw excitation
for different field strengths as indicated. Without the phonon
interaction [panel (a)] the stationary exciton occupation that
is reached at long times C∞

X always stays below 0.5 and rises
with increasing field strength as it was expected from Eq. (28).
Interestingly, when including the phonon scattering [panel (b)]
the stationary exciton occupation no longer depends on the
field strength in a monotonic way. To analyze this in more
detail, we have plotted C∞

X as a function of the field strength
in Fig. 2(c) (red, solid) together with corresponding results
for the two limiting cases where only the phonon scattering
(dashed, green) or only the radiative decay (dashed, blue) has

FIG. 2. Time-dependent exciton occupation CX of a QD for off-
resonant (� = 1.0 meV) cw excitation for different field strengths
(see legend) including radiative decay (γ = 0.05 ps−1) without the
phonon-interaction (a) and including phonons at temperature T = 1 K
(b). (c) Stationary exciton occupation reached at long times when
only the phonon interaction is present (green, dashed), when only the
radiative decay is present (blue, dashed) and when both relaxation
mechanisms are present (red, solid).

been accounted for. In case of the complete dynamic, there is
a clear maximum around f = 2.0 ps−1 and a local minimum
around f = 5.0 ps−1 and overall the full model predicts very
different features compared to the two limiting cases. This
behavior originates from the combination effects between the
radiative decay and the phonon-induced relaxation as will be
explained in the following. For very small field strengths, e.g.,
below f = 0.5 ps−1, the timescale of the phonon-induced
relaxation [54] is long compared to the radiative decay rate
and therefore one might expect the phonon coupling to play a
subordinate role. However, in this regime, the QD state targeted
by the phonon-induced relaxation has an especially strong
excitonic character [24], which without radiative decay would
result in an exciton occupation near one towards very long
times [54]. This can be seen by the dashed green line where
the exciton occupation approaches one in the limit f → 0+,
but of course, in the absence of any optical coupling, i.e.,
at exactly f = 0, the system remains in its ground state.
When the radiative decay is included a remainder of this
strong effect is still visible and thus leads to a clear difference
between the results with (red, solid) and without phonons
(blue, dashed) even for low field strengths. For larger values
of f the phonon-induced relaxation becomes more effective
yielding a steep increase of C∞

X and values well above 0.5 that
would not be expected from the radiative decay alone. Beyond
the maximum at f = 2.0 ps−1, C∞

X decreases again as the QD
state targeted by the phonon relaxation becomes less excitonic
in character and even more importantly the phonon-coupling
becomes less efficient again because the phonon environment
is too sluggish to follow the rapid dynamics of the QD [21,55].
At very large f > 5.0 ps−1 the phonon coupling no longer has a
significant impact on C∞

X and the stationary exciton occupation
is almost entirely dominated by the radiative decay resulting
in a local minimum and a subsequent slow increase towards
0.5. It is worth noting that the nonmonotonic dependence of
the damping of the Rabi oscillations that is due to the phonon
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FIG. 3. Comparison of the time-dependent exciton occupation of
a QD for resonant (left) and detuned (right) cw excitation calculated
by the path-integral method (red) and the weak coupling theory (blue).
The radiative decay rate has been set to γ = 0.05 ps−1 and a relatively
high field strength of f = 4.0 ps−1 was chosen.

coupling persists under the influence of the radiative decay as
it can be seen from Fig. 2(b).

A strong advantage of the numerical path-integral method
is that because of the exact treatment of the model discussed
here it can be used to benchmark perturbative approaches
and explore their range of validity. To this end, we have
compared our results with those of a Markovian master
equation that treats the phonon coupling up to second order
which we took from the literature [42] and that also allows
an inclusion of the radiative exciton decay considered here.
Figure 3(a) shows the damped Rabi oscillations of the exciton
occupation under constant resonant excitation by a strong
electric field (f = 4.0 ps−1) under the influence of the
phonon coupling (T = 10 K) and the radiative decay (γ =
0.05 ps−1). As it can be expected at such low temperatures
the weak-coupling theory (blue) works very well and the
predicted dynamics of the exciton occupation is practically
identical with those of the path-integral method (red), which
indicates that in this parameter range non-Markovian effects
and multiphonon processes that the weak-coupling theory
cannot capture are of minor importance. Notably, the close
match between the two methods is an important further
verification of the correctness of the presented path-integral
algorithm with Lindblad-type relaxation. When raising the
temperature to T = 100 K, cf. Fig. 3(c), some differences
between the results of the path-integral calculations and the
weak-coupling theory become visible. The phonon-induced
damping is slightly underestimated by the weak-coupling
theory and also there is a slight discrepancy of the predicted
Rabi frequency renormalization between the two methods.
However, considering the very high temperature, the Master
equation still yields reasonable results. This is due to the
strong driving chosen here while for slower driving it is well
known that the weak coupling theory can not account for
the strong Rabi frequency renormalization [22] and even can
yield unphysical results at very high temperatures [42]. For
off-resonant excitation, the path-integral calculations again
practically coincide with those obtained from the Master
equation approach at T = 10 K [panel (b)]. However, at higher
temperatures, cf. Fig. 3(d), strong differences between the two

approaches become visible. The phonon-induced damping is
clearly underestimated by the weak-coupling theory and even
more important the stationary exciton occupation at long times
predicted by the weak-coupling theory is considerably lower
than the value predicted by the path-integral calculations. The
regime of strong driving at elevated temperatures is especially
difficult to deal with in the Master equation approach. Because
the path-integral method does not rely on any approximations
regarding the order of the phonon coupling or the optical
driving that it accounts for and is only limited by the errors
introduced by the discretization of the time axis, it provides an
important benchmark. Most importantly, the regime of strong
driving must be considered when simulating pulsed excitation
scenarios in which high field strengths can be reached and that
are often required to reproduce experimental results.

B. QD coupled to a single cavity mode

Another system that can be described within the combined
Lindblad and path-integral method is a QD inside an optical
cavity. Here, we assume that the quantized cavity photon
modes are sufficiently separated in frequency such that only a
single mode effectively couples to the QD. Further, we assume
that the system can be described in the single-photon limit
where only states with zero or one cavity photon have to
be considered. Besides the coupling to LA phonons that is
independent of the cavity coupling also photon losses that are
due to imperfections of the cavity mirrors are highly relevant
for the system dynamics. Similar to the previous examples we
model the dynamics of the QD consisting of two electronic
levels coupled to the cavity mode and the phonon subsystem
in an exact Hamiltonian way while we attribute the cavity
losses to the part of the environment that is described by
rate equations. In the rotating frame the Hamiltonian for
the QD coupled to the cavity mode is described via the
Jaynes-Cummings model and reads after applying the common
dipole and rotating wave approximations

Ĥdot-cav = �g(|P 〉〈X| + |X〉〈P |) − �|X〉〈X|, (29)

where g is the light-matter coupling strength, � is the detuning
of the cavity-mode from the polaron-shifted exciton resonance,
and the two-level electronic basis of the QD-cavity system
consists of the state |P 〉 with the QD in the ground-state and
one cavity photon and the exciton state |X〉 without a cavity
photon. Only |X〉 couples to the phonon enivironment and the
coupling is the same as in the previous examples. The photon
losses of the cavity are modelled by a relaxation with rate κ

from |P 〉 to the state where the QD is in its ground-state and
no photon is present |G〉 which is accounted for by a Lindblad
contribution to the equation of motion for the reduced density
matrix [45] by setting Â1 = |G〉〈P | in Eq. (4).

Figure 4 shows the occupation of the excited state |X〉
as a function of time for a system initially prepared in the
excited state for a cavity-loss rate κ = 0.1 ps−1 at two different
temperatures for resonant and off-resonant coupling (see
caption). For resonant coupling we can see Rabi oscillations
with a decreasing amplitude, which can be attributed to
the cavity losses. Similar oscillations can also be seen for
off-resonant coupling, but in this case a positive detuning (red)
leads to a strongly increased exciton decay time compared
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FIG. 4. Time-dependent occupation of the excited state CX of a
QD inside a cavity for resonant (green) and off-resonant (red: � =
1.0 meV, orange: � = −1.0 meV) coupling. The black dots show the
results of a hybrid approach that is only applicable in the resonant
case (see text). (Left) T = 1 K. (Right) T = 100 K. κ = 0.1 ps−1.

to a negative detuning (orange). This asymmetry has already
been discussed in Ref. [45] and is due to the fact that at low
temperatures phonon emission process dominate absorption
processes, and in fact at a higher temperature (right panel), this
asymmetry disappears. Here we have chosen to repeat these
kind of calculations to show that temperatures as high as T =
100 K can easily be accessed using the path-integral approach,
which is hard to reach with other methods. Previously, the
present model of a QD-cavity system has also been treated
by a hybrid approach [56], which requires the knowledge of
the phonon-induced Rabi-frequency renormalization and the
strength of the phonon-induced damping in the absence of
cavity losses. These input parameters can be gained by ana-
lyzing the damped oscillations of the excited state occupation
in a lossless cavity occurring for constant resonant coupling
as it can be calculated using the path-integral formalism in
its previous formulation [23,57]. In the hybrid approach this
input is then combined with an a posteriori phenomenological
treatment of the cavity losses. Thus, even though this way the
damping and the frequency renormalization are calculated in
a nonperturbative way, the hybrid approach does not yet treat
the cavity losses and the phonon coupling on equal footing
as the combined Lindblad and path-integral approach does.
Moreover, the derivation of the hybrid approach in Ref. [56]
made explicit use of special properties that are only fulfilled
for constant resonant excitation. Therefore the present work
also drastically extends the parameter range accessible with
the path-integral approach if one needs to include the effects
of cavity losses, which in many cases play a crucial role for the
system dynamics. Here, we have compared the results obtained
from the hybrid approach for resonant excitation, shown as
black dots in Fig. 4, with the path-integral method for both
temperatures. For low temperatures the results are identical,
while at higher temperature small deviations become visible.
Similar to our previous comparison with the weak-coupling
theory also here the path-integral method serves as an excellent
benchmark to explore the limits of the applicability of less
rigorous methods.

IV. CONCLUSIONS

We have presented an extension to the numerical path-
integral formalism previously used to calculate the reduced
density matrix of a time-dependent few level system coupled
to a set of harmonic oscillator modes that allows a natural
and systematic inclusion of non-Hamiltonian dynamics within
the path integral framework. Our combined method shows a
way how to go beyond the representation of the path-integral
formalism that relies on using the time-evolution operator and
thus can be used to add arbitrary linear operations acting on
the reduced density matrix to the equations of motion. We
applied this new method to an optically coupled semiconductor
quantum dot (QD) where the coupling to longitudinal acoustic
phonons is treated nonperturbatively for different optical ex-
citation conditions and different environmental effects that are
described in the Markov limit by corresponding phenomeno-
logical rates. The combined Lindblad and path-integral method
turns out to be a highly valuable tool for the treatment
of optically coupled QDs with strong phonon interaction
and similar quantum dissipative systems for a number of
reasons. First of all, it allows to treat the deformation potential
coupling to longitudinal acoustic phonons, which has been
identified as the major decoherence mechanism in strongly
confined QDs, in a numerically exact way that includes
multiphonon processes and all non-Markovian effects. This
makes it possible to explore the regimes of arbitrarily strong
QD-phonon coupling and both low and high temperatures in
a nonperturbative way. Here, it is worth noting that within the
path integral approach higher temperatures are actually easier
to deal with as the memory time becomes shorter and thus less
memory steps are needed while the scope of some approximate
methods that explicitly truncate the phonon subspace is
restricted to lower temperatures. Besides the phonon coupling
also the optical excitation can be chosen arbitrarily as the
formalism is able to deal with both weak and strong driving,
constant and pulsed excitation and also rapid changes of the
excitation parameters that can prevent an adiabatic evolution of
the coupled light-matter system. This also includes situations
with chirped excitation or with multiple overlapping pulses of
different frequency where the introduction of a suitable basis
of photon-dressed states as needed by some schemes becomes
nonobvious as the rotating frames naturally associated with
each pulse differ. Moreover, the method can be used to
calculate all elements of the reduced density matrix in the
original frame of reference which not only gives access to
the QD occupations, but also to the coherences of the reduced
system. The inclusion of processes described by rate equations
within the path-integral formalism that is made possible by the
present work allows taking into account other loss channels
that are relevant in typical experimental situations involving
QDs. For example, the presented method has already been
successfully used to include electron tunneling effects in
photocurrent measurements using off-resonant two-pulse and
two-color excitation [58,59].

In our first application, we discussed the combined effects
of the radiative decay and the phonon scattering on the
driven stationary nonequilibrium state of a two-level QD
for both resonant and off-resonant excitation showing that
there is a nonmonotonic dependence of the stationary exciton
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occupation on the driving strength. This is not expected in
both limiting cases where either the dot phonon interaction or
the radiative decay provide the only environment coupling. So
far no unbiased approach was formulated for studying such
combination effects. We then used the path-integral results
to explore the range of validity of a weak-coupling method
that treats the phonon coupling perturbatively and found for
strong driving in the regime of detuned excitation at high
temperatures significant deviations between the two methods
while otherwise the weak-coupling theory works well over
wide parameter ranges. Finally, we applied our new formalism
to the case of a QD coupled to a single cavity mode and

analyzed the exciton lifetime that is limited due to photon
losses of the cavity for different detunings of the optical mode
from the QD resonance at low and very high temperatures. The
combined Lindblad and path-integral method has also been
used as a benchmark to test a previously developed hybrid
approach that was limited to resonant excitation.
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Phys. Rev. B 83, 094303 (2011).
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[25] M. Glässl, A. M. Barth, and V. M. Axt, Phys. Rev. Lett. 110,
147401 (2013).

[26] D. Segal, A. J. Millis, and D. R. Reichman, Phys. Rev. B 82,
205323 (2010).

[27] L. Simine and D. Segal, J. Chem. Phys. 138, 214111 (2013).
[28] S. Mukamel, Principles of Nonlinear Optical Spectroscopy, 1st

ed. (Oxford University Press, New York, 1995).
[29] B. Krummheuer, V. M. Axt, and T. Kuhn, Phys. Rev. B 65,

195313 (2002).
[30] B. Krummheuer, V. M. Axt, T. Kuhn, I. D’Amico, and F. Rossi,

Phys. Rev. B 71, 235329 (2005).
[31] J. Förstner, C. Weber, J. Danckwerts, and A. Knorr, Phys. Rev.

Lett. 91, 127401 (2003).
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