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Magnetic properties of the α-T3 model: Magneto-optical conductivity and the Hofstadter butterfly
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The α-T3 model interpolates between the pseudospin S = 1/2 honeycomb lattice of graphene and the
pseudospin S = 1 dice lattice via parameter α. We present calculations of the magnetic properties of this hybrid
pseudospin model, namely the absorptive magneto-optical conductivity and the Hofstadter butterfly spectra. In
the magneto-optics curves, signatures of the hybrid system include a doublet structure present in the peaks,
resulting from differing Landau level energies in the K and K ′ valleys. In the Hofstadter spectra, we detail the
evolution of the Hofstadter butterfly as it changes its periodicity by a factor of three as we vary between the two
limiting cases of the α-T3 model.

DOI: 10.1103/PhysRevB.94.125435

I. INTRODUCTION

Graphene, experimentally isolated in 2004 [1], is a two-
dimensional sheet of carbon atoms arranged on a honeycomb
lattice (HCL). Its low-energy excitations are described by the
two-dimensional (2D) massless Dirac equation, or the Dirac-
Weyl equation with pseudospin S = 1/2. In a magnetic field
perpendicular to the lattice, the states of graphene condense
into Landau levels (LLs) with energies proportional to

√
B

for both electrons and holes [2]. These LLs include a zero-
energy LL with both electron and hole character, resulting in
a half-integer anomalous Hall effect [3–5].

Modifying the HCL by coupling one of the two inequivalent
sites of the HCL to an additional atom located at the center of
each hexagon yields the T3 or dice lattice [6–8]. This lattice
could be naturally formed by growing a trilayer structure
of cubic lattices such as SrTiO3/SrIrO3/SrTiO3 in the (111)
direction [9] or by confining cold atoms to an optical lattice
[10]. The low-energy behavior of the dice lattice is described
by the same Dirac-Weyl Hamiltonian as graphene, but with
pseudospin S = 1.

Allowing a parameter α to describe the strength of the
coupling between the HCL and the atom at the center of
each hexagon results in the α-T3 lattice [11]. In the limit of
α approaching 0 and 1, we obtain the HCL (with an inert
central atom) and the dice lattice, respectively. The α-T3 model
was initially proposed for cold atoms confined to an optical
lattice, and more recently, a model for Hg1−xCdxTe taken in
the 2D limit at critical doping has been shown to map onto
the α-T3 model, with an intermediate value of the coupling
parameter α = 1/

√
3 [12]. The α-T3 model is characterized by

a nontopological Berry phase that varies with the parameter α

[11,13]. The model has also been extended to include on-site
potential terms, uniaxial compression, and a bilayer version
of the α-T3 model [14]. In contrast to graphene and the dice
lattice, the α-T3 model has LLs that form at different energies
in the inequivalent K and K ′ valleys [11,15] for 0 < α < 1.

Magneto-optical spectroscopy [16] can be used to probe
the underlying electronic structure and excitation spectra by
measuring transitions between LLs. In graphene it has been
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used to measure the energy spacing between its unusual LL
structure for single [17,18] and multilayer graphene [19,20],
and to measure its electron and hole velocities. Magneto-
optical conductivity has been calculated for single [21] and
multilayer [22] graphene as well as the dice lattice and general
pseudospin systems [23]. Here we calculate the magneto-
optical conductivity for the hybrid pseudospin system that can
be described as a mixture of pseudospin S = 1/2 and S = 1.
We discuss the LL structure of the α-T3 lattice such as the
different LL energies in the K and K ′ valleys, and examine its
effects on magneto-optics curves as a function of the parameter
α, the magnetic field strength, and with changing chemical
potential.

Charged particles moving through a periodic lattice that
is subjected to a perpendicular magnetic field experience an
interplay of two quantizing fields, resulting in the Hofstadter
butterfly [24]. In particular, the periodicity of the lattice
creates an electrostatic field that quantizes the motion of the
charged particles into Bloch bands. Similarly, a magnetic field,
applied perpendicular to the lattice, quantizes the energy of
the electrons into highly degenerate LLs. When the length
scale of these two quantizing fields is on the same order,
the Bloch bands and the LLs compete to split the energy
spectrum, resulting in a self-similar energy spectrum, called
the Hofstadter butterfly.

Experimental observation of Hofstadter butterfly spectra
requires finding a system in which the quantizing fields are
able to compete on similar length scales using experimentally
achievable fields. Recently, Moiré superlattices [25], which
can be made from twisted graphene [26–28] or by placing
graphene on a hexagonal boron nitride substrate [29–32], have
offered this possibility in laboratory achievable fields. Cold
atoms in an optical lattice have also been explored for this
purpose [33,34].

Hofstadter butterfly spectra have been calculated for the
HCL [35–39] and the dice lattice [7], which are the two
limiting cases of the α-T3 model. Here we detail the continuous
evolution of the Hofstadter butterfly spectrum between these
two limiting cases, and provide the difference equation
required for calculating Hofstadter butterfly spectra for this
intermediate regime.

The remainder of this paper is laid out as follows. In Sec. II
we describe the α-T3 model, including the Hamiltonian and
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wave functions of the model under a perpendicular magnetic
field. In Sec. III we present magneto-optical conductivity
curves for the α-T3 model and highlight signatures of the
hybrid pseudospin system. Section IV contains the difference
equation required for calculating Hofstadter butterfly spectra
for intermediate values of α and some representative spectra
for this regime. Finally, our conclusions can be found in Sec. V.

II. THE α-T3 MODEL

The α-T3 model [11] interpolates between the pseudospin
S = 1/2 HCL of graphene, and the pseudospin S = 1 dice (or
T3) lattice via parameter α. Figure 1(a) depicts the α-T3 lattice
in which sites A and B form a hexagonal lattice, and site C

sits at the center of the hexagons. Hopping takes place between
atoms at sites A and B with strength t , and a variable hopping
of αt connects the B and C sites. Hopping between sites A

and C is not permitted for this model.
Throughout this paper we will refer to the limiting case

of α = 1 as the dice lattice, and α → 0 as graphene, for
convenience, despite some differences between graphene and
the latter limit. These differences arise from the presence of
the C sites, which are located at the center of each hexagon
even when they are fully decoupled from the HCL (as is the
case for α = 0). The result is a three atom per unit cell problem
with an inert central atom, rather than the usual two atom per
unit cell problem of graphene. The intermediate regime, in
which 0 < α < 1, describes a hybrid pseudospin S = 1/2 and
pseudospin S = 1 system.

The low-energy spectrum for the α-T3 lattice is shown in
Fig. 1(c) and consists of the usual linearly dispersing conical
bands expected for graphene, with an additional dispersionless
flat band that cuts through the Dirac point. All of these bands
are present and remain unchanged for the full range of α.

In this paper we are interested in the properties of the α-T3

model in the presence of a magnetic field B that is applied
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FIG. 1. (a) The α-T3 lattice, in a perpendicular magnetic field B.
Hopping between sites A and B (which form a HCL) takes place with
strength t . Sites labeled C, located at the centers of the hexagons,
are coupled only to B sites with variable hopping amplitude αt .
(b) Landau level energies in units of γB as a function of the parameter
α for the first four values of n. The K and K ′ valleys are shown in
solid and dashed blue lines, respectively. The Landau levels of the
flat band are plotted in red. (c) Low-energy dispersion about one K

point for B = 0.

perpendicular to the plane of the crystal lattice. For this case,
the low-energy Hamiltonian [11] takes the form

HK = −H ∗
K ′ = γB

⎛
⎝ 0 cos ϕâ 0

cos ϕâ† 0 sin ϕâ

0 sin ϕâ† 0

⎞
⎠, (1)

with γB a magnetic energy scale given by γB = vF

√
2eB�.

Here â† and â are the creation and annihilation operators, re-
spectively, that obey the usual commutation relation [â,â†] =
1 and act on Fock states such that â† |n〉 = √

n + 1 |n + 1〉
and â |n〉 = √

n |n − 1〉. Note that α has been parametrized by
α = tan ϕ and the Hamiltonian has been scaled by cos ϕ for
convenience [11].

In the presence of the magnetic field, the electronic states
of the α-T3 model condense into Landau levels (LLs). The
dispersionless flat band has zero energy LLs with energy εn,0 =
0 for n = 0,2,3, . . . . For the conduction and valence band we
have

εn,± = ±γB

√
n − 1

2
− ξ

2

(
1 − α2

1 + α2

)
, (2)

with n = 1,2,3, . . . and ξ = ±1 a valley index for the K and
K ′ valley, respectively. Figure 1(b) depicts the LL structure of
the model, as a function of the parameter α (as also shown in
Ref. [11]). Note the notational difference between the indices
of the α-T3 model and that of graphene. Here the indexing
begins with n = 1 for the conduction and valence band, in
contrast to graphene, where it typically starts with n = 0.

The wave functions for the conduction and valence bands
for the lowest state (n = 1) are

∣∣�K
±,1

〉 = 1√
2

⎛
⎝ 0

± |0〉
|1〉

⎞
⎠,

∣∣�K ′
±,1

〉 = 1√
2

⎛
⎝ |1〉

± |0〉
0

⎞
⎠, (3)

and

∣∣�K
±,n

〉 = 1√
2

⎛
⎜⎜⎜⎝

√
(n−1) cos2 ϕ

n−cos2 ϕ
|n − 2〉

± |n − 1〉√
n sin2 ϕ

n−cos2 ϕ
|n〉

⎞
⎟⎟⎟⎠, (4)

∣∣�K ′
±,n

〉 = 1√
2

⎛
⎜⎜⎜⎝

−
√

n cos2 ϕ

n−sin2 ϕ
|n〉

± |n − 1〉
−

√
(n−1) sin2 ϕ

n−sin2 ϕ
|n − 2〉

⎞
⎟⎟⎟⎠, (5)

in general with n = 2,3,4, . . . for the K and K ′ valleys,
respectively. For the flat band they are

∣∣�K
0,0

〉 =
⎛
⎝ 0

0
− |0〉

⎞
⎠,

∣∣�K ′
0,0

〉 =
⎛
⎝|0〉

0
0

⎞
⎠, (6)
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for n = 0 and

∣∣�K
0,n

〉 =

⎛
⎜⎜⎜⎝

√
n sin2 ϕ

n−cos2 ϕ
|n − 2〉

0 |n − 1〉
−

√
(n−1) cos2 ϕ

n−cos2 ϕ
|n〉

⎞
⎟⎟⎟⎠, (7)

∣∣�K ′
0,n

〉 =

⎛
⎜⎜⎜⎝

√
(n−1) sin2 ϕ

n−sin2 ϕ
|n〉

0 |n − 1〉
−

√
n cos2 ϕ

n−sin2 ϕ
|n − 2〉

⎞
⎟⎟⎟⎠, (8)

for n � 2.

III. MAGNETO-OPTICS

The absorptive part of the magneto-optical conductivity of
a system can be calculated using the Kubo formula. In the
Landau level basis, the Kubo formula can be written

σαβ(ω) = ig

2π�l2
B

∑
LLs

f − f ′

ε′ − ε

〈�| jα |� ′〉 〈� ′| jβ |�〉
ω − (ε′ − ε) + i�

, (9)

where α,β = {x,y} and the summation is over all initial
(unprimed) and final (primed) LLs with energy ε and wave
function |�〉. Here f is the Fermi factor, μ is the chemical
potential, and ω = hν is the photon energy. Here � can be
viewed as the scattering rate of charge carriers, g is the spin

degeneracy, and lB =
√

hc
e|B| is a magnetic length scale. The

current operator is given by jα = −evF Sα with

Sx = ξ

⎛
⎝ 0 cos ϕ 0

cos ϕ 0 sin ϕ

0 sin ϕ 0

⎞
⎠, (10)

Sy = −i

⎛
⎝ 0 cos ϕ 0

− cos ϕ 0 sin ϕ

0 − sin ϕ 0

⎞
⎠. (11)

In the limit of zero temperature and zero scattering rate,
the Fermi function f can be written as a Heaviside function
θ (μ − ε). {Additionally, Im 1

ω−(ε′−ε)+i�
→ −iπδ[ω − (ε′ −

ε)] for � → 0.} In our magneto-optics calculations these delta
functions are broadened by scattering � as δ(x) = 1

π
�

x2+�2

where we use � on the order of 0.025γB .
In order to utilize Eq. (9) to calculate the magneto-optical

response of the system, we require transition matrix elements
that describe the probabilities of transitions between LLs.
These can be written〈
�ξ

s,n

∣∣Sx

∣∣�ξ

s ′,n′
〉 〈

�
ξ

s ′,n′
∣∣ Sx

∣∣�ξ
s,n

〉
=f

ξ,n,n′,s,s ′
1 δn′,n+1 + f

ξ,n,n′,s,s ′
2 δn′,n−1,〈

�ξ
s,n

∣∣Sx

∣∣�ξ

s ′,n′
〉 〈

�
ξ

s ′,n′
∣∣ Sy

∣∣�ξ
s,n

〉
(12)

= − i
(
ξf

ξ,n,n′,s,s ′
1 δn′,n+1 − ξf

ξ,n,n′,s,s ′
2 δn′,n−1

)
,

where f
ξ,n,n′,s,s ′
1 and f

ξ,n,n′,s,s ′
2 are overlap functions between

initial (unprimed) and final (primed) states where ξ = ±
for the K and K ′ valleys, respectively; s = ±1,0 for the
conduction, valence, and flat band, respectively; and n, n′ is

the LL index. The overlap functions can be written

f
ξ,n,n′,s,s ′
1 = n

4g1(n)
[g2(n) + 2ss ′C

√
g1(n)],

f
ξ,n,n′,0,s ′
1 = C

2

(
1 −

1
2 [1 − ξ cos(2ϕ)]

n − 1
2 [1 + ξ cos(2ϕ)]

)
,

f
ξ,n,n′,0,s ′
2 = C

2

(
1 +

1
2 [1 + ξ cos(2ϕ)]

n − 1
2 [1 + ξ cos(2ϕ)]

)
,

f
ξ,n,n′,0,0
1,2 = 0, (13)

where g1(n) = n2 − ξn cos(2ϕ) − C, g2(n) = n(1 − 2C) +
ξ cos(2ϕ)(C − 1), C = sin2 ϕ cos2 ϕ = α2

(1+α2)2 , and s,s ′ = ±,
with all cases of s,s ′ = 0 explicitly shown. The remaining
overlap functions can be obtained from f

ξ,n,n′,s,s ′
2 = f

ξ,n′,n,s ′,s
1

for the cone-to-cone transitions and f
ξ,n,n′,0,s ′

1 = f
ξ,n′,n,s ′,0
2 and

f
ξ,n,n′,0,s ′
2 = f

ξ,n′,n,s ′,0
1 for the flat band-to-cone transitions.

The f1 and f2 functions give the amplitudes for the selection
rules of δn′,n+1 and δn′,n−1, respectively. These amplitudes are a
result of evaluating matrix elements for the inter-LL transitions
which are dipole allowed. They will be uniquely activated in
the presence of right-handed polarized and left-handed polar-
ized light, respectively. For α = 0,1 we recover the overlap
functions for graphene and the dice model, respectively.

In Fig. 2 we plot the overlap functions of Eq. (13) for an
intermediate value of the parameter α (α = 0.75). We find that
the f2 overlap functions are in general greater in magnitude
than the f1 functions for flat band-to-cone transitions. For
cone-to-cone interband transitions the f1 and f2 functions in
the K ′ valley are dominant over their K-valley counterparts.
The opposite is true for the flat band-to-cone overlap functions.

For large n, the overlap functions f1 and f2 approach the
same limit. In particular they approach

f c−c
1 = f c−c

2 = 1

4
[1 + 2C(s1s2 − 1)],

f
f −c

1 = f
f −c

2 = C

2
(14)

for cone-to-cone and flat band-to-cone transitions, respec-
tively. Since C(α) is a strictly increasing function of α [see
inset (c) in Fig. 2], Eq. (14) suggests that flat band-to-cone
transitions become more important for α → 1. The opposite
is true for interband cone-to-cone transitions where s1s2 = −1
and the overlap functions approach the limit 1

4 − C(α). The
relative magnitudes of the cone-to-cone versus flat band-to-
cone overlap functions in the K versus K ′ valley in part
determine the relative peak sizes in the magneto-optics curves
we will be presenting in the remainder of this section.

The absorptive diagonal component of the optical conduc-
tivity Re σxx(ω) and the absorptive off-diagonal component of
the optical conductivity Im σxy(ω) can be calculated from the
Kubo formula in Eq. (9). Additionally, for right- and left-hand
polarized light, we can calculate the absorptive optical con-
ductivity as Re σ±(ω) = Re σxx(ω) ∓ Im σxy(ω), respectively.

We will use the notation Tns,n
′
s′

to denote transitions
originating from a LL with index ns and terminating at a
LL with index n′

s ′ . Primed and unprimed transitions T and T ′
will denote transitions in the K and K ′ valleys, respectively.
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FIG. 2. (a) Cone-to-cone interband and (b) flat band-to-cone
overlap functions as a function of Fock number n for α = 0.75.
Overlap functions f1 and f2 are shown in purple and green,
respectively. The large n limit of these functions is given by Eq. (14)
and denoted by a dotted red line in (a) at C/2 and in (b) at 1/4 − C.
Here C = 0.2304. The K- and K ′-valley components of the overlap
functions are denoted by solid and dashed lines, respectively which
are simply a guide to the eye as only the values at integer n apply. In
the inset (c) we show C(α).

For example, a transition between the first LL of the flat
band (n = 0) and the first LL in the conduction band (n = 1)
in the K ′ valley would be written T ′

00,1+ . Note that for flat
band-to-cone transitions, the energy of the transition T(n+1)0,n+
is equal to that of T(n−1)0,n+ and for cone-to-cone transitions, the
energy of the transition T(n−1)−,n+ is equal to that of Tn−,(n−1)+ .
For simplicity, we will label peaks resulting from two equal
energy transitions using only one of these transitions, unless
a distinction needs to be made for our purposes. Note also
that for α = 0,1, all transitions have the same energy as their
primed counterparts (i.e., Tn,n′ = T ′

n,n′ ). Additionally, there is
no n = 1 LL for the flat band, and as a result there are no
transitions originating from this LL.

In Fig. 3(a) we plot the absorptive diagonal component
of the optical conductivity for a range of α values. They are
calculated at a chemical potential μ = 0.1γB , such that the
smallest positive LL is above the chemical potential, and the
zero energy flat band is below the chemical potential, for all
values of α considered. Cone-to-cone transitions are shaded
blue, and flat band-to-cone transitions are shaded red. A thin
black line shows the total optical response of the system. Note

(a)

(c)

(b)

FIG. 3. Absorptive, longitudinal component of the optical con-
ductivity [σxx(ω)] for a chemical potential of (a) μ = 0.01γB ,
(b) μ = 0.5γB , and (c) μ = 1.01γB for a range of α values as
shown. The flat band-to-cone contributions are shaded red, while
the cone-to-cone contributions are shaded blue. Their sum is shown
with a thin black curve. Calculations are done using a scattering rate
of � = 0.025γB .

again that the indexing for the LLs of the conduction and
valence band of the α-T3 model begin with n = 1, in contrast
to the usual n = 0 lowest LL of graphene, which results in LL
labeling that differs from what is typical for graphene.

For α = 0 we find only cone-to-cone transitions, as ex-
pected for graphene. For the other limiting case of α = 1, the
flat band-to-cone transitions dominate, and the cone-to-cone
transitions are largely suppressed. There remains only a
comparatively small peak for transition T1−,2+ . This was also
noted in Ref. [23] in their magneto-optics calculations for the
pseudospin S = 1 system.
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In the intermediate α regime, we observe the coexistence
of cone-to-cone, and flat band-to-cone transitions, and the
evolution between the two limiting cases. This regime is
characterized by peaks with anomalous heights or locations
that break up the regular pattern of the dominant transition
type. For example, the T ′

1−,2+ cone-to-cone transition disrupts
the dominant pattern of the flat band-to-cone transitions. For
α = 0.5 this results in a triplet centered about the T ′

1−,2+
transition, as its energy corresponds to the center of a flat band-
to-cone doublet. For α = 0.75, the presence of the transition
lines up with one of the peaks from a flat band-to-cone doublet,
and manifests as an anomalously sized doublet with increased
weight on the low energy side.

Additionally, we also note a doubling of the number of
peaks in the spectrum in the intermediate regime (both for
cone-to-cone and flat band-to-cone transitions). This is a
consequence of the difference in energies of the LLs in the
K and K ′ valleys. For values of α close to 1, the doublets
observed in the conductivity curves are formed by transitions
with identical indices in the K and K ′ valley. For example,
T00,1+ and T ′

00,1+ are flat band-to-cone doublets present for
the full range of α in the intermediate regime, with varying
separation between them.

In the other limit, for α close to 0, the doublets are formed
by transitions with indices that differ by one in the two valleys.
For example, T ′

1−,2+ forms a doublet with T2−,3+ in that limit.
This is nicely illustrated in the LL diagram in Fig. 1(b), where
we see that for values of α near 1, the LLs with the same index
come together from the two valleys, whereas in the other limit,
LLs with indices that differ by one converge (n + 1 from the
K valley meets n from the K ′ valley).

In Figs. 3(b) and 3(c) we show σxx(ω) for two additional
values of the chemical potential. For a chemical potential
of μ = 0.5 we see changes due to the increased chemical
potential for two values of α = 0.25 and 0.5, since the the
chemical potential is above the first LL in the K valley for
these cases. For μ = 1.01 the chemical potential is above the
first LL for all values of α in both the K and K ′ valleys.
The appearance and disappearance of peaks with changing
chemical potential in σxx(ω) will be addressed in more detail
in the discussion related to Fig. 7 but is simply due to the
Pauli blocking of transitions as levels are filled by increasing
μ and the activation of intraband transitions. However, we
include plots of higher μ here for completeness and in order to
make it possible to understand the behavior of σxx(ω) as both
a function of α and the chemical potential μ.

Figure 4 shows the absorptive off-diagonal component of
the optical conductivity for the same parameters as Fig. 3. The
two limiting cases of α = 0 and 1 have already been discussed
in the literature [23]. Here we focus on the intermediate regime
of the α-T3 lattice. As with the case of σxx(ω), we note a dou-
bling of the peaks due to the splitting in the K- and K ′-valley
LLs. However, in contrast to the σxx(ω) there are both positive
and negative valued peaks for σxy(ω). The signs of these peaks
will be discussed in detail for the case of α = 0.25 with relation
to Fig. 8. Nevertheless, we include plots for a range of α values
for a number of chemical potentials for completeness.

We now turn to examining the magneto-optical response of
the α-T3 lattice under a varying magnetic field, by making the
magnitude of the magnetic field explicit in our calculations.

(a)

(c)

(b)

FIG. 4. Same as Fig. 3, but for the absorptive part of the transverse
component of the optical conductivity [σxy(ω)].

This allows us to connect more closely to experimental work
where similar maps are an excellent tool for visualizing the
LL structure and observing the magnetic field dependence of
the observed transitions [17–20].

In Fig. 5 we present a false-color map of the optical con-
ductivity as a function of the square root of the magnetic field
for four values of the parameter α, including the two limiting
cases of graphene and the dice lattice. As one might expect
from Eq. (2), all of the observed transition energies depend on
the applied magnetic field as

√
B for all values of α, with slopes

that depend on the value of the parameter α and the LL index n.
We see the dominant cone-to-cone transition T1±,2+ for α = 0
and the dominant flat band-to-cone transition T00,1+ for α = 1.
These are followed by additional transitions that decrease in
intensity and become more tightly spaced with increasing n.
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FIG. 5. Absorptive, longitudinal component of the optical con-
ductivity under magnetic fields up to 16 T, for α = 0, 0.5, 0.75, 1.
We used a scattering rate of � = 2.5 meV and a chemical potential
that falls below the first positive valued Landau level for all values of
α considered.

For α = 0.5 and 0.75 we see additional structure in the
spacing of transitions—in the form of doublets reminiscent of
those in Fig. 3. In particular, the peak associated with the T00,1+
transition is split into its K- and K ′-valley counterparts and as
a result, appears as two transitions of comparable intensity in
this regime. The overall doublet structure of the transitions is
most apparent in the α = 0.75 color map, where we can clearly
see the pattern continue even for higher energy transitions.

Next, we examine the magneto-optical response of the α-T3

lattice as a function of the chemical potential μ. We chose a
value of the coupling parameter α such that both cone-to-cone
and flat band-to-cone transitions are well represented in our
calculations. As can be seen in Fig. 3, α = 0.25 is an excellent
representative case.

In Fig 6 we present a snowshoe diagram [23] for α = 0.25.
Arrows represent transitions between LL, which are depicted
as open circles connected by dashed and dotted lines in the K

and K ′ valleys, respectively. The transitions shown are for a
chemical potential of μ = 0.1γB . Other chemical potentials of
interest are also depicted in Fig. 6(a) as horizontal dashed lines,
specifically 0.5γB, 1.0γB, 1.2γB . These values were chosen
such that for the lowest value of μ, all positive LLs are above
the chemical potential and for each successive value, μ is
shifted past exactly one LL, either in the K or K ′ valley.

In Figs. 7 through 10 we present the magneto-optical
conductivity curves for α = 0.25 including the absorptive
part of the diagonal and the off-diagonal conductivities,
Re σxx(ω) and Im σxy(ω); as well as the absorptive part of
the conductivities for left- and right-hand polarized light,
Re σ+(ω) and Re σ−(ω), respectively. In these figures vertical
lines depict the photon energies of a number of transitions
of interest. The red, blue, and green vertical lines represent
the energies of flat band-to-cone transitions, cone-to-cone
interband transitions, and cone-to-cone intraband transitions,
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FIG. 6. Snowshoe diagram [23] for α = 0.25. (a) Relative posi-
tions of LLs in the K and K ′ valleys are shown with open blue circles
connected by dashed and dotted lines, respectively. Horizontal dashed
lines show the four chemical potentials considered in Figs. 7 to 10.
Arrows represent possible transitions between LLs in the K valley,
assuming a chemical potential of μ = 0.1γB . (b) LL in the K ′ valley
with arrows depicting all possible transitions for μ = 0.1γB .
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FIG. 7. Absorptive, diagonal component of the optical conduc-
tivity for α = 0.25 showing μ/γB = 0.1, 0.5, 1.0, and 1.2 from
top to bottom, respectively. The flat band-to-cone (cone-to-cone)
contributions are shaded red (blue), and their sum is represented
by a thin black line. Vertical dashed (dotted) lines show the energies
associated with a number of transitions in the K (K ′) valley. Red, blue,
and green vertical lines mark the energy of flat band-to-cone, cone-to-
cone interband, and cone-to-cone intraband transitions, respectively.
In order from left to right, the following transitions are marked: T00,1+ ,
T2+,3+ , T ′

1+,2+ , T1+,2+ , T ′
00,1+ , T10,2+ , T1−,2+ , T ′

1−,2+ , T2−,3+ . Only a
subset of these are labeled above the plot.
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respectively. Transitions in the K and K ′ valleys are shown
with dashed and dotted lines, respectively. The subset of peaks
that are affected by the first two shifts in chemical potential are
labeled by representative transitions above the plots. We shade
the flat band-to-cone response red, the cone-to-cone response
blue, and denote the total optical response with a thin black
curve.

In Fig. 7 we examine the effect of shifting the chemical po-
tential past the three lowest LLs of the α = 0.25 conductivity
curve of Fig. 3. Upon increasing the chemical potential above
the first LL in the K valley, a single red peak disappears,
a blue peak is halved, and a new blue peak appears at an
energy between the two original peaks. Similarly, raising the
chemical potential above the first LL in the K ′ valley results
in the disappearance of a red peak, the halving of a blue peak,
and the appearance of a new blue peak—this time at a lower
energy than either of the original transitions.

In both cases, the red peak that disappears is the lowest
energy flat band-to-cone transition (T00,1+ and T ′

00,1+ ) for
the respective valleys, the blue peak that is halved is the
lowest energy cone-to-cone transition (T1−,2+ and T ′

1−,2+ ) for
the respective valleys, and the transition that appears is the
intraband transition that crosses the value of the chemical
potential (T1+,2+ and T ′

1+,2+ ) for the respective valleys. Despite
this, the action that takes place is not limited to the two lowest
energy peaks. In fact, higher energy peaks are affected by
increases in chemical potential since the lowest energy peak
from a particular transition type (i.e., cone-to-cone or flat
band-to-cone) is not in general the lowest energy transition
in the entire spectrum.

We continue the trend in the bottom panel of Fig. 7, where
the chemical potential is raised above the second LL in the K

valley. We observe the disappearance of a red peak, and the
disappearance of the second half of a blue peak. The intraband
transition that previously appeared is also replaced by one that
crosses the current value of the chemical potential (i.e., the
transition T1+,2+ is replaced by T2+,3+ ). As in the previous two
shifts in μ, peaks other the lowest energy ones are affected.

In contrast, for both graphene and the dice lattice, shifting
the chemical potential past a single LL results in the halving
or disappearance of the lowest energy cone-to-cone or flat
band-to-cone interband transition, respectively. This may be
accompanied by the disappearance of an intraband transition
and the appearance of another intraband transition at a lower
energy. Thus, for the limiting cases of α = 0,1 only the one or
two lowest energy transitions are strongly affected by a shift
in the chemical potential. In the hybrid system, multiple peaks
are effected simultaneously, and these peaks are not in general
the lowest energy peaks. Thus, the effects of an increased
chemical potential on higher energy transitions can serve as a
signature of the hybrid system.

We also note the difference in how peaks due to flat
band-to-cone versus cone-to-cone transitions disappear. A
flat band-to-cone peak disappears completely with a single
increase in chemical potential, since transitions that contribute
to those peaks terminate at the same LL. For cone-to-cone
peaks, transitions that share the same energy terminate at
LLs one index apart. This results in a halving of a peak,
followed by the disappearance of the second half of the peak
upon blocking the next LL via another increase in chemical
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FIG. 8. Same as Fig. 7 but for the absorptive, off-diagonal
component of the optical conductivity.

potential. This difference between the response of cone-to-
cone versus flat band-to-cone peaks to increases in chemical
potential introduces additional richness into the intermediate
regime. In this regime, some peaks vanish with a single shift
of μ, while others are only halved.

In Fig. 8 we plot the off-diagonal part of the absorptive
optical conductivity. Here, right-directed transitions, denoted
Tn,m with m = n + 1, provide a negative contribution, and
left-directed transitions, denoted Tn,m with m = n − 1, provide
a positive contribution, as can be inferred from Eq. (12).
The snowshoe diagrams in Fig. 6 depicts left- and right-
directed transitions as arrows that point to the left and right,
respectively. The right-directed arrows are associated with
the f1 overlap functions, while the left-directed transitions
are associated with the f2 overlap functions. These different
transitions can be selectively excited through right- and left-
handed polarized light, which will be discussed further on.
Looking at the red and blue shaded peaks, we observe that the
cone-to-cone transitions behave like those of graphene and the
flat band-to-cone transitions follow those of the dice lattice
[23], respectively.

In particular, peaks associated with flat band-to-cone
transitions in Im σxy(ω) are primarily positive, due to the
dominance of the left-directed (f2) transitions. An exception
is the first mixed type flat band-to-cone transition, as also
seen in Ref. [23]. For cone-to-cone transitions, the overlap
functions f1 and f2 cancel in pairs where f1(n) is paired with
f2(n + 1) [see Fig. 2(a) for an example of f1(n) = f2(n + 1)].
As a result, cone-to-cone peaks only appear at energies at
which one of the paired transitions is blocked. In a snowshoe
diagram these transitions appear as unpaired arrows (see Fig. 6
with μ = 0.5 for example). These unpaired arrows are right
directed with magnitudes given by the f1 overlap functions
and are associated with negative peaks in Im σxy(ω).

125435-7



E. ILLES AND E. J. NICOL PHYSICAL REVIEW B 94, 125435 (2016)

0

1

2

0

1

2

0

1

2

0 0.5 1 1.5 2 2.5 3 3.5
0

1

2

FIG. 9. Same as Fig. 7 but for the absorptive, optical conductivity
for right-hand polarized light.

The off-diagonal conductivity exhibits some unique fea-
tures that are not present in the two limiting cases. For chemical
potentials above the lowest LL, there are twice as many
negative peaks from cone-to-cone transitions as there were in
the S = 1/2 case, resulting from the difference in energies of
the LLs in the K and K ′ valleys. This is notable as the number
of peaks for S = 1/2 is exactly two (see Fig. 5 in Ref. [23]), and
for the α-T3 model is exactly four. Finally, we note the presence
of a series of both positive and negative valued peaks which
persist for larger values of chemical potential. In contrast,
graphene has only negative valued peaks, while the dice lattice
exhibits a single negative valued peak followed by a series of
positive ones.

In Figs. 9 and 10 we plot the absorptive part of the
optical conductivity for right- and left-hand polarized light,
respectively. For right-hand polarized light, we find only right-
directed transitions, Tn,m with m = n + 1, that are associated
with arrows pointing to the right in the snowshoe diagram
of Fig. 6. Similarly, for left-hand polarized light we find
transitions represented by left facing arrows in Fig. 6, denoted
Tn,m with m = n − 1. The labeling of peaks in Figs. 7 through 9
emphasizes right-directed transitions, for convenience. We
reverse this labeling convention for Fig. 10, emphasizing
instead the left-directed transitions that are actually visible
in that figure.

For right- and left-polarized light, each peak in the con-
ductivity curve is a result of a single transition. Consequently,
cone-to-cone transitions are no longer halved before disappear-
ing, and instead completely disappear as the chemical potential
is shifted past the relevant LL. Also note that no intraband
transitions exist for Re σ−(ω) since all such transitions have the
form Tn+,m+ with m = n + 1 and are only active for right-hand
polarized light.
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FIG. 10. Same as Fig. 7 but for the absorptive, optical conduc-
tivity for left-hand polarized light. The labels on the top have been
changed to emphasize left-directed transitions.

As before, in contrast to graphene and the dice lattice, we
see transitions appear as doublets in the conductivity curves
for polarized light. Additionally, we see peaks that are not
necessarily the lowest energy interband peaks effected by a
single shift in chemical potential. These are signatures of the
hybrid system that persist with left- and right-hand polarized
light.

As a final note, we take this opportunity to comment on
the Hall conductivity of the α-T3 model. Upon calculating
the dc Hall conductivity from the Kubo formula in Eq. (9),
we find that it is in agreement with our previously published
results that utilized the Streda formula for this calculation
[15]. Interestingly, both the flat band-to-cone and cone-to-cone
contributions are required to obtain the Hall conductivity when
utilizing the Kubo formula as shown in Fig. 11. In contrast,
only the finite-frequency density of states was required for the
same calculation using the Streda formula.

The flat-band contribution to the first nonzero valued
plateau of the Hall conductivity is unique in that it can
be both positive or negative valued, as shown in Fig. 11.
It provides a positive contribution for values of α ≈ 0.7 or
less [see Fig. 11(a)] and a negative contribution for α ≈ 0.7
or more [see Fig. 11(a)]. For all subsequent plateaux, the
flat-band contribution is negative and decreases in magnitude
with increasing μ.

For the case of α = 1 we have confirmed that the relative
magnitude of the flat-band contribution to the total Hall
conductivity agrees with a previous analytical calculation [40].
In Ref. [41] Kovacs et al. calculate the Hall conductivity
using Green’s function’s methods. Hall conductivity for the
α-T3 model is further explored in Ref. [42]. Both references
find agreement with our previous calculations of the Hall
conductivity [15].
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FIG. 11. DC Hall conductivity Re σxy(μ) for (a) α = 0.5 and
(b) α = 1. The cone-to-cone and flat band-to-cone contributions are
shown in blue and red, respectively, and their sum is shown by a green
curve. We show agreement with our previously published results of
the Hall conductivity that were obtained using the Streda formula in
dashed magenta [15].

IV. HOFSTADTER BUTTERFLY

In this section we consider the α-T3 lattice in a perpen-
dicular magnetic field and calculate the associated Hofstadter
butterfly spectrum for the lattice.

We begin by choosing primitive lattice vectors a1 =
a(0,

√
3) and a2 = a( 3

2 ,
√

3
2 ) to span the lattice. Here a is

the interatomic distance, and we have chosen the vector a1

such that it lies in the ŷ direction, for convenience. We
choose the B sites as our lattice points, and use the basis
vector ±δδδ = ±a( 1

2 ,
√

3
2 ) to access the atoms at sites A and C,

respectively (see Fig. 12).
To denote the location of A, B, and C atoms, we can now

use the vector Rn which can be written in terms of the primitive

(a) (b)

FIG. 12. (a) The α-T3 lattice with three atoms per unit cell at sites
A, B, and C, represented by blue, red, and green circles, respectively.
Primitive lattice vectors a1 and a2 and basis vector δδδ are depicted by
arrows originating from lattice site (n1,n2). (b) Schematic comparing
the smallest plaquette for the α-T3 lattice for α 
= 1 (dotted rhombus)
versus α = 1 (the entire hexagon).

lattice vectors and the basis vector as

Rn1,n2,n3 = n1a1 + n2a2 + n3δδδ. (15)

In the Landau gauge, the magnetic field in the ẑ direction
can be written A = Bxŷ. Using the usual Peierls substitution
�k → �k − eA/c, the hopping t picks up a phase θn,m in the
presence of the field

tn,m → tn,me−iθn,m . (16)

This phase can be calculated using

θn,m = e

�c

∫ Rm

Rn

A · dl. (17)

Between two arbitrary nearest neighbors located at Rn and Rm

the phase is given by

θn,m =πB

φ0
(Rm − Rn)y(Rn + Rm)x, (18)

where φ0 = hc/e is the quantum flux, and the subscripts x and
y refer to the x and y components of the respective vectors.

In the α-T3 lattice, atoms at sites A and C have three
nearest neighbor atoms, while those at the B sites have six
nearest neighbors. We can write down three coupled difference
equations for the wave functions at sites A, B, and C with
indices (n1,n2)

εψB(n1,n2) = t
[
e−iθ+(n2)ψA(n1,n2) + eiθ+(n2)ψA(n1 − 1,n2) + ψA(n1,n2 − 1)

]
+αt

[
eiθ−(n2)ψC(n1,n2) + e−iθ−(n2)ψC(n1 + 1,n2) + ψC(n1,n2 + 1)

]
,

εψA(n1,n2) = t
[
eiθ+(n2)ψB(n1,n2) + e−iθ+(n2)ψB(n1 + 1,n2) + ψB(n1,n2 + 1)

]
,

εψC(n1,n2) = αt
[
e−iθ−(n2)ψB(n1,n2) + eiθ−(n2)ψB(n1 − 1,n2) + ψB(n1,n2 − 1)

]
, (19)
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where θ±(n2) is the phase, ε is the energy, and φ is the
elementary flux through a plaquette of the α-T3 lattice. We have
written the acquired phase θn,m(n2) as θ±(n2) = π

φ

φ0
(n2 ± 1

6 )
in Eq. (19) for the particular set of basis vectors we have chosen
for the α-T3 lattice. Here the elementary flux φ = Ba2

√
3

2 , where
a2

√
3

2 is the area of the smallest plaquette of the α-T3 lattice for
α 
= 0 as depicted in Fig. 12(b). Note that we have suppressed
the third index n3 in the wave functions of Eq. (19), since n3 is
always 1, 0, and −1 for atoms at sites A, B, and C, respectively
[see Eq. (15)].

Upon combining the three difference equations from Eq. (19)
via substitution into the top equation one can obtain a single
difference equation for ψB(n1,n2) that is valid for ε 
= 0.
Taking into account the translational symmetry in the ŷ

direction due to the gauge choice [6], we can assume plane
wave behavior in this direction and look for solutions of the
form

ψB(n1,n2) = ϕn2e
ik1n1 , k1 = a1 · k = aky

√
3. (20)

Simplification and some algebra yields a second order differ-
ence equation for ϕn2 ,

[ε2 − 3t2(1 + α2)]ϕn2 = 2t2ϕn2

(
cos

{[
6π

φ

φ0

(
n2 + 1

6

)]
− k1

}
+ α2 cos

{[
6π

φ

φ0

(
n2 − 1

6

)]
− k1

})

+ 2t2ϕn2−1

(
cos

{[
3π

φ

φ0

(
n2 − 5

6

)]
− k1

2

}
+ α2 cos

{[
3π

φ

φ0

(
n2 − 1

6

)]
− k1

2

})

+ 2t2ϕn2+1

(
cos

{[
3π

φ

φ0

(
n2 + 1

6

)]
− k1

2

}
+ α2 cos

{[
3π

φ

φ0

(
n2 + 5

6

)]
− k1

2

})
. (21)

It is easy to verify that Eq. (21) reduces to the equation for
the Hofstadter butterfly for the HCL and the dice lattice in
the appropriate limits [7,35] of α = 0 and α = 1, respectively.
Rational values of φ

φ0
= p

q
make Eq. (21) periodic. Applying

Bloch’s theorem to take advantage of the periodicity yields a
q × q eigenvalue equation for energy ε. We solve this system
of q equations to obtain Hofstadter butterflies for the α-T3

lattice.
In Fig. 13 we show the Hofstadter spectra for six repre-

sentative values of α. The spectra were calculated with a q

up to 50 and plotted as a function of φ

φ0
. The ε = 0 solution

that results from the nondispersive flat band for all values of
magnetic field is also included in the spectra though it is not
given by Eq. (21). As one might expect from Eq. (21) and the
symmetries of the α-T3 lattice, the Hofstadter butterfly spectra
are symmetric about ε = 0 and φ

φ0
= 1

2 , for all values of α,
with additional symmetries present in the α → 0 limit.

For the limiting case of α = 1, we obtain the Hofstadter
butterfly spectrum of the dice lattice [see Fig. 13(f)]. The
spectrum has a highly degenerate eigenvalue resulting from
the presence of the flat band at ε = 0 that carries 1/3 of the
total weight. The spectrum contains a number of gaps, for
example a large circular one near the center, which at φ

φ0
= 1

2
is accompanied by a collapse of all the states to just three
degenerate eigenvalues of ε = 0 and ε = ±√

6t . There are also
a number of gapless bands, for example a large one at φ

φ0
= 1

3
that stretches between ε = ±3t . A more detailed discussion
of the Hofstadter butterfly spectrum for the dice lattice can be
found in Refs. [6,7].

For the other limiting case of α = 0, we obtain three
repeats of the Hofstadter butterfly of graphene [see Fig. 13(a)].
Focusing on a single repeat in the central region with 1

3 <

| φ

φ0
| < 2

3 , the HCL Hofstadter butterfly is characterized by a
set of gaps whose shape resembles the letter X, located at
both positive and negative energies. Repeats of this shape can
be found throughout the complex fractal pattern of the HCL

Hofstadter butterfly. At φ

φ0
= 1

2 there is a gapless band that

stretches between ε = ±√
6t , in contrast to the three highly

degenerate eigenvalues found for the dice lattice at the same
flux.

Notably, we obtain three copies of the graphene Hofstadter
butterfly spectrum, but only a single copy of the dice lattice one
for the same range of φ

φ0
in Fig. 13. This can be understood

by looking at the diagram in Fig. 12(b) which contrasts the
smallest plaquette that can be encircled by a semiclassical
orbit for the HCL versus the α-T3 lattice. Semiclassically, the
smallest orbit an electron can make in the α-T3 lattice, with
α 
= 0, is along the edges of a rhombus with vertices A, B, A,
C. An example of such a rhombus is highlighted with dotted
fill in Fig. 12(b). This rhombus has an area

√
3a2

2 . In contrast,
for α = 0, the atoms at the C sites are inert, and cannot be part
of a semiclassical orbit. In this limit, the smallest orbit is the
entire hexagon in Fig. 12(b), which contains three copies of
the rhombus, resulting in an area of 3

√
3a2

2 . Since φ = Ba2
√

3
2 ,

where a2
√

3
2 is the area of the smallest plaquette of the α-T3

lattice for α 
= 0, this results in three repeats of the Hofstadter
butterfly for α = 0, where the area of the smallest plaquette is
three times larger.

As α changes from 1 to 0 we observe the Hofstadter butterfly
change its periodicity by a factor of three. In the process,
the large circular gap in the central region is squeezed from
above and below, while the two side regions with | φ

φ0
| > 1

3
symmetrically evolve to form two copies of the graphene
Hofstadter butterfly spectrum. During this process, a number of
striking changes take place in the spectra. Notably, at φ

φ0
= 1

2 ,
the highly degenerate eigenvalues we observe for α = 1
evolve into a large gapless band for α = 0. Quantitatively,
the gap centered about φ

φ0
= 1

2 is bounded by ε = ±√
6αt .

Consequently, the band at φ

φ0
= 1

2 stretches from ±√
6αt to

±√
6t resulting in highly degenerate eigenvalues at ±√

6t for
α = 1 and a continuous band between ±√

6t for α = 0.
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FIG. 13. Hofstadter butterflies for six representative α values calculated for q up to 50.

Recent seminal experiments in Moire superlattices have
focused on observing the small field portion of the Hofstadter
butterfly spectrum, since these regions are most readily
accessible in the laboratory. In Fig. 14 we highlight this portion
of the Hofstadter butterfly spectrum for α = 0 and α = 0.25,
for the α-T3 lattice. For both α = 0 and 0.25 we see a series

(a) (b)

(c) (d)

FIG. 14. Low-field Hofstadter spectra for (a) α = 0 and (b) α =
0.25. The red arrow in (b) highlights the splitting of the LLs that
is visible in the α = 0.25 butterfly. For very low field, bands are
compared with the spectra for (c) α = 0 and (d) α = 0.25 with K and
K ′ bands shown by solid and dashed lines, respectively. The low-field
bands are given by Eq. (22).

of electronlike LLs that move up in energy with increasing φ.
These are the LLs given by Eq. (2) that are formed in the cones
located at the K and K ′ points. Additionally, we see holelike
LLs that move down in energy with increasing φ. These are
accommodated in the hole pocket formed at the center of the
hexagonal Brillouin zone [26].

For α = 0.25, the splitting between the LLs in the K

and K ′ valley can be observed in the LLs. This splitting is
characterized by an unusually small spacing between LLs that
interrupts the usual spacing observed between the remainder
of the levels. An example of this is shown by the arrow in
Fig. 14(b).

Quantitatively, the low-field spectra in Figs. 14(a) and 14(b)
can be described by bands with energy

εn

(
φ

φ0

)
= ±3t

√
2π√

3

√
n − 1

2
− ξ

2

(1 − α2

1 + α2

)√
φ

φ0
. (22)

These bands are shown in Figs. 14(c) and 14(d) for α = 0 and
0.25, respectively, and show the splitting between the LL of
the K and K ′ valley in more detail.

As the possibility of measuring the Hofstadter butterfly
in graphenelike systems is starting to become a reality, it is
appropriate to provide a characterization of this spectrum for
the α-T3 model discussed here.

V. CONCLUSIONS

In this paper we described the magneto-optical response
and the Hofstadter butterfly spectrum of the α-T3 lattice. We
highlighted signatures of the intermediate regime between
the pseudospin S = 1/2 HCL and the pseudospin S = 1 dice
lattice.

In the magneto-optical conductivity, we noted a coexistence
of the cone-to-cone transitions of graphene and flat band-to-
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cone transitions of the dice lattice in the intermediate regime
of the α-T3 model. This was accompanied by a doubling of
peaks associated with both transition types, a consequence of
the inequivalent LL energies in the K and K ′ valleys. This
interplay of the two transition types resulted in richness not
observed in the two limiting cases, including anomalously
sized peaks and doublets, as well as triplets of peaks.

Examining the magneto-optical response with a varying
magnetic field B showed

√
B dependence for all transitions.

In the intermediate regime, a doublet structure in the peaks
was again apparent, and in this case was manifest as pairs of
transitions with comparable intensity.

For the HCL and the dice lattice, varying the chemical
potential primarily affects the lowest energy transitions of
the magneto-optical conductivity curves. In the intermediate
regime of the α-T3 model, this action is not limited to the lowest
energy peaks due to the richness of the mixing of cone-to-cone
and flat band-to-cone transitions.

We confirm here that our DC quantized Hall conductance
calculated from the ω = 0 limit of the Kubo formula is
in agreement with our previous calculation [15] using the
Streda formula. While the Streda formula only uses the finite
frequency density of states, the Kubo approach required both
cone-to-cone transitions and flat band-to-cone transitions,
although the latter are a minor contribution. An interesting

result is that the flat band-to-cone contribution to the first finite
plateau of the Hall conductance shows anomalous behavior as
a function of α with a change in sign around α ≈ 0.7. We note
that in the α-T3 model, the susceptibility was found to show
a transition from diamagnetic to paramagnetic behavior as α

was varied from 0 to 1 with the change occurring for α ≈ 0.52
[11]. It is possible that the sign change we find might be
related. Further investigation into other features of the α-T3

model which could exhibit such sign changes with α might be
of interest in light of these findings.

Finally, we derived the difference equation required to
calculate the Hofstadter butterfly spectrum for the intermediate
regime of the α-T3 lattice. This allowed us to describe the
evolution of the Hofstadter spectrum as it changes its period by
a factor of three. Also, we highlighted the low-field regime of
the Hofstadter spectrum, as this is the regime most accessible
for recent experiments in other lattices.
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