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Short-time counting statistics of charge transfer in Coulomb-blockade systems
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We study full counting statistics of electron tunneling in Coulomb-blockade systems in the limit of short
measuring-time intervals. This limit is particularly suited to identify correlations among tunneling events, but
only when analyzing the charge-transfer statistics in terms of factorial cumulants Cg ,, (f) rather than ordinary ones
commonly used in literature. In the absence of correlations, the short-time behavior of the factorial cumulants is
given by Cg,, (1) oc (—=1)"~'+™. A different sign and/or a different power law of the time dependence indicates
correlations. We illustrate this for sequential and Andreev tunneling in a metallic single-electron box.
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I. INTRODUCTION

The transfer of electrons through a tunneling barrier is
a stochastic process. If the individual tunneling events are
uncorrelated (i.e., independent of each other) and occur with
the same single-particle tunneling probability p(¢) = I't, the
probability Py(¢) that N > 0 electrons have been transferred
during the time interval [0,f] is described by the Poisson
distribution, Py(t) = e~?p" /N!. The more general scenario
of uncorrelated (independent) but nonidentical tunneling
events is characterized by the Poisson binomial distribution [1]

Pvy =Y ] pio [T01 = peo), (1)
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where individual tunneling trials j succeed with probability
p;(t) or fail with 1 — p;(¢). The sum goes over all subsets
Ay of the natural numbers with cardinality N, and AS; is the
complement of Ay. While a single number p is sufficient
to fix the Poisson distribution, the huge number of possible
sets of {p;} with the restriction 0 < p; < 1 generates such a
plethora of possible charge-transfer distributions Py(t), that
one may wonder whether it is possible to approximate any
tunneling statistics Py(¢) by a Poisson binomial distribution
with properly chosen p;’s. This is, however, not the case:
if the tunneling events are correlated, i.e., they do not
occur independently from each other, then the charge-transfer
statistics can be qualitatively changed.

In this paper, we demonstrate that the short-time limit
is particularly suited to identify correlations, but only when
studying factorial cumulants of Py(#) rather than ordinary
ones commonly used in literature. For this, we consider
Coulomb-blockade systems, in which the electrostatic po-
tential of a confined region such as a quantum dot or a
metallic island depends on the number of contained electrons.
The latter can be detected by a sensitive electrometer, e.g.,
an electrostatically coupled quantum point contact [2—10]
or single-electron transistor [11-15], but also optical [16],
interferometric [17], or other detection schemes are conceiv-
able. Changes in the electron number indicate the individual
tunneling events, from which one can calculate the full count-
ing statistics Py(¢) [18,19]. The latter provides information
about the impact of ferromagnetic leads [20], electron-phonon
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interactions [21,22], non-Markovian [23-25], and frequency-
dependent [26,27] effects. Various Coulomb-blockade systems
including multilevel quantum dots [28], interferometers [29],
multistable [30], and feedback-controlled systems [31-33]
have been investigated.

The Coulomb interaction among the electrons on the
island can introduce correlations since the probability of a
given tunneling event may depend on the island’s charge
state. Moreover, superconducting pairing interaction [34—41]
becomes relevant if the island is coupled to a superconducting
lead. Then, two electrons can be transferred simultaneously
between island and Cooper-pair condensate of the lead, a
process referred to as Andreev tunneling [42].

The outline of the paper is as follows. First, in Sec. II,
we introduce ordinary and factorial cumulants. Then, in
Sec. III, we study their properties in the short-time limit.
We explain why ordinary cumulants are inappropriate to
detect the presence of correlations in the short-time limit,
in contrast to factorial and generalized factorial cumulants.
Finally, we illustrate this claim in Sec. IV for a model system, a
single-electron box consisting of a normal-metal island tunnel
coupled to a superconductor, for which counting statistics of
Andreev tunneling has recently been measured [43—45].

II. MOMENTS AND CUMULANTS

Full counting statistics is commonly characterized by
ordinary moments (N")(t) := Yy N™ Pxn(t) or ordinary cu-
mulants C,,(¢t) := ((N™))(¢). They are obtained from the
generating function M(z,7) := ) €V? Py(t) via performing
the derivatives (N"™)(t) = 3" M(z,1)|,—0 and ((N"))(t) :=
0" [In M(z,1)]|;=0- Due to the logarithm, cumulants (unlike
moments) of independent charge-transfer channels simply add
up.

Alternatively, full counting statistics can be characterized
by factorial moments and cumulants. Factorial moments
(N™) (1) =Y N™ Py(t) are defined as the expectation
values of factorial powers N = N(N —1)---(N —m +
1) and can be derived via (N™)(t) = 8" Mg(z,1)|.=o from
the corresponding generating function,

Mi(z,0) =) (2 + DV Py(0). )
N

Per definition, we do the counting in such a way that the number
N is always > 0: we count only the electrons that leave the
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central part of the system (e.g., quantum dot or island) into
some leads and not those entering (i.e., N is in general not the
net charge transfer between island and lead).

Factorial cumulants are obtained from Cgj(f) =
((N)) (1) := 8" [In Mp(z,1)]|.=0. As compared to the gen-
erating function for ordinary moments and cumulants, e"*
is replaced by (z+ 1)V. Let us denote by zj(t) the ze-
ros of the generating function, Mg(z;(¢),r) = 0. Together
with the normalization Mg(0,¢) = 1, this yields Mg(z,t) =
I ;[1—2z/z;(®)] (multiple zeros appear with corresponding
multiplicity in the product). If we now define p;(¢):=
—1/z;(t), then [46]

Me(z,1) = H[l —pjt)+(z+ Dp;@®)] 3)

J

Thus, the charge-transfer statistics Py(¢) acquires the form of
Eq. (1), and the factorial cumulants are given by

Crn(®) = (=D 'n = DY [p01". @
J

It is important, however, to emphasize that a mapping onto
a Poisson binomial distribution for independent electron
tunneling events is only possible if all the p;(z)’s are real
and lie between 0 and 1. Then, the sign of Cg,(¢) is fixed,
(—=1)""'Cg,n(t) > 0. In general, correlations influence the
zeros of the generating function such that the p;(z)’s can be
<0 or >1 and pairs of complex-valued p;(¢)’s can appear.
This can change the sign of the factorial cumulants [47-50].
Recently, we have shown [50] that the detection of the presence
of correlations can be tremendously facilitated via shifting the
complex variable z by the amount s — 1 along the real axis in
the complex plane. This yields
00 N
MGzt o= ZNAELITPND), )
2 =0 " Py()
where the denominator guarantees the normalization
M;(0,¢) = 1. The factorial generating function Mg(z,t) is
contained as the special case s = 1. The generalized factorial
cumulants take the form
1 m
] (6)

Cym(t) = (_l)m_l(m — D! Z |:_Z i) —s+1
J

J

and a violation of (—1)"~! Cs.m(t) = 0 for arbitrary orders m
if s > 0 and even orders m if s < 0 indicates correlations [50].

We emphasize that the derivations in this section are valid
for arbitrary distributions Py (), independent of the underlying
physical system that produces this distribution [46]. Finally,
we remark that we introduced the shift parameter s for the
generating function of factorial cumulants since we aim at
identifying deviations from uncorrelated statistics. In princi-
ple, however, such a shift parameter can also be introduced for
the generating function of ordinary cumulants [51].

III. CUMULANTS IN THE SHORT-TIME LIMIT

From now on, we concentrate on charge-transfer statistics in
Coulomb-blockade systems in the short-time limit. The latter
is defined by the length ¢ of the measuring time interval being
small as compared to the average waiting time between two
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adjacent tunneling events. Of course, ¢ has to remain larger
than the time resolution of the detector. We assume that the
duration of all the fundamental tunneling processes (sequential
or Andreev tunneling) is shorter than the time resolution of the
detector. In this case, the system’s dynamics can be described
by a Markovian master equation. Therefore, transport regimes
in which non-Markovian effects become relevant [23-25] are
not covered by the following analysis. Furthermore, we require
that the charge-transfer statistics is measured after the system
has reached its stationary state. Charging energy limits the
number of possible charge states. However, we allow for
arbitrary many microscopic realizations of each charge state
(e.g., the electrons on the island may occupy different orbital
and/or spin states).

We aim at identifying correlations between the transfers of
individual electrons. In our example, there are two sources of
correlations. First, correlations between two sequential tunnel-
ing events can arise as a consequence of the charging energy
since the probability for a given transition depends on the
charge state of the island. Second, for Andreev tunneling there
is, due to superconducting pairing interaction, a correlation
between the two electrons tunneling simultaneously within
one fundamental charge-transfer process.

Ordinary cumulants in the short-time limit are not a
convenient tool to identify these correlations. This can be
understood in the following way. Let us assume that a single
electron can tunnel with a rate I'y, two electrons (Andreev
tunneling) with I';, and, in generalization, there may be
fundamental processes in which even a larger number N
of electrons tunnel simultaneously with I'y [52]. In the
short-time limit, the full counting statistics is given by Py () =
Tyt 4+ O@?) and Po(r) = 1 — 3" -, Tyt + O(2?). It contains
only contributions with at most one fundamental N-particle
process during the measuring-time interval; contributions with
more such processes are of order #> or higher. Expanding
the logarithm of the generating function up to linear order
in time, In M(z,t) = 21\,21(61\’Z — DI'yt + O(t?), we obtain
the short-time limit of the ordinary cumulants,

Cp(t) = Z N"Tyt. @)

N>1

They are all positive and linear in ¢, irrespective of the presence
or absence of correlations. Only the relative magnitude of the
cumulants of different order m may be used to identify the
presence of fundamental tunneling processes with N > 2.

This is qualitatively different for the short-time behavior of
factorial cumulants. For a Poisson binomial distribution, the
probabilities p;(¢) are positive and depend, in the short-time
limit, linearly on ¢. Together with Eq. (4), this fixes both the
sign and the time dependence, Cg,,(f) (=1y""1¢". Both
a different sign and/or a different time dependence must
be due to correlations. In the following, we illustrate this
for Coulomb-blockade systems with different numbers of
accessible charge states and different fundamental tunneling
processes.

As t goes to 0, no charge is transferred, Py(0) = dn 0,
and all (generalized) factorial cumulants vanish. For small
but finite 7, the Py(¢)’s in Eq. (2) with N > 1 are small, which
implies that the zeros z; of the generating function have a large
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magnitude. From Eq. (6) it is clear that the short-time behavior
of the (generalized) factorial cumulants is governed by those
zeros z;(t) that diverge slowest as ¢+ — 0. To determine them,
we expand the generating function, Eq. (2), in powers of ¢
and keep only the leading terms proportional oct’. Hence, the
constant term z°#° must be taken into account plus those terms
ozt with the smallest appearing ratio [/k (for [ > 1). This
yields z;(r) oc t7//%.

A. Sequential tunneling for two charge states

We start by discussing sequential tunneling between two
accessible charge states. In the short-time limit, we can
approximate the generating function by Mp(¢) ~ 1 + z P(¢)
where P;(¢t) = I'y¢ linear in time describes a single tunneling-
out event. Contributions Py(f) with N > 2 tunneling-out
events can be ignored for the following reason. After each
tunneling-out event (being counted) an electron has to tunnel in
(which is not counted) before another tunneling-out event can
happen. This implies Py (t) o t*N~! (with N > 1), and from
all the contributions zV Py(¢) o< zVt?N~! to the generating
function, only the one with N =1 has to be kept since this
has the smallest ratio 2 — 1/N of the exponents for ¢ and z.
Thus, there is only one zero z;(t) = —1/(I";¢) and by means
of Eq. (6) we get the short-time generalized factorial cumulant

Com() = (=1)""'m = DU(Ty1)" oct™, ®)

independent of s. Despite the presence of interactions via the
charging energy, we find that both the sign (—1)"~! and the
power law " in the short-time limit are the same as for a
Poisson binomial distribution of independent tunneling events.
This seems to be a consequence of the restriction to two charge
states only.

The short-time behavior of recently measured factorial
cumulants for hole transfer in semiconductor quantum dots
with dense excitation spectrum [10] is in full agreement with
Eq. (8): while the alternation of the sign with increasing m is
explicitly commented on, also the power-law dependence ¢™
is clearly visible in the data shown in Fig. 5(e) of Ref. [10].
Our paper now provides an explanation for this experimental
finding.

B. Sequential tunneling for three charge states

If three charge states are accessible, two sequential-
tunneling processes transferring an electron from the island
into the leads can occur in a row, ie., P(¢) > and
722 P5(t) o z%t? is equally important for the position of the
zeros of the generating function as zP;(f) o zt. But still,
terms with Py>3(¢) oc t2¥=2 are negligible since they involve
at least N — 2 tunneling-in events that are not counted. As a
result, we get Mg(t) ~ 1 + zP(t) + 7> P,(t) with two zeros

212(t) = —=2/[Py(t) £ \/ PA(t) — 4Py(1)], which yields

Com®) = (=1)""'m — D[P ap < ™, (9)

independent of s, where

o= 2 (33

j==1

(10)

4P,(1) )m
1 _
PX(t)
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is independent of time. Again, in the short-time limit, Cs ,, ()
obeys the power law ™. But now, the sign can be modified:
for 4P,(t) > Plz(t) there are some m’s for which a,, < 0 such
that C,,,(¢) has the opposite sign as for a Poisson binomial
distribution of independent tunneling events. We conclude that
for a detection of correlations in the full counting statistics
of sequential tunneling, more than two charge states are
necessary.

It is straightforward to extend this procedure to include
more charge states. For each extra charge state, one more term
7V Py (1) o ZVt" needs to be kept in the generating function,
Eq. (2), giving rise to one more zero z;(t) & 1/t such that
Cs.m(t) o< t™ independent of s but with a sign that may or may
not be given by (—1)"~!.

C. Sequential plus two-electron tunneling for three charge states

We now show that the presence of two-electron processes
such as Andreev tunneling, where two electrons are tunneling
out of the island simultaneously, leads to a power-law behavior
of the short-time (generalized) factorial cumulants different
from . While P;(¢#) = I'i¢ is given by sequential tunneling
with rate T'j, P,(t) = I'»¢ is dominated by two-electron
tunneling with rate I';. Sequential tunneling of two electrons
is negligible since it is of order ¢>. Keeping only those
terms ocz¥t! with the smallest ratio //k, we approximate
the generating function for the case of three charge states
by Mg(t) &~ 1 4 z°T'»t. Plugging the zeros z; »(t) = i //Tat
into Eq. (6) yields, for even m, the short-time (generalized)
factorial cumulants

C(1) = —(m — 1)1 2(=Ta2t)? ox 17, (11)

s,m

independent of s and independent of P;(¢). For odd m,
however, the two zeros determined above cancel out each
other when plugged into Eq. (6), indicating that, for odd
m, the approximation of the generating function was too
crude. Instead, we need to include the next-order correction.
To identify which terms to include, we use that the zeros
diverge with z;(r) oc 1 /ﬁ. Thus the correction (of order
/1) is introduced by terms oczt. Therefore, we get Mg(t) &
14zt + (22 4+ 22)yt, while all other terms can still be

neglected. The corresponding zeros are z;, = %i/+/I'a2t —
I'1/(2I'2) — 1, which yields 1/[z12(t) — s + 1] = Fi/T'2t —
("1 /2 + sT'»)t, and, finally,

Co¥(1) = m! (=T21)"= (T + 2sTo) oc 15 (12)

We note that, in contrast to even m, the odd-m generalized
factorial cumulants depend both on s and on the sequential-
tunneling rate I';.

Combining the results for even and odd m, we conclude
that the time dependence Ci,(¢) o< t/"/?1, where [m/2] is
the smallest integer larger or equal to m/2, is qualitatively
different from a Poisson binomial distribution of independent
tunneling and also from a Coulomb-blockade system in which
only sequential tunneling occurs. Also the sign is different,
for s = —I";/(2T,) given by (—1)/*"/21=1 We remark that
the relative strength of single- and two-electron tunneling,
I',/ Ty, influences the time below which the short-time limit is
applicable but, ultimately, two-electron tunneling will always
dominate the (generalized) factorial cumulants.
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D. Higher-order tunneling

The discussion can be easily extended to include tunneling
processes in which up to Np,x electrons simultaneously leave
the island. We find that the tunneling processes with Ny, i.€.,
the largest number of simultaneously transferred electrons,
dominate the short-time behavior of the generalized factorial
cumulants. The time dependence is given by Ci,(f) x
tIm/Noal - For m = Npax,2Nmax>3Nmax, - - -» the generalized
factorial cumulants depend only on the leading order of the
zeros z;(t) o< t~1/Nmxand they are independent of s. The
zeros and, thus, the p;(t) = —1/z;(¢) are complex, and an
interpretation of the charge-transfer statistics in terms of a
Poisson binomial distribution of independent tunneling events
is impossible.

IV. SEQUENTIAL AND ANDREEYV TUNNELING
IN A SINGLE-ELECTRON BOX

We illustrate our findings for a model system that has
been experimentally realized in Refs. [43—-45]. Its setup is
shown in Fig. 1(a). A normal-metal island is tunnel coupled
to a superconducting lead. This single-electron box (SEB)
is characterized by the (normal-state) tunnel resistance Ry
and the charging energy Ec(n — ng)2 for n electrons on the
island. Via a gate voltage Vj, the continuously variable gate
charge n, is tuned to the symmetry point n, = 0. To monitor
the integer charge n on the island, a single-electron transistor
(SET) is electrostatically coupled: for each value of n there
is a characteristic value of the current through the SET.
At low temperature, only three charge states play a role,
n = —1,0,1 (relative to some background). Single-electron
tunneling leads to transitions between n = 0 and =£1, and
Andreev tunneling imply direct changes between n = 41 and
—1. The corresponding rates are I'y, ['q, and "5 ; see Fig. 1(b).

In Ref. [45], the full counting statistics of Andreev
tunneling (without distinguishing tunneling in from tunneling
out and without counting sequential tunneling events) was
measured. A strongly super-Possonian distribution was found
and attributed to avalanches of Andreev processes that form
due to the interplay of Andreev and single-electron tunneling.
By interpreting the data in terms of the cumulant generating

Ia
island —m 5C leadé /A

ul |
I 4L 1 @@

FIG. 1. (a) Normal-state metallic island (blue) weakly tunnel
coupled to a superconducting lead (red). Via the gate voltage V,,
the equilibrium charge n, of the island is tuned to zero. The current
through a single-electron transistor (green) monitors the island charge
n as a function of time. (b) Sketch of the states and transition rates.
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function in the long-time limit, avalanches of up to 20 Andreev
processes have been identified.

In the following, we consider the very same system but
study the short-time charge-transfer statistics for funneling out
of the island via both sequential and Andreev tunneling and
characterize it via generalized factorial cumulants. Instead
of calculating the tunneling rates I'y, Iy, and 'y in the
presence of an electromagnetic environment [43,53], we take
the values I'y = 12 Hz, I'y = 252 Hz, and I'y = 615 Hz that
were experimentally measured in Ref. [45] at temperature
50 mK for Ec =40 ueV, A =210 pueV, and Ry = 490 k2.

A. Master-equation approach

The charge-transfer dynamics can be described by the
Markovian master equation

Pyl (1) = —(CaA 4+ TPy (1) + Ty Py _ (1) + TaPy_5(1),
PY(t) = TyPy'(t) — 2T, Py(t) + TaPy_, (1), (13)
Ph(t) = TaPy'(t) + Ty P(t) — (Ca + Ta) Py (1),

for the probability Py (¢) that at time ¢ the island is in charge
state n and N electrons have left the island in time interval
[0,¢]. The counting of N is done by identifying the transitions
between different charge states n in the time trace of the
measured SET current.

By performing the z transform, i.e., multiplication with
zV and then summation over N, we can rewrite the master
equation in matrix-vector notation

P.(1) = W.P,(1), (14)

with vector P, = >"%_, 2V (Py ', Py, Py")T and matrix

—Ia—Tq 2zl Z’Ta
W, = r, _oT, T, | a3
FA Iﬂu _FA - Fd

The solution of Eq. (14) is P,(z) = exp (W.#)P,(0). Since
Py (0) ~ 8y, the initial vector P,(0) is independent of z
and describes the initial probability distribution. Assuming
that the system has reached its steady state before electron
counting starts, P_(0) is determined by WP_(0) = 0 and e’ -
P.(0) = 1, withel = (1,1,1). Generalized factorial cumulants
are given by Cy (1) = 3)'[In M(z,1)]|.=0 With M(z,1) =
[e" - P, (1)]/[e" - Ps(1)].

B. Factorial cumulants without Andreev tunneling

In order to identify the influence of Andreev tunneling
on the full counting statistics, we, first, calculate factorial
cumulants (s = 1) in the absence of Andreev tunneling (we
set 'a =0 but keep I'y and I'y unchanged). In Fig. 2(a),
we plot (—1)"~'Cy,,(t) as a function of the length ¢ of the
measuring interval. Due to the prefactor (—1)"~!, the result
is positive for all m and #, indicating that in the studied
scenario the full counting statistics can be described by a
Poisson binomial distribution of independent tunneling events.
In the long-time limit, all factorial cumulants are linear in time
because C1 (1) — 9)'[A(z)];=17, where A is the eigenvalue of
W, with the largest real part at z = 1.
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104 -
(b) with Andreev tun.
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FIG. 2. Factorial cumulants as a function of time (a) without and (b) with Andreev tunneling. The sign of (—1)"~'C,,, is positive for

continuous and negative for dashed lines.

In the short-time limit (given by I'qz < 1), however, we
find Cy ,,(¢) o ¢, as derived in Sec. III. In fact, the numerical
results are very well described by Eq. (9) with

20412
20T, + Ty’

2l gt

P(t) = —+ &
1® W

. P = (16)

We remark that the short-time (but not the long-time) factorial
cumulants in the absence of Andreev tunneling are identical
to those when Andreev tunneling processes are present but
not counted. This could be immediately realized for the setup
of Ref. [45]. Furthermore, we mention that if we chose for
the considered model T'y > I'y/2 then 4P5(¢) > Plz(t), and
(-=n"tc 1.m(t) would become negative for some m and ¢, in
accordance to the discussion in Sec. III B.

C. Factorial cumulants with Andreev tunneling

In the presence of Andreev tunneling, (—1)" ' C}_,(t) 1ooks
qualitatively different; see Fig. 2(b). The only common feature
is the linear long-time behavior. We now find extended regions
with negative (-"-'c 1,m(t), indicated by dashed lines in
Fig. 2(b). Furthermore, in the short-time limit, the numerical
results are no longer described by Eq. (9) but by Egs. (11)

2 \
| (a) without Andreev tun.

g
S |
\E L — m=1| |
By L — m=2| |
© 0~ — m=3| 4
L — m=4|
L — m=5| 1
: — m=6] |

1L [ | |

-2 -1 0 1 2

and (12) with

2Ny
TN+ Ty

1B N

== 17
21—‘u‘i‘l—‘d ( )

1 2

i.e., we get the power law C,,,(¢) oc t/™/21,

D. Generalized factorial cumulants

Finally, we investigate the s dependence of the generalized
factorial cumulants. In the absence of Andreev tunneling, the
s dependence of the generalized factorial cumulants should
vanish in the short-time limit; see Eq. (9). This is in agreement
with the numerical results for C;,,/C; , as a function of s,
shown in Fig. 3(a): the displayed s dependence is very weak,
which indicates that the chosen ¢ is already well in the short-
time regime.

In the presence of Andreev tunneling, the generalized
factorial cumulants of even order m should be s independent,
while for odd order m a linear s dependence is expected;
see Egs. (11) and (12). Also this agrees with the numerical
simulations; see Fig. 3(b).

We conclude by commenting on the extra information
that the s parameter in the generalized factorial cumulants
provides. As discussed in the derivation of Eq. (12), the
s dependence of some short-time cumulants stems from the

2 ‘
| (b) with Andreev tun.

FIG. 3. Generalized factorial cumulants C; ,, normalized by C, ,, as a function of s (a) without and (b) with Andreev tunneling at time (a)
t = 0.7 ms and (b) ¢+ = 0.1 ms. In (b), factorial cumulants of odd order m display an s dependence.
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next-to-leading order of the time dependence of the zeros
zj(t) of the generating function since the leading order does not
contribute to these cuamulants. This observation is not limited to
the specific example discussed here, but holds true in general,
as can be directly seen from Eq. (6).

V. CONCLUSIONS

In this paper, we address the question of how to identify
correlations among electron tunneling events in the time-
dependent charge-transfer distribution Py(f). A measured
deviation from a Poisson distribution only excludes the
possibility of independent tunneling events with identical
tunneling rates. To prove correlations, one must also exclude
Poisson binomial distributions of independent but nonidentical
tunneling events. This is difficult to do when analyzing the
charge-transfer statistics in terms of ordinary cumulants com-
monly used in literature. Factorial and generalized factorial
cumulants, on the other hand, are quite suited to perform
this task, since both their sign and their short-time power-law
dependence turn out to be good indicators of correlations.
In the absence of correlations, the sign of the factorial cu-
mulants alternate with order, (—1)"~'Cg,,(t) > 0, and in the
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short-time limit the time dependence displays a ¢ behavior.
The measurement of a different sign or a different short-time
behavior for any factorial cumulant would be incompatible
with uncorrelated electron transport.

Correlations may be induced by the charging energy in
Coulomb-blockade systems [50], but also by attaching super-
conducting leads. The presence of Andreev tunneling changes
the time dependence of the factorial cumulants drastically:
instead of ¢, we predict a power law 72 for even and 1" for
odd orders m in the short-time limit.

We conclude by commenting on the experimental feasibility
of our proposal. Determining factorial instead of ordinary
cumulants does not introduce any extra complication or
the need for higher accuracy. Furthermore, cutting the total
measured time trace into shorter and, therefore, more time
intervals to achieve the short-time limit even reduces statistical
errors [54].
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