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Coherent magneto-optical effects in topological insulators: Excitation near the absorption edge
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We study coherent optics in topological insulator surface states with broken time-reversal symmetry and
develop a theory for the dynamical Hall effect driven by an intense electromagnetic field. The influence of the
optical Stark effect enters as a nonlinear dependence on the optical field in the resulting Faraday θF and Kerr θK

rotations. This nonlinear correction is found to decrease θF with the strength of the a.c. electric field, whereas
θK exhibits a nonmonotonic behavior. We also discuss the effects of relaxation and dephasing on the Hall and
magneto-optical responses when the frequency detuning is comparable to the inverse lifetime of the conduction
electrons.

DOI: 10.1103/PhysRevB.94.125430

I. INTRODUCTION

Topological insulators are materials with strong spin-orbit
coupling that host topologically protected and gapless surface
states [1]. The surface states’ electrons are massless Dirac
fermions with a Dirac cone energy dispersion close to the
band crossing point that corresponds to spin degeneracy. One
intriguing property that follows from the removal of this
spin degeneracy by time-reversal symmetry breaking is that
a band gap opens up and the system exhibits a Hall response
[2]. If the Fermi level falls within the band gap, the Hall
effect is quantized with a Hall conductivity equal to half of
the unit conductance, σxy = e2/2h. The half quantization is
a consequence of the helical spin texture of surface Dirac
electrons having spin orientations that map out half of the
Bloch sphere when the lower surface band is fully filled.
It may also be understood as a bulk magnetoelectric effect
[3–5] developed from an additional term ∝θ E · B in the
electromagnetic Lagrangian (where θ is called the axion
coupling constant [6]). As a result of this quantized Hall
effect, topological insulator surface states behave as a quantum
anomalous Hall insulator (also called a Chern insulator) and
give rise to strong magneto-optical responses. The Faraday
θF and Kerr θK angles are predicted to display quantized
values with θF quantized to multiples of the fine-structure
constant α = 1/137 and θK quantized to a full-quarter rotation
π/2 in topological insulator thin films [7–9]. Soon after
theoretical predictions, colossal values of up to 60◦ of the
Kerr effect [10] in Bi2Se3 topological insulator thin films
were measured. Recently, three groups have independently
reported measurements of the predicted quantization of the
Faraday effect [11–14]. The anomalous Hall transport is a
linear response effect and therefore the resulting topological
Faraday and Kerr angles are independent of the optical field
strength, corresponding to a regime where the electromagnetic
field can be treated as a perturbation.

Strong a.c. fields lead to interesting nonlinear optical prop-
erties and are studied extensively in conventional semiconduc-
tors [15,16]. For example, strong electromagnetic radiation
acts to renormalize the conduction and valence bands in the
saturation state of a semiconductor with the optically dressed
electrons and holes behaving as new quasiparticles [17].
Optical nonlinearity and optically induced coherent effects
pose a new frontier in recently discovered materials including

topological insulators where coherent control of topological
properties might be possible. In particular, the influence
of strong radiation on the magnetotransport properties in
topological insulators presents an interesting and largely
unexplored area of investigation that could lead to new insight
on the interplay between light and band topology.

The present paper attempts to address some of the questions
along this direction by generalizing our previous considera-
tions on the magnetotransport and magneto-optical properties
of topological insulators to strong electromagnetic fields. We
will focus on the small detuning regime where the light
frequency is close to the absorption threshold so that the
rotating-wave approximation (RWA) remains a viable strategy
of solution while allowing the effects of strong electromagnetic
fields to be studied nonperturbatively.

An outline of the paper is as follows. We first lay out
our model for topological insulator surface states coupled
to electromagnetic fields in Sec. II. In Sec. III, we consider
the coherent regime in the absence of damping and discuss
the effects of strong fields on the resulting nonequilibrium
quasiparticle distribution functions and energy dispersions.
We then proceed to calculate the dynamical longitudinal and
Hall current responses in Sec. IV. In Sec. V, we formulate
the equations that incorporate nonlinear optical effects in the
transmission coefficients and calculate the nonlinear magneto-
optical Faraday and Kerr effects. Finally, we consider the
effects of relaxation and dephasing on the dynamical current
responses and magneto-optical effects in the regime where the
detuning is comparable to damping rates in Sec. VI.

II. MODEL

Under time-reversal symmetry breaking, topological insu-
lator surface states are described by the 2 × 2 massive Dirac
Hamiltonian,

H 0 = 1

2
(εk+ − εk−)

[
cos θk e−iφk sin θk

eiφk sin θk − cos θk

]
, (1)

where εk± = ±αk are the conduction- (+) and valence-band
(−) energies with αk =

√
(vk)2 + �2, tan φk = ky/kx is the

azimuthal angle of the electron momentum, and θk is the polar
angle with cos θk = �/αk and sin θk = vk/αk . Throughout
this paper, we set � = 1 unless otherwise specified. The
discrete binary degrees of freedom describe electron spins.
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� is the Zeeman field acting on the electron spins, which
gives the Dirac surface states a band gap of 2�. This Zeeman
field can be induced by exchange coupling to the topological
insulator surface states or by doping with magnetic atoms.

Conventionally, one proceeds to perform a diagonalization
of the Hamiltonian including light-matter interaction and write
the equation of motion for the density matrix in the resulting
band representation. In contrast, we adopt an alternative
approach. It places immediate emphasis on the role of spins
and allows for a separation of the spin and charge degrees of
freedom, thus providing a transparent derivation of the Bloch
equation in the form of precessing spins in a magnetic field
[see Eq. (4) below].

We introduce a set of spin unit vectors {α̂k,β̂k,γ̂ k} (the
reader is referred to Appendix Sec. 1 for their definitions)
and define the Pauli matrices in the new basis (σα,σβ,σγ ) =
σ · (α̂k,β̂k,γ̂ k) that satisfy the commutation relation [σα,σβ] =
2iσγ and cyclic permutations of α, β, γ thereof. α̂k describes
the local orientation of the electron spin at momentum k. The
Hamiltonian can then be expressed in the form of a Zeeman
coupling term H 0 = B0

k · σ/2 with B0
k = 2αkα̂k taking on the

meaning of an effective magnetic field.
Initially, our system is in an unexcited state with a fully filled

valance band and an empty conduction band. A linearly po-
larized light is then illuminated onto the topological insulator
with an electric field E = E0 cos ωt êx and a polarization state
indicated by the unit vector along x direction êx . The electron-
photon interaction Hamiltonian Hp(t) = (eE0v/ω) sin ωtσx

can be similarly expressed as a Zeeman coupling term Hp(t) =
Bp

k (t) · σ/2 with a light-induced effective magnetic field,

Bp

k = � sin ωt(sin θk cos φkα̂k − sin φkβ̂k

− cos θk cos φk γ̂ k), (2)

where � = 2eE0v/ω is the strength of the interband transition-
matrix element and corresponds to the energy acquired by an
electron driven by the a.c. field over a half period.

We consider the optical response of the system under
irradiation with intense off-resonant light having a frequency
of ω < 2� and a small detuning of δ ≡ 2� − ω � 2�. The
regime of strong electromagnetic fields is characterized by
� � 1/τ , where τ is the electron lifetime. The dynamics of
the system’s 2 × 2 density-matrix ρk(t) is governed by the
quantum kinetic equation,

∂ρk

∂t
+ i[H,ρk] = Ic(ρk,t), (3)

where H (t) = H 0 + Hp(t) is the total Hamiltonian of the
system and the collision integral Ic(ρk,t) takes into account
damping effects from relaxation and dephasing. In the follow-
ing: (1) We first study and elucidate the main physics in the
coherent regime where the detuning δ � 1/τ in Secs. III–V;
(2) we then consider the case of δ � 1/τ where the effects of
relaxation and dephasing become non-negligible in Sec. VI.

III. COHERENT LIGHT-DRIVEN SPIN DYNAMICS

In the coherent regime when detuning δ � 1/τ , one can
ignore the collision integral in the kinetic equation Eq. (3). To
analyze the spin dynamics, we resolve the density matrix into

its charge nk and spin Sk = Sα
k α̂k + S

β

k β̂k + S
γ

k γ̂ k sectors so
that ρk = nkI + Sk · σ/2, where Sα

k ,S
β

k ,S
γ

k are real. This gives
the Bloch equation governing the dynamics of the spin density
matrix due to the total effective magnetic field Bk = B0

k + Bp

k ,

∂ Sk

∂t
+ Sk × Bk = 0, (4)

with the initial condition Sk(t = 0) = −α̂k . Equation (4)
implies that the magnitude of the Sk is a constant of motion
with |Sk| = 1. The component of the density matrix Sα

k along
α̂k corresponds to population difference due to interband tran-
sitions whereas the components S

β

k ,S
γ

k along the orthogonal
directions β̂k,γ̂ k correspond to interband coherence.

It is convenient to define the longitudinal α̂L
k = α̂k and

transverse α̂T
k = β̂k − iγ̂ k spin vectors and transform our

reference frame into the rotating frame at the laser frequency.
In the rotating frame then, the longitudinal SL

k and transverse
spin density matrices ST

k are given as

SL
k ≡ Sk · α̂L

k , (5)

ST
k ≡ eiωt Sk · α̂T

k , (6)

whereas the longitudinal BL
k and transverse BT

k components of
the total effective magnetic field are defined as

BL
k = Bk · α̂L

k − ω, (7)

BT
k = eiωtBk · α̂T

k . (8)

It then follows from the above Eqs. (7) and (8) that

BL
k = 2αk − ω + α̂L

k · Bp

k , (9)

BT
k = eiωt α̂T

k · Bp

k . (10)

In terms of these new variables, we can recast Eq. (4) as

i
∂SL

k

∂t
= 1

2

[(
ST

k

)∗BT
k − ST

k

(
BT

k

)∗]
, (11)

i
∂ST

k

∂t
= ST

k BL
k − SL

k BT
k , (12)

supplemented by the initial conditions SL
k (t = 0) = −1 and

ST
k (t = 0) = 0 corresponding to an unexcited system with a

fully filled valance band. The above equations are equivalent to
the semiconductor Bloch equations [15,16] in the conduction-
valence-band representation (see Appendix Sec. 2).

We are interested in the optical response at the same
frequency as the incident field. Since the detuning δ � 2�

is small, we work in the RWA keeping only the resonant
terms. The longitudinal and transverse components of the
effective magnetic field then become BL

k = 2αk − ω and
BT

k = −�(cos θk cos φk + i sin φk)/2. The quantity |BT
k |2,

corresponding to the squared amplitude of the interband
transition matrix element, appears frequently in our following
discussions; for convenience, we will denote the momentum-
dependent factor in |BT

k |2 as X2
k = cos2 θk cos2 φk + sin2 φk .

When the switch-on time of the laser pulse is much longer
than �−1, the switching process is adiabatic, and the so-
lution to Eqs. (11) and (12) corresponds to the spin dy-
namics adiabatically following the effective magnetic field.
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FIG. 1. Three-dimensional plot of the renormalized conduction-
band energy Ek (scaled by the gap �) in the rotating frame versus
momentum kx,ky (scaled by k� ≡ �/v). The surface Dirac gap is
� = 80 meV, light frequency ω = 60 meV, and electric field E =
150 MVm−1.

Equations (11) and (12) then imply that (ST
k /BT

k )∗ =
(ST

k /BT
k ) = (SL

k /BL
k ) ≡ C, where C is a real constant. By virtue

of the normalization condition |SL
k |2 + |ST

k |2 = 1, the spin
density matrix components are found to be

SL
k = −

∣∣BL
k

∣∣√∣∣BL
k

∣∣2 + ∣∣BT
k

∣∣2
, (13)

ST
k = − BT

k√∣∣BL
k

∣∣2 + ∣∣BT
k

∣∣2
. (14)

The above distribution functions Eqs. (13) and (14) highlight
the semiconductor optical Stark effect [18] under the adiabatic
switch-on condition. Illuminated with a strong optical field,
the conduction- and valence-band states become mixed by the
dipole matrix element with the system forming a coherent
ground state of photon dressed electron-hole pairs. These
dressed electron-hole pairs constitute the new quasiparticles
of the irradiated system with energy dispersions ±Ek =
±

√
|BL

k |2 + |BT
k |2 in the rotating frame. The leading-order
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FIG. 2. Three-dimensional plot of the conduction-band distribu-
tion function ρk+ in the rotating frame. Values for � and ω are the
same as in Fig. 1.

energy shift is ∼E2
0 characteristic of the optical Stark effect.

From Eq. (13), the conduction-band distribution function is
found to be ρk+ = (1/2)(1 + SL

k ). For the case of linearly
polarized light illumination on a two-dimensional (2D) Dirac
electron system, BT

k depends explicitly on φk , and the
renormalized band energies as well as the conduction- and
valance-band distribution functions are anisotropic in the
momentum space as depicted in Figs. 1 and 2. Although light is
off-resonant, in the strong-field regime there is always a finite
electron population in the conduction band due to nonlinear
effects.

IV. DYNAMICS OF CURRENT RESPONSE

The current density in the system due to the a.c. field is
given by J(t) = ∑

k tr{ j k(t)ρk(t)}, where j k(t) = ∂H (t)/∂k
is the single-particle current operator. The current density can
be written in terms of the effective magnetic field and the spin
density matrix as

J(t) = 1

2

∑
k

∂Bk′ · Sk

∂k′

∣∣∣∣
k′=k

. (15)

Equations (13) and (14) are obtained in the rotating
frame. In order to compute the current from Eq. (15),
we transform back into the stationary frame. Then, the
resonant contribution of the effective magnetic-field
Rk ≡ Bp

k |resonance due to electron-photon coupling
can be written as Rk = Rβ

k β̂k + Rγ

k γ̂ k , where Rβ

k =
Re{BT

k e−iωt } = (�/2)(cos θk cos φk cos ωt + sin φk sin ωt)
and Rγ

k = −Im{BT
k e−iωt } = (�/2)(cos θk cos φk sin ωt −

sin φk cos ωt).
The spin density matrix from Eqs. (13) and (14) is now

expressed in the stationary frame as

Sk = −fk(�)
[
(2αk − ω)α̂k + Rβ

k β̂k + Rγ

k γ̂ k

]
, (16)

where

fk(�) = 1√
(2αk − ω)2 + (�Xk/2)2

, (17)

where X2
k = cos2 θk cos2 φk + sin2 φk as defined in the para-

graph before Eqs. (13) and (14). As usual, the sinusoidal
time dependence can be taken care of by defining complex
quantities associated with the exponential time factor e−iωt .
We define the complex current density J through J(t) =
Re{J e−iωt }. Using Eq. (15), we find the longitudinal and Hall
components of the current density in response to the a.c. field,

Jx = −i
e2E0v

2

2

∑
k

fk(�)

αk

X2
k , (18)

Jy = e2E0v
2�

2

∑
k

fk(�)

α2
k

. (19)

A. Weak fields: Relation to the linear-response regime

To see how the strong-field regime is connected to the
linear-response regime, it is instructive to expand the results
Eqs. (18) and (19) to leading order in powers of E0. For
weak fields such that � � δ, we expand Eqs. (18) and (19) in
�/δ up to the leading order. The integrals can be calculated
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analytically and yield

Jx = −i
e2E0

8π

[
�2

ω

(
1

εc

− 1

�

)
− 2

(
�

ω

)2

ln
∣∣∣εc

ω

∣∣∣
+ 1

2

(
1 + 4

�2

ω2

)
ln

∣∣∣∣ω − 2εc

ω − 2�

∣∣∣∣
]
, (20)

Jy = e2E0�

4πω

(
ln

∣∣∣∣ω − 2εc

εc

∣∣∣∣ − ln

∣∣∣∣ω − 2�

�

∣∣∣∣
)

, (21)

where εc is an ultraviolet energy cutoff that corresponds to
the bandwidth of the surface Dirac bands, taken to be the
bulk energy gap of the topological insulator. We emphasize
that the expressions for Jx and Jy above are only valid for
nonzero frequencies ω ≈ 2�. One cannot arrive at the d.c.
limit by taking ω → 0 in the above expressions because the
counter-rotating contributions, which are ignored in the RWA,
become comparable at ω → 0 to the rotating (i.e., resonant)
contributions retained in the RWA. To recover the d.c. limit,
and indeed the full linear-response optical conductivity, one
needs to add in the counter-rotating contributions. To illustrate
this point, we can explicitly take the ω → 0 limit and see
what happens. First, Jx(t) vanishes in this limit as expected
because e−iωt → 1 and Eq. (20) is purely imaginary. Then,
expanding up to leading order in ω/� in Eq. (21), we find that
Jy = e2E0/8π corresponding to a Hall conductivity of σxy =
e2/4h. Interestingly, in the rotating-wave approximation where
the counter-rotating contributions to the effective magnetic
field are discarded, the zero-frequency Hall response from
Eq. (21) amounts to 1/2 of the well-known quantized Hall
conductivity σxy = e2/2h of the Dirac model in the linear-
response regime. Indeed, it can be easily checked that our
weak-field results Eqs. (20) and (21) correspond exactly
to the resonant contribution of the established expressions
of dynamical conductivities of the Dirac model [7]. Also,
adding in the counter-rotating contribution, which is separately
due to an effective magnetic-field Bp

k |antiresonance = Rk(−ω)
(noting that � → −� also under ω → −ω in Rk , since � is
dependent on ω), yields the full optical conductivities of the
Dirac model.

B. Strong fields

For strong fields with � � δ, we have

fk(�) � 2

�

1

Xk

, (22)

Eqs. (18) and (19) can then be evaluated analytically yielding

Jx = −i
eω

2π2vεc

×
[
ε2
cE

(√
1 − �2

ε2
c

)
− �2K

(√
1 − �2

ε2
c

)]
, (23)

Jy = eω�

2π2v

[
K

(√
1 − �2

ε2
c

)
− E

(√
1 − �2

ε2
c

)]
, (24)

where K,E are the complete elliptic integrals of the first
and second kinds, respectively. At high fields, therefore,
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FIG. 3. Amplitudes Jx0 (dark/black) and Jy0 (gray/red) of the
longitudinal and Hall current densities Jx0 = |Jx | and Jy0 = |Jy | as
a function of the electric-field E0 [Eqs. (18) and (19)] for different
values of detuning ωd = 5 and 10 meV. The surface Dirac gap is
� = 50 meV, and the Dirac band cutoff energy is εc = 175 meV.

the longitudinal and Hall currents both saturate to values
independent of the incident field.

We evaluate Eqs. (18) and (19) numerically and display the
computed current densities in Fig. 3. The longitudinal and Hall
currents increase linearly with the electric field and saturate
at high E0 values as predicted from the analytic results of
Eqs. (20), (21), (23), and (24). We also see that increasing
detuning has the effect of decreasing the current amplitudes,
consistent with the strong-field behavior that the saturation
currents are proportional to ω in Eqs. (23) and (24).

V. NONLINEAR MAGNETO-OPTICAL FARADAY
AND KERR EFFECTS

The usual Fresnel relations, which relate the transmitted
and reflected electric fields to the incident field, are derived
assuming linear response to the incident light field. Con-
ventionally, the scattering (or, equivalently, transfer) matrix
formalism also assumes linearity between the scattered fields
and the incident field. In order to take into account nonper-
turbative electric-field effects in the current response, these
two standard approaches would not be applicable and we need
to formulate the problem of the nonlinear magneto-optical
response differently as follows.

Consider light illuminated along the z direction on the
topological insulator surface that is located at z = 0. The
two regions z < 0 and z > 0 are labeled by j = I, II with
dielectric constant εj . Expressing, as usual, the real electric
and magnetic fields as complex vectors E = Re{Ee−iωt } and
H = Re{He−iωt }, respectively, we write the electric field in
the form

Ẽj = eikj z

[
E tj

x

E tj
y

]
+ e−ikj z

[
E rj

x

E rj
y

]
, (25)

where the tilde accents denote column vectors Ẽ = [Ex Ey]T,
the superscripts “r” and “t” on Ex,y denote the reflected and
transmitted field components, kj = √

εj k0 is the wave vector
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in region j with dielectric constant εj , k0 = ω/c, and c is the
speed of light. The corresponding magnetic field is given by
Faraday’s law as

H̃j = √
εj

{
eikj z

[
−E tj

y

E tj
x

]
+ e−ikj z

[
E rj

y

−E rj
x

]}
, (26)

The electric and magnetic fields at the interface z = 0
satisfy the electrodynamic boundary conditions Ẽ I = Ẽ II and
−iτy(H̃II − H̃I) = (4π/c)J̃ , where (τx,τy,τz) are Pauli matri-
ces and J̃ = [Jx Jy]T is the current density of the topological
surface states at z = 0.

We calculate the transmission and reflection coefficients
due to incident light that is linearly polarized along x, Ẽ I =
eik0z[E0 0]T. For a single interface, the scattered field
components in region I and region II correspond to the reflected
and transmitted fields, respectively, and to simplify the notation
we will drop the superscripts I and II with no danger of
confusion. The transmission and reflection coefficients along
the directions α = x,y are defined as Tα = E t

α/E0 and Rα =
E r

α/E0, which are functions of E0 in the nonlinear regime.
From the electromagnetic boundary conditions we then obtain
the following set of coupled nonlinear equations for Tx and
Ty :

Tx = 1 + παv2
∑

k

1

αk

{
fk(Ty�)

�

αk

Ty + ifk(Tx�)X2
kTx

}
,

(27)

Ty = −παv2
∑

k

1

αk

{
fk(Tx�)

�

αk

Tx − ifk(Ty�)X2
kTy

}
,

(28)

where α = e2/�c is the fine-structure constant. The reflection
coefficients are related to the transmission coefficients as Rx =
Tx − 1 and Ry = Ty . In the linear regime, these equations can
be decoupled easily and reduce to the familiar relations [9] for
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FIG. 4. Faraday angle θF (in units of α rad, where α = 1/137
is the fine-structure constant) versus electric-field E0 for different
values of detuning ωd = 5, 10, and 15 meV. The parameters � and
εc are the same as that in Fig. 3.
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FIG. 5. Kerr angle θK (in units of α rad) versus electric-field E0

for different values of detuning ωd = 5, 10, and 15 meV.

the transmission coefficients,

Tx = 1 + 2πσxx/c

(1 + 2πσxx/c)2 + (2πσyx/c)2
, (29)

Ty = − 2πσyx/c

(1 + 2πσxx/c)2 + (2πσyx/c)2
, (30)

where σxx and σyx , respectively, are the longitudinal and Hall
conductivities under the RWA, given by Eqs. (20) and (21)
through σxx = Jx/E0 and σyx = Jy/E0. In the strong-field
regime, Eqs. (27) and (28) must be solved simultaneously in
order to obtain the transmission coefficients Tx,y . The Faraday
θF and Kerr θK angles are connected in the usual way to the
transmission and reflection coefficients as θF = [arg(T−) −
arg(T+)]/2 and θK = [arg(R−) − arg(R+)]/2, where “arg”
denotes the complex argument function, and T± = Tx ± iTy

and R± = Rx ± iRy stand for the transmission and reflection
coefficients for the ± circularly polarized components of the
transmitted and reflected light, respectively.

Figures 4 and 5 show the Faraday and Kerr angles calculated
from numerically solving Eqs. (27) and (28). The values
approaching E0 = 0 correspond to the results from the weak-
field regime where Tx,y’s are independent of the incident field.
In view of the growing dependence of the Hall current with
E0 displayed in Fig. 3, it seems that both angles would also
increase with the electric field. However, we are reminded it
is Jy/E0 rather than Jy that enters into the expressions of the
transmission and reflection coefficients. Indeed, we find that
θF actually decreases with the incident electric field whereas
θK exhibits an interesting nonmonotonic trend, decreasing first
before going through an upturn. A signature of the optical Stark
effect, the leading-order nonlinear corrections for both effects
are second order, going as θF,K ∼ A − BE2

0 where A,B are
positive constants. We also note that both θF and θK increase
with decreasing detuning.

VI. EFFECTS OF RELAXATION

We now consider the regime when the frequency is close to
the surface band gap with the detuning smaller than or on the
same order of magnitude as the inverse lifetime 1/τ of the con-
duction electrons. To more fully characterize lifetime effects,
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we introduce the phenomenological longitudinal � and trans-
verse �⊥ relaxation rates into the Bloch equation employing a
relaxation time approximation. � relaxes the conduction-band
electrons to the valence band due to momentum-independent
processes, such as radiative recombination and optical phonon
scattering, whereas �⊥ accounts for the decoherence effects
on the polarization. Equation (11) then becomes

i
∂SL

k

∂t
= 1

2

[(
ST

k

)∗BT
k − ST

k

(
BT

k

)∗] − i�
(
SL

k + 1
)
, (31)

i
∂ST

k

∂t
= ST

k BL
k − SL

k BT
k − i�⊥ST

k . (32)

With damping, the spin density matrix no longer satisfies
the unitarity condition |Sk| = 1 since the number of electrons
in the system is not conserved. After the light field has been
turned on and the transients have subsided, Sk approaches
a steady-state value dependent on its initial state and the
damping parameters �,�⊥. The steady-state solution is ob-
tained in the rotating frame by requiring within the RWA that
∂S

L,T
k /∂t = 0. We then transform the resulting expressions

back into the stationary frame in order to obtain the currents
from Eq. (15), yielding

Sk = −gk(�)
{[(

2αk − ω
)2 + �2

⊥
]
α̂k

+ [(
2αk − ω

)
Rβ

k + �⊥Rγ

k

]
β̂k

+ [(
2αk − ω

)
Rγ

k − �⊥Rβ

k

]
γ̂ k

}
, (33)

where

gk(�) = 1

(2αk − ω)2 + �2
⊥ + (�⊥/�)(�Xk/2)2

. (34)

Equations (33) and (34) are valid in the steady-state regime for
nonzero �,�⊥. Using Eq. (15), we then find the longitudinal
and Hall current densities,

Jx = i
e2E0v

2

2ω

∑
k

gk(�)

αk

X2
k

(
ω2 + �2

⊥ − 2αkω − i2�⊥αk

)
,

(35)

Jy = −e2E0v
2�

2ω

∑
k

gk(�)

α2
k

(
ω2 + �2

⊥ − 2αkω − i2�⊥αk

)
.

(36)

The presence of relaxation and dephasing introduces dis-
sipation in the current response. In Eqs. (35) and (36),
Im{Jx} and Re{Jy} correspond to reactive nondissipative
current components whereas Re{Jx} and Im{Jy} correspond
to dissipative components.

A. Weak fields

For � � δ � �,�⊥, we expand Jx,y in Eqs. (35) and (36)
to leading order in �/δ and obtain

Jx = − e2E0

16πω

((
ω + i�⊥ + 4�2

ω + i�⊥

)

×
{

tan−1

(
ω − 2εc

�⊥

)
− tan−1

(
ω − 2�

�⊥

)

+ i

2
ln

[
(ω − 2εc)2 + �2

⊥
(ω − 2�)2 + �2

⊥

]}

+ i2�2

[
1

εc

− 1

�
− 2

ω + i�⊥
ln

(εc

�

)])
, (37)

Jy = −e2E0�

4πω

{
ln

(εc

�

)
− 1

2
ln

[
(ω − 2εc)2 + �2

⊥
(ω − 2�)2 + �2

⊥

]

+ i

[
tan−1

(
ω − 2εc

�⊥

)
− tan−1

(
ω − 2�

�⊥

)]}
. (38)

We note that the longitudinal relaxation rate � does not
come into the expressions Eqs. (37) and (38) for Jx,y . In
the weak-field regime therefore, relaxation processes such as
radiative recombination and electron-optical phonon scattering
(which relax conduction-band electrons back into the valence
band) do not contribute. This is because these processes
only happen when there are real transitions resulting in a
finite electron population in the conduction band. For subgap
frequencies, a finite electron population in the conduction band
only occurs through nonlinear correction ∼E2

0 and are absent
in the linear ∼E0 regime.

Despite �,�⊥ > 0 in the regime considered in this section,
we note that the �⊥ → 0 limit of Eqs. (37) and (38) recovers
Eqs. (20) and (21) obtained in the coherent regime where the
effects of damping are ignored. This correspondence however
is restricted only to the linear regime and does not hold when
nonlinear effects in the electric field come in.

B. Strong fields

For strong fields � � δ,�,�⊥, we have

gk(�) � 4�

�⊥�2

1

X2
k

. (39)
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d = 10 meV

FIG. 6. Amplitudes of the reactive components (denoted by
the superscript “rt”) J rt

x0 = Im{Jx} (dark/black) and J rt
y0 = Re{Jy}

(gray/red) of the longitudinal and Hall current densities as a function
of the electric-field E0 for � = �⊥ = 5 meV and different values of
detuning ωd = 1 and 10 meV. The values of the surface Dirac gap
and Dirac band cutoff energy are the same as in Fig. 3.
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FIG. 7. Amplitudes of the dissipative components (denoted by the
superscript “dp”) J

dp
x0 = Re{J dp

x } (dark/black) and J
dp
y0 = Im{J dp

y }
(gray/red) of the longitudinal and Hall current densities as a function
of the electric-field E0 for � = �⊥ = 5 meV and different values of
detuning ωd = 1 and 10 meV.

Equations (35) and (36) can then be evaluated analytically
yielding

Jx = iω

4πE0v2

�

�⊥
(εc − �)(ω + i�⊥)(ω − i�⊥ − εc − �),

(40)

Jy = − ω

4πE0v2

�

�⊥
(εc − �)(ω + i�⊥)(ω − i�⊥ − εc − �).

(41)

In contrast with the results we find in the coherent regime
where both the longitudinal and the Hall currents saturate
at high-E0 values, in our present case we find that Jx,y’s
do not saturate but instead decrease at high electric fields
as ∼ 1/E0. Figure 6 shows the amplitudes of the reactive
components of the longitudinal and Hall current densities
calculated from Eqs. (35) and (36). Comparing the results for
ωd = 10 meV in the absence and presence of �,�⊥ (Figs. 3 and
6, respectively), we see that relaxation and dephasing decrease
the reactive components of the longitudinal and Hall currents.
In the regime considered where δ � �,�⊥, the dissipative
current components are finite but still small, about an order of
magnitude less than that of the reactive components (Fig. 7).

C. Nonlinear Faraday and Kerr effects

Including relaxation and dephasing rates, we find that the
coupled equations for Tx and Ty are modified as follows:

Tx = 1 − παv2

ω

∑
k

ω2 + �2
⊥ − 2αkω − i2�⊥αk

αk

×
{
gk(Ty�)

�

αk

Ty + igk(Tx�)X2
kTx

}
, (42)
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E   (MVm-1)

0

0.1

0.2

0.3

0.4
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(

)

d = 1 meV

d = 5 meV

d = 10 meV

FIG. 8. Faraday angle θF (in units of α rad, where α = 1/137
is the fine structure constant) versus electric-field E0 for � = �⊥ =
5 meV and different values of detuning ωd = 1, 5, and 10 meV. The
parameters � and εc are the same as that in Fig. 3.

Ty = παv2

ω

∑
k

ω2 + �2
⊥ − 2αkω − i2�⊥αk

αk

×
{
gk(Tx�)

�

αk

Tx − igk(Ty�)X2
kTy

}
. (43)

Figures 8 and 9 show the calculated Faraday and Kerr
rotations from the numerical solutions of Eqs. (42) and
(43). The decreasing trend of the Faraday angle and the
nonmonotonic behavior of the Kerr angle with the increasing
electric field remain similar to the coherent case. Although the
reactive components of Jx and Jy are reduced by relaxation
(cf. Figs. 3 and 6), we find that interestingly the Faraday and
Kerr effects are enhanced in the presence of relaxation and
dephasing compared to the coherent case (Figs. 4 and 5). In
particular, θK is enhanced by an order of magnitude and is
more sensitive than θF to increasing values of � and �⊥ as

0 10 20 30 40 50 60 70
E   (MVm-1)

1.5

2

2.5

K
   

(
)

d = 1 meV

d = 5 meV

d = 10 meV

FIG. 9. Kerr angle θK (in units of α rad) versus electric-field E0

for � = �⊥ = 5 meV and different values of detuning ωd = 1, 5, and
10 meV.
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FIG. 10. Faraday θF and Kerr θK angles (in units of α rad) versus
electric-field E0 for detuning ωd = 5 meV and different values of
� = �⊥ = 1, 5, and 10 meV.

depicted in Fig. 10. To a lesser extent, this behavior is also
observed when θK is varied as a function of detuning ωd .

To exhibit this curious enhancement and sensitivity of θK

over θF , we consider the weak-field regime when nonlinear
effects are absent and evaluate the Faraday and Kerr angles
up to leading order in α = e2/�c. From Eqs. (29) and
(30) we have Tx � 1 − 2πσxx/c, Ty � −2πσyx/c, and Rx �
−2πσxx/c, Ry � −2πσyx/c, where σxx,σyx are the longitudi-
nal and Hall conductivities corresponding to Eqs. (37) and (38).
For the transmitted light, Re{T±} ≈ 1 + O(α1) and Im{T±} ≈
O(α1) imply that θF ≈ tan−1[O(α1)]. For the reflected light,
however, we have both Re{R±},Im{R±} ≈ O(α1) yielding
θK ≈ tan−1[O(α0)]. The Kerr angle is therefore larger than
the Faraday angle by about an order of magnitude, resulting in
the larger enhancement and increased sensitivity with changes
in relaxation rate and detuning.

VII. CONCLUSION

To summarize, we have developed a theory for the magneto-
optical effects in topological insulators under intense laser
fields in the small detuning regime δ � �. We have calculated
the nonlinear longitudinal and Hall currents in response
to linearly polarized light and obtained the Faraday and
Kerr rotations as a function of the incident electric field.
Surprisingly, damping effects due to relaxation and dephasing
are found to enhance the resulting Faraday and Kerr rotations.
In particular, the Kerr effect exhibits a larger enhancement and
higher sensitivity to changes in detuning and damping rate than
the Faraday effect. As limiting cases, we have examined the
current responses in the weak-field and strong-field regimes. In
the weak-field regime, the currents we have obtained under the
rotating-wave approximation account exactly for the resonant
contribution in linear-response theory. In the strong-field
regime, no such correspondence can be found. The currents
saturate for negligible damping but decrease with the electric
field when damping is taken into account. The leading-order
nonlinear dependence of the Faraday and Kerr rotations on the
incident field implies that the optical Stark effect can be probed
using magneto-optical spectroscopy. Although we have fo-

cused on the case of a topological insulator surface, our results
also carry over directly to 2D Chern insulators, whose low-
energy theory is described similarly by the 2D Dirac model.
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APPENDIX

1. Spin representation

The expressions for the spin vectors defined in Sec. II are

α̂k = sin θk k̂ + cos θk ẑ,

β̂k = ẑ × k̂, (A1)

γ̂ k = − cos θk k̂ + sin θk ẑ.

This gives the following longitudinal and transverse spin
vectors defined in Sec. III:

α̂L
k = sin θk k̂ + cos θk ẑ,

α̂T
k = ẑ × k̂ + i cos θk k̂ − i sin θk ẑ, (A2)

where k̂ = cos φk x̂ + sin φk ŷ is the unit momentum vector
with an azimuthal angle φk .

2. Bloch equations in the band basis

In this appendix we show the equivalence between Eqs. (11)
and (12) and the semiconductor Bloch equations [15,16] in the
conduction-valence-band representation explicitly. We denote
the matrix elements of the Hamiltonian and the density matrix
in the band representation as Hk,μν and ρk,μν , respectively,
where μ,ν = ± labels the conduction (+) and valence (−)
bands. Through explicit calculations, one can easily check
that the longitudinal and transverse components, respectively,
of the effective magnetic field are related to the band energy
difference (including the intraband dipole matrix element) and
interband dipole matrix element,

BL
k = (Hk,++ − Hk,−−) − ω, (A3)

BT
k = −2iHk,+−eiωt , (A4)

whereas the longitudinal and transverse components, respec-
tively, of the spin density matrix are related to the population
difference and interband coherence,

SL
k = ρk,++ − ρk,−−, (A5)

ST
k = −2iρk,+−eiωt . (A6)

Substituting the above Eqs. (A3)–(A6) into Eqs. (11) and (12),
we recover the usual expression of the Bloch equation written
in the band representation,

∂

∂t
(ρk,++ − ρk,−−) = 4 Im{ρ∗

k,+−Hk,+−},
∂ρk,+−

∂t
= −i(Hk,++ − Hk,−−)ρk,+− (A7)

+i(ρk,++ − ρk,−−)Hk,+−. (A8)
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