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Transport in quantum spin Hall edges in contact to a quantum dot

Bruno Rizzo,1 Alberto Camjayi,1 and Liliana Arrachea2

1Departamento de Fı́sica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón I, Ciudad Universitaria,
1428 Buenos Aires, Argentina

2International Center for Advanced Studies, UNSAM, Campus Miguelete, 25 de Mayo y Francia, 1650 Buenos Aires, Argentina
(Received 31 May 2016; revised manuscript received 25 August 2016; published 16 September 2016)

We study the transport mechanisms taking place in a quantum spin Hall bar with an embedded quantum dot,
where electrons localize and experience Coulomb interaction U as well as spin-flip processes λ. We solve the
problem with nonequilibrium Green functions. We focus on the linear-response regime and treat the many-body
interactions with quantum Monte Carlo. The effects of U and λ are competitive and the induced transport takes
place through different channels. The two mechanisms can be switched by changing the occupation of the dot
with a gate voltage.
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I. INTRODUCTION

The existence of metallic states at the boundaries of
topological insulators (TIs) is one of the most appealing
characteristics of these materials [1–3]. In the case of the two-
dimensional (2D) systems, the edge states are helical (HESs)
and exist in the form of Kramers’ pairs of counterpropagating
electron states with opposite spin [4–6]. These states are
topologically protected [7] against disorder in the absence of
time-reversal symmetry breaking factors such as a magnetic
field [8] or magnetic impurities [9–11]. As a consequence, the
transport is ideally ballistic and each pair of HESs supports a
perfect conductance quantum G0 = e2/h. Recent experiments
in HgTe quantum wells indeed provided evidence of the
existence of 1D topological HESs [12–15].

The possibility of realizing electron interferometers in
2D TI bars, akin to those fabricated with quantum Hall
edge states, captured significant attention [16–27]. Quantum
interference is generated when tunneling processes between
different Kramers pairs at opposite sides of the bar take place.
The usual process is tunneling preserving spin, but the scenario
is much richer when the tunneling with spin-flip also happens
[16,20]. Such a scattering process does not break time-reversal
symmetry and makes a helical interferometer different from
two independent copies of a chiral electronic interferometer
like those built in the quantum Hall regime.

Another relevant feature is the possibility of generating
effective backscattering processes within the same Kramers’
pair. This, in turn, generates effective resistive behavior with
the concomitant departure of the conductance from the ideal
quantum limit. A possible mechanism is the coupling of
the HES to magnetic disordered impurities [28] or quantum
dots representing puddles of the sample [29,30]. Indications
of such resistive behavior has been actually experimentally
observed, which adds motivation to a deeper understanding
of this phenomenon. The coupling of helical edge states to
quantum dots and magnetic impurities has been addressed in
several works [28–42]. A crucial ingredient for a net resistive
behavior to take place is an effective anisotropic coupling
between the localized spins and the spins of the electrons in
the HES.

In the present work we analyze the transport in helical edges
of a 2D spin Hall bar with an embedded quantum dot. We

focus on the combined effect of many-body interactions and
local spin-flip processes taking place at the dot. The coupling
between the edge states with such a quantum dot gives rise
to backscattering and resistance within a Kramers’ pair. It
also generates effective tunneling processes between states
at opposite edges of the bar preserving and flipping spin. We
consider the setup sketched in Fig. 1, in which a quantum dot in
the center of the bar is coupled to the HES. This may represent
an antidot generated by a top gate as in quantum Hall systems
[43] or a charge puddle of the sample. We analyze the impact
of the different scattering mechanisms that may take place at
the dot on the electron transport of this device. The work is
organized as follows. In Sec. II we introduce the model and in
Secs. III and IV the theoretical treatment. Section V is devoted
to present results. Discussion and conclusions are presented in
Sec. VI.

II. MODEL

The full setup of a spin Hall bar with four contacts is
sketched in Fig. 1. This corresponds to a simplification of a
six-terminal setup like the one studied in Ref. [14]. The latter
setup contains left and right terminals, as well as two at the
bottom and two at the top of the bar. Terminals (1) and (4) of
the figure represent the two connected at the bottom, while (2)
and (3) represent the two at the top of the bar in the six-terminal
configuration. The bar also supports a quantum dot in the bulk,
which can be generated by locally applying a gate voltage in
a small region of the surface of the TI. As a consequence of
the local voltage, Kramers pairs of edge states are originated
enclosing the gate region. When the latter are close to the top
and bottom edges of the bar, tunneling processes take place
between the edge states of the dot and those of the bar. The
corresponding Hamiltonian reads H = H0 + HD + HT . The
Hamiltonian for the electrons in the edge states is

H0 =
∑

α=L,R

∑
σ=↑,↓

∫
dx : �†

α,σ (x)Dα,x�α,σ (x) : , (1)

where x denotes a longitudinal coordinate and the integral
is over the length of the edges. �α,σ (x) are fermionic fields
describing electrons moving right and left along the edge (α =
R,L, respectively) with spin σ = ↑,↓. Here Dα,x = ∓i�vF ∂x
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FIG. 1. Sketch for the setup of a quantum dot coupled to the edge
channels of a topological insulator. The dot can be generated from the
application of a negative gate voltage on the surface of TI. One direct
consequence is the formation of localized states around the potential
peak that mediates the different edge Kramers pairs. We assume that
the coupling between the channels and the dot is punctual.

for α = L,R respectively while :O : denotes normal ordering
with respect to the state where all the states are filled up to the
Fermi energy and vF is the Fermi velocity. The quantum dot
is modeled by an Anderson impurity model, where the helical
edge states circulating around the local gate are represented by
a localized electron level with the same energy ε0 for electrons
with up and down spin component,

HD =
∑

σ=↑,↓

[
ε0d

†
σ dσ + U

2
nσnσ + λd†

σ dσ

]
, (2)

where U is the Coulomb repulsion for the electrons in the
quantum dot and σ denotes the spin opposite to σ . The value
of ε0 is controlled by the local gate voltage. We also include
a local spin-flip process in the dot by a phenomenological
parameter λ [44–48]. Such a process may mimic the interaction
of the localized spins at the dot with nuclear spins of the sample
[35]. Another mechanism to realize such a term is by directly
applying an external magnetic field transverse to the direction
of the spin-orbit interaction of the 2D topological insulator.
Finally, the term

HT =
∑

α=R,L

∑
σ=↑,↓

∫
dx [�(x)�†

α,σ (x)dσ + H.c.], (3)

with �(x) = vF �√
d
γ δ(x − x0), represents the spin-preserving

tunneling between the dot and the edge states. Here d is a
characteristic length of the contact.

III. TRANSPORT PROCESSES OF AN EDGE-STATE
TERMINAL

We consider the configuration indicated in Fig. 1 where
each of the four corners of the bar is contacted to independent
reservoirs at which separate bias voltages can be applied. These
four voltages enable an independent control on the injection
of electrons into the four edge states. In what follows, we
identify the terminal contacting the reservoir Vl with the label
l. Each of these terminals hosts a Kramers pair of edge states
containing a state incoming to the contact (l+) and another
one outgoing from it (l−). Hence, the current flowing through

a given terminal l is defined by the difference between the
incoming and outgoing density of electrons [20],

I l = −ievF [G<
l+,l+(xl,xl ; t,t) − G<

l−,l−(xl,xl ; t,t)]. (4)

There is a one to one identification between the labels
l+(−) and the labels of the helicity (α = R,L; σ = ↑,↓). For
instance, if we focus on the terminal 3, we see that 3+ ≡ R,↑
and 3− ≡ L,↓.

We define the Green function G<
ασ,α′σ ′(x,x ′; t,t ′) =

i〈�†
α′,σ ′(x ′,t ′)�α,σ (x,t)〉 and we present details on the calcula-

tion of this function in Appendix A. The resulting expression
of the current can in general be decomposed as follows:

I l = I l
0 − I l

sp − I l
sf − I l

b + I l
ne. (5)

The first term, I l
0 = e

�

∫ +∞
−∞

dω
2π

[fασ (ω) − fασ (ω)], corre-
sponds to purely ballistic transport through the terminal l

in the absence of any coupling to the quantum dot. The
associated conductance is G0 = e2/h. The other terms are
due to the coupling to the quantum dot and tend to decrease
the conductance with respect to the quantum limit G0. The
contributions I l

sp and I l
sf are due to the tunneling between

different Kramers’ pairs through the quantum dot preserving
and flipping the spin respectively. The component I l

b is an
intrapair backscattering leading to an effective resistance in the
terminal. The last term, I l

ne, is a nonequilibrium contribution
with components on the previous three channels. The explicit
expressions for these different contributions are

I l
sp = e

h

∫ +∞

−∞
dω T l

σ,σ (ω)[fασ (ω) − fασ (ω)],

I l
sf = e

h

∫ +∞

−∞
dω T l

σ,σ (ω)[fασ (ω) − fασ (ω)],

(6)

I l
b = e

h

∫ +∞

−∞
dω T l

σ,σ (ω)[fασ (ω) − fασ (ω)],

I l
ne = e

h

∑
σ ′=σ,σ

∫ +∞

−∞
dω

d

γ 2vF �
T l

σ,σ ′ (ω)σ ′(ω).

The functions

T l
σ,σ ′(ω) =

(
vF �√

d
γ

)4

|gασ (xl,x0; ω)|2∣∣GR
σ,σ ′(ω)

∣∣2
(7)

characterize scattering processes where the electrons tunnel
from the edge ασ to the quantum dot, eventually flip the spin
(for σ ′ = σ ), and tunnel again to the edge α′σ ′. The Fermi
function fασ (ω) depends on the chemical potential and the
temperature of the reservoir injecting the electrons into the
edge ασ . The function gασ (xl,x0; ω) is the retarded Green
function for the free edge state [see Eq. (B2)] while GR

σ,σ ′ (ω) is
the retarded Green function of the quantum dot coupled to the
edge states. In the most general case, this function corresponds
to the fully interacting quantum dot out of equilibrium. The
function

σ (ω) = 2fασ (ω)Im
{
�R

σ (ω)
} + i�<

σ (ω) (8)

is defined by the retarded and lesser components of the
self-energy due to the Coulomb interaction at the dot, re-
spectively, �R

σ (ω) and �<
σ (ω). This function vanishes close
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to equilibrium, where all the chemical potentials and tem-
peratures of the reservoirs are the same. In fact, the follow-
ing fluctuation-dissipation relation holds: 2f (ω)Im{�R

σ (ω)} =
−i�<

σ (ω). Hence, this process contributes to the current with
a leading order ∝ V 2, eV being the bias voltage applied at
the terminals with respect to the reference chemical potential
μ. Instead, the other three terms I l

sp, I l
sf , and I l

b contribute
at the linear order in the applied voltage V . In what follows,
we will focus on small bias voltages where these contributions
dominate. We will, thus, neglect the effect of I l

ne and the Green
function GR

σ,σ ′ (ω) will be evaluated in the equilibrium system,
as explained in Sec. IV.

For low temperatures and small bias voltages, the transport
properties of the edge states in this setup are completed
defined by the behavior of the function T l

σ,σ ′(ω) close to
the reference chemical potential μ. Because of the symmetry
of this problem, the diagonal matrix elements of this matrix
are identical, T↑,↑(ω) = T↓,↓(ω) and also T↑,↓(ω) = T↓,↑(ω).
From Eq. (9) we directly see that the latter matrix elements
vanish for λ = 0. Hence, if we focus on a particular terminal
where the incoming edge is α,σ (for instance the terminal
l = 3 at the upper right corner, which has α = R and σ =
↑), the effect of the spin-flip process will contribute to
decrease the corresponding conductance due to backscattering
processes when there is a bias applied from left to right (μ1 =
μ2 = eV + μ and μ3 = μ4 = μ). A similar behavior will be
observed for the case of a bias applied from bottom to top
(μ1 = μ3 = μ and μ2 = μ4 = eV + μ) due to the interedge
processes. On the other hand, in a configuration of voltages
with μ1 = μ2 = μ4 = μ + eV and μ3 = μ, we would get a
current in the l = 3 terminal only due to the transmission
without spin flip. In this way, a suitable selection of the voltages
applied at the terminals will enable to gathering information of
the different types of transport processes through the quantum
dot. The transport behavior is fully described by the behavior of
the two independent components of the transmission function
T|| = Tσ,σ (μ) and T⊥ = Tσ,σ (μ).

IV. GREEN FUNCTION OF THE QUANTUM DOT

In the previous section we have shown that the transport
properties can be completely characterized within linear
response in terms of two transmission functions, which depend
on the retarded Green functions of the isolated edges and of
the fully interacting quantum dot coupled to the edge states
in equilibrium. The first ones can be analytically calculated
and the explicit expressions are given in Appendix B. In this
section we explain how to evaluate GR

σ,σ ′(ω). For the case of a
noninteracting quantum dot, this function can be analytically
evaluated while for the interacting case, we rely on numerical
quantum Monte Carlo simulations. Below, we consider the two
cases separately.

A. Quantum dot without Coulomb interaction

In the case where U = 0 it is possible to calculate the
retarded Green function of the quantum dot coupled to the edge
states analytically. In fact, we can readily solve the Dyson
equation for the retarded Green function in this limit, by
defining the matrix Ĝ0(ω) with matrix elements G0

σ,σ ′(ω) ≡

GR
σ,σ ′ (ω). The inverse of that matrix is

[Ĝ0(ω)]−1 = [ω − ε0 − �0(ω)]σ̂0 − λσ̂x, (9)

where σ̂0 is the 2 × 2 unit matrix and σ̂x is the x-Pauli matrix.
We have also introduced the hybridization self-energy

�0(ω) =
(

�vF√
d

γ

)2 ∑
α=L,R

gα(ω) = −i�0, (10)

where gα(ω) ≡ gασ (x0,x0; ω) is the Green function of the free
helical edge (the spin label was omitted since it is the same for
both spin components) and �0 = γ 2

�vF /d.

B. Quantum dot with Coulomb interaction

For the fully interacting case, U = 0, we calculate the
Green function in the Matsubara representation by recourse
to quantum Monte Carlo. To this end we define the matrix
Ĝ(iωn) which is the inverse of

[Ĝ(iωn)]−1 = [Ĝ0(iωn)]−1 − �̂(iωn), (11)

where Ĝ0(iωn) is the Green function of the noninteracting
quantum dot coupled to the leads (9) in the Matsubara axis
while �̂(iωn) is the self-energy matrix due to the Coulomb
interaction U . These functions are calculated with quantum
Monte Carlo by using the “continuous-time method” of
Refs. [49–52]. In this method the Anderson impurity coupled
to an arbitrary bath of free fermions can be computed in
the Matsubara axis at finite temperature. The bath, which in
our case is represented by the function (10), is an input of
this algorithm. The retarded functions and the corresponding
transport properties can be calculated by performing analytic
continuation to the real frequency axis of Eq. (11) [53]. Here
we focus on the features close to ω = μ, which are the relevant
ones to evaluate the transmission functions T|| and T⊥ and we
use the methodology of Refs. [54,55].

V. RESULTS

As discussed in Sec. III the transport properties of the setup
are defined by the behavior of the components of the trans-
mission function preserving and flipping spin, respectively, T||
and T⊥. In this section we analyze the effect of the different
parameters of the model on the behavior of these functions.
The relevant parameters are λ, U , and ε0.

We fix the mean chemical potential of the reservoirs
to μ = 0 and start by fixing the local gate voltage of the
dot to ε0 = −U/2. In the noninteracting case (U = 0), this
corresponds to the resonant level aligned with the Fermi energy
of the edge states. In the interacting case, this corresponds to
the dot occupied with a single electron, which is the typical
scenario for the Kondo effect to take place. This effect is
characterized by the coupling of the spin of the electron
localized at the quantum dot with spins of the electrons of
the edge states to form a singlet. This is accompanied by
a fluctuation in the occupation, which effectively results in
an electron resonance and a perfect transmission through the
dot in the spin-preserving channel. This mechanism takes
place only at low temperatures, below the so-called Kondo
temperature [56,57]. In what follows, we fix the effective
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FIG. 2. Transmission functions at Fermi level vs the spin-flipping
fluctuations λ for (a) noninteracting model (U = 0) with ε0 = 0 and
�0 = π/8 and (b) interacting model with U = 4, ε0 = −U/2, and
�0 = π/8. While (a) does not depend on temperature, the temperature
in case (b) is T = 0.0025, being that the Kondo temperature is TK �
0.013 for these values of �0 and U . All energies are expressed in
units of vF �/d .

tunneling rate and focus on U = 4 and �0 = π/8, which
corresponds to a Kondo temperature TK � 0.013. The values
of these quantities are expressed in units of vF �/d. In Fig. 2
we show the behavior of the transmissions as the spin-flip
amplitude λ is varied. The top panel corresponds to the
noninteracting quantum dot and the bottom panel to the
quantum dot in the Kondo regime. The same global behavior is
observed in both cases, namely, a decrease of the transmission
preserving spin as the transmission with spin flip increases.
In the noninteracting case, it is possible to write an analytical
expression of the transmissions. In fact the different matrix
elements of Eq. (9) read

G0
σ,σ (ω) = 1

g−1(ω) − λ2g(ω)
,

(12)

G0
σ,σ (ω) = λ

[g−1(ω)]2 − λ2
,

with g−1(ω) = ω − ε0 + i�0. Substituting these expressions
in (7) it is found that T|| is a decreasing function of λ with
maximum T|| = 1 for λ = 0 where T⊥ = 0. Instead, T⊥ has
a maximum at λ = �0, where T⊥ = 1/4. For the interacting
case within the Kondo regime, it is natural to find a similar

0
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0.4

0.6

0.8

1

−6 −5 −4 −3 −2 −1 0 1 2

T

ε0

T||
T⊥

Tλ=0

FIG. 3. Spin-preserving transmission T|| and spin-flipping trans-
mission T⊥ at the Fermi energy vs the dot level ε0. We fixed a
low temperature T = 0.0025 to tune in the Kondo regime, setting
λ = 0.008, U = 4, and �0 = π/8.

behavior, since this is characterized by a resonance, as in
the noninteracting case. This is indeed what we observe in
Fig. 2(b). The results shown in this figure correspond to a
temperature much lower than the Kondo temperature and
basically correspond to the T = 0 limit. In fact, notice that
for λ = 0 the function T|| achieves exactly the unitary limit.
The scale at which the maximum of T⊥ and the strong decrease
of T|| take place is, however, not set by the hybridization width
�0 as in the noninteracting case, but by the Kondo temperature
TK . This is because the width of the Kondo resonance is ∝ TK

and because the spin-flip processes and the formation of the
Kondo singlet are competitive effects. Hence, for λ ∼ kBTK

(kB is the Boltzmann constant), the spin-flip process becomes
dominant.

The effect of the gate voltage in the Kondo regime with
spin-flip processes is analyzed in Fig. 3 for a particular value
of λ close to the one for which T⊥ achieves the maximum for
the symmetric configuration (ε0 ∼ −U/2) and a temperature
much lower than the Kondo temperature. Interestingly, for
values of ε0 ∼ −U and 0, we observe a strong decrease of
T⊥ while T|| displays two maxima approaching the unitary
limit. The case without spin flip (λ = 0) is shown in dashed
lines for comparison. It is characterized by the plateau with
unitary transmission within the full interval −U � ε0 � 0.
These features can be understood by noticing that the gate
voltage shifts the level of the quantum dot with respect to the
Fermi energy of the edge states, leading to a change in its
occupation. For ε0 = −U/2 the dot is singly occupied, which
is the optimal configuration for the Kondo effect to develop. As
ε0 departs from this value, the dot tends to be empty as ε0 → 0
or doubly occupied as ε0 → −U . On the other hand, the spin-
flip term is effective only when the dot is singly occupied, in
which case it competes with the Kondo effect. In this way, as
the gate voltage approaches the limiting values ε0 = 0 and −
U , the spin-flip processes become ineffective and the transport
takes place through the two levels separated by the energy U of
the Coulomb-blockade regime. This is reflected in the behavior
of the transmission functions, by the decreasing amplitude of
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FIG. 4. Current in units of e2V/h measured in terminal 3 vs the
spin flipping parameter. (a) Bias voltage configuration: μ2 = μ4 =
eV and μ1 = μ3 = 0 (blue straight line with circles), μ1 = μ2 = eV

and μ3 = μ4 = 0 (green dashed line with squares), μ1 = μ4 = eV

and μ2 = μ3 = 0 (black solid line with triangles); (b) μ2 = eV and
μ1 = μ3 = μ4 = 0 (blue solid line with circles), μ1 = μ2 = μ4 =
eV and μ3 = 0 (green dashed line with squares). The rest of the
parameters are the same as in Fig. 3

T⊥ as ε0 departs from −U/2 and the increment of T|| to the
limit of perfect transmission at ε0 = 0, − U observed in Fig. 3.

We analyze in Fig. 4 the behavior of the current measured at
a given terminal as a function of the amplitude of the spin-flip
processes. We consider the quantum dot in the half-filled
configuration corresponding to ε0 = −U/2 and we focus on
the terminal at the top right corner of the 2D spin Hall
bar, which is labeled with the index l = 3 (see Fig. 1). We
consider different voltage configurations in order to separate
and/or combine the different contributions of the transmission
processes through the quantum dot. We begin by considering a
bias configuration inducing colliding processes at the quantum
dot. This corresponds to μ2 = μ4 = eV and μ1 = μ3 = 0.
The corresponding current is shown in the plot with blue
circles of Fig. 4(a). For λ = 0 the current achieves its ballistic
limit I0 = e2V/h. This is because, in the absence of spin-flip
processes at the dot, the particle flow between HESs with
same spin projection is forbidden due to the Pauli exclusion
principle. In fact, as in this case T⊥ = 0, the only component
that could eventually contribute is the spin-preserving one I l

sp,
which depends on T||. However, we see from Eq. (6) that this
component also depends on the difference of Fermi functions
which vanishes for this voltage configuration. With increasing
spin fluctuations at the quantum dot, the transmission with

spin-flip T⊥ becomes active, opening the conducting channels
I l
b and I l

sf . Hence, as λ increases, the net current decreases with
respect to the ideal quantum limit I0, achieving a minimum for
the value of λ at which T⊥ has a maximum. As λ increases
further, the spin fluctuations increase and deteriorate the low-
energy resonance between the dot and HES. This is reflected in
a smaller amplitude of T⊥, which leads to an increment of the
current towards the quantum limit I0. For μ1 = μ2 = eV and
μ3 = μ4 = 0 the bar is biased from the left to the right. The
corresponding behavior of the current in the terminal l = 3 as
a function of λ is shown in the green dashed plot with squares
of Fig. 4(a). For λ = 0 the spin preserving current through
the quantum dot is equal to the quantum limit I l

sp = I0 due
to the perfect transmission T|| = 1. This contribution exactly
cancels the current injected by terminal 2 leading to a net
vanishing current I 3. As λ increases, T|| decreases abruptly
and new channels open with finite T⊥. The combination of
the two contributions, however, is not enough to cancel the
ballistic current and a finite net current flows through terminal
3, which increases in magnitude for increasing λ. Finally, the
plot in black lines with triangles of Fig. 4(a) shows the behavior
of the current I 3 for a bias applied from bottom to top, which
corresponds to considering μ1 = μ4 = eV and μ2 = μ3 = 0.
In this case, the maximum current is found for λ = 0 due to
perfect spin preserving transmission from the lower to upper
channel. At finite values of λ, the contributions I l

b and I l
sf play

a role, leading to a decreasing net current.

T ⊥

ε0

T |
|

ε0

T=0.04

0.01

0.005

0.0025

(a)

(b)

FIG. 5. Transmissions functions at the Fermi energy vs the
dot level ε0 for different temperature regimes. (a) Spin-preserving
transmission T||. (b) Spin-flipping transmission T⊥ for the same
parameters of Fig 3.
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A similar analysis can be done for other voltage configura-
tions corresponding to biasing one of the terminals against the
other three. Examples are shown in Fig. 4(b). The case where
μ2 = eV and μ1 = μ3 = μ4 = 0 is shown in the blue-line plot
with circles. For λ = 0 the perfect transmission T|| through the
quantum dot causes a vanishing flow towards terminal 3. The
effect of λ is to decrease T||, resulting in an increasing net
current I 3. The other configuration shown in green lines with
squares in Fig. 4(b) corresponds to μ1 = μ2 = μ4 = eV and
μ3 = 0. This voltage configuration is particularly interesting
because it allows for measuring the effect of the backscattering
component Ib independently from Isf . In fact Ib vanishes
for λ = 0 corresponding to the maximum I 3 = I0, while the
departure of I 3 from the perfect ballistic limit is precisely the
backscattering component Ib = I0 − I 3.

We close this section by analyzing the effect of the
temperature in the features described in Fig. 3. This is shown
in Fig. 5 within a range of temperatures below and above
the Kondo temperature TK . We see that the effect of the
temperature is similar to the effect of the spin-flip processes
regarding the behavior of the spin-preserving transmission
T||, which tends to become smaller close ε0 = −U/2 as T

increases. Interestingly, the structure of T⊥ is more robust
against changes in temperature. This indicates that the terms
involving current transmission with spin inversion Isf and
the effective resistance Ib depends weakly on the temperature
within the wide range of temperatures explored.

VI. CONCLUSIONS

We have analyzed the transport properties of the edge states
of a 2D spin Hall bar in tunneling contact to a quantum
dot where electrons are confined and experience Coulomb
interaction U as well as local spin-flip processes λ. The
occupation of the dot can be changed by means of a locally
applied gate voltage ε0. In the singly occupied quantum dot,
under the Kondo temperature, the Kondo effect takes place
along with the spin-flip processes. These two mechanisms
are competitive and contribute to the transport along different
channels.

The Kondo effect contributes to transport between two
different Kramers pairs through the quantum dot without
flipping the spin. The spin-flip term contributes to the effective
tunneling with spin flip between the two Kramers pairs as well
as within the same Kramers pair. The latter corresponds to
an effective interpair backscattering and resistive behavior.
By changing the gate voltage it is possible to change the
occupation of the quantum dot. Away from single occupancy,
the spin-flip term becomes ineffective and close to ε0 =
−U and 0, the transport takes place in the Coulomb blockade
regime through the spin-preserving channel. The Kondo and
the spin-flip processes are competitive, and the effect of one
dominating over the other can be manipulated by the occupa-
tion. Hence, the gate voltage plays the role of a switch to select
the spin-preserving or the spin-flip tunneling processes. Such
a mechanism can be used to design helical interferometers
like the ones discussed in Refs. [16–23]. In most of these
references, the nontrivial effects on the conductance behavior
were a consequence of tunneling with spin-flip between the
HESs. In our case, we focused on local spin-flip processes at

the quantum dot and concluded that this provides a channel for
an effective tunneling process with spin flip between the HESs.
In the case of coexisting both types of mechanisms, the com-
bined effects with the Coulomb interaction as well as the
consequences on the transport behavior would be qualitatively
the same as the ones discussed in the previous section.

If we consider that typical realistic values for the Coulomb
interaction and the hybridization function are similar to those
in semiconductors [57], U ∼ 1–1.3 meV and � ∼ 0.1 meV,
then a very small value of the spin-flip parameter λ would lead
to dramatic consequences in the transport properties below
the Kondo temperature. For instance, notice that the plots of
Fig. 3 correspond to λ ∼ 2 × 10−3U ∼ 2 μeV. If, instead of
an antidot as in the sketch of Fig. 1, the interacting region is a
puddle as the one considered in Refs. [29,30,32], the effect of
the flipping parameter would introduce a significant resistive
behavior with the consequent reduction of the conductance in
a six-terminal measurement like the one of Ref. [14]. This is an
interesting outcome, since such a resistive behavior has been
already experimentally observed.
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APPENDIX A: LESSER GREEN FUNCTION OF THE EDGE
IN CONTACT TO THE QUANTUM DOT

We follow a similar approach to the one introduced
in Ref. [20]. We summarize the main steps to derive the
expression for the Green functions of the quantum dot. We
start by defining the following Green functions in the Keldysh
contour:

iGC
ασ,α′σ ′(x,x ′; t,t ′) = 〈TC[�α,σ (x,t)�†

α′,σ ′(x ′,t ′)]〉,

iGC
ασ,σ ′ (x; t,t ′) = 〈TC[�α,σ (x,t)d†

σ ′(t ′)]〉, (A1)

iGC
σ,σ ′(t,t ′) = 〈TC[dσ (t)d†

σ ′(t ′)]〉,
where TC denotes temporal ordering along the Keldysh
contour. These Green functions can be expressed in terms
of retarded GR(t,t ′) = −iθ (t − t ′)〈[O(t),O†(t ′)]+〉 and lesser
components G<(t,t ′) = i〈O†(t ′)O(t)〉 [58].

The contour-ordered functions obey the following
Schwinger-Dyson equations, which when Fourier-transformed
with respect to t − t ′ lead to the following equations:

GC
ασ,α′σ ′(x,x ′; ω) = δσ,σ ′gC

ασ (x,x ′; ω) + GC
ασ,σ ′ (x; ω)

×vF �√
d

γgC
α′σ ′(x0,x

′; ω),

GC
ασ,σ ′ (x; ω) = gC

ασ (x,x0; ω)
vF �√

d
γGC

σ,σ ′ (ω). (A2)

Substituting the second of these equations into the first
one and evaluating the lesser component by applying the
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Langreth rules for the complex contour [58], we find
the expression for the lesser Green function for the edge
channels:

G<
ασ,ασ (x,x ′; ω) = g<

ασ (x,x ′; ω) + (�vF )2

d
γ 2

[
gασ (x,x0; ω)

×GR
σ,σ (ω)g<

ασ (x0,x
′; ω)

+gασ (x,x0; ω)G<
σ,σ (ω)g∗

ασ (x0,x
′; ω)

+g<
ασ (x,x0; ω)GA

σ,σ (ω)g∗
ασ (x0,x

′; ω)
]
,

(A3)

where GA
σ,σ (ω) = GR∗

σ,σ (ω) is the Fourier transform of the
retarded Green function for the interacting dot coupled to the
edge states and gασ (x,x ′; ω) are the retarded Green functions
of the free HESs. Explicit expressions for the latter are given in
Appendix B. g<

ασ (x0,x0; ω) = −ifασ (ω) 2 Im{gασ (x0,x0; ω)}
is the lesser Green function of the isolated HES and fασ (ω)
is the Fermi distribution that defines the filling of each edge
channel α,σ .

In a similar, way, we can derive the following Green
function for the dot in the Keldysh contour:

GC
σ,σ ′(ω) = gC

σ,σ ′(ω) +
∑
σ ′′

GC
σ,σ ′′ (ω)�C

tot,σ ′′(ω)gC
σ ′′,σ ′(ω),

where the total self-energy is �C
tot,σ (ω) = �C

0,σ (ω) + �C
σ (ω).

The term

�C
0,σ (ω) =

(
�vF√

d
γ

)2 ∑
α=R,L

gC
ασ (x0,x0; ω) (A4)

is due to the coupling to the edge states and the term
�C

σ (ω) is due to the interaction U . By recourse to Lan-
greth rules, we can calculate the lesser component of this
function,

G<
σ,σ ′ (ω) =

∑
σ ′′

GR
σ,σ ′′ (ω)[�<

0,σ ′′(ω) + �<
σ ′′(ω)]GA

σ ′′,σ ′(ω),

(A5)

with GA
σ ′′,σ ′(ω) = [GR

σ ′,σ ′′ (ω)]
∗
.

APPENDIX B: RETARDED GREEN FUNCTION OF THE
ISOLATED HELICAL EDGE STATES

The Green functions of the free HESs are given by

gασ (x,x ′; ω) =
∫ +k0

−k0

dk gασ (k; ω) eik(x−x ′),

gασ (k; ω) = 1

ω − vα�k + iη
, (B1)

where vα ≡ sαvF and sα = 1 (−1) for α = R (L). Taking the
limit k0 → ∞, we obtain the following result:

gασ (x,x ′; ω) = −i

vF �
�[sα(x − x ′)]ei(sα/vF �)ω(x−x ′). (B2)
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