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The electron momentum density obtained from the Schwinger-like mechanism is evaluated for a graphene
sample immersed in a homogeneous time-dependent electric field. Based on the analogy between graphene
low-energy electrons and quantum electrodynamics (QED), numerical techniques borrowed from strong field
QED are employed and compared to approximate analytical approaches. It is demonstrated that for some range of
experimentally accessible parameters, the pair production proceeds by sequences of adiabatic evolutions followed
by nonadiabatic Landau-Zener transitions, reminiscent of the Kibble-Zurek mechanism describing topological
defect density in second order phase transitions. For some field configurations, this yields interference patterns in
momentum space which are explained in terms of the adiabatic-impulse model and the Landau-Zener-Stückelberg
interferometry.
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I. INTRODUCTION

Graphene, a two-dimensional arrangement of carbon atoms
on a honeycomb lattice structure, is a relatively new material
which exhibits spectacular electronic [1,2], optical [3,4], and
mechanical properties [5]. These properties make graphene
promising for the development of electronic and optoelectronic
devices such as ballistic transistors [1], solar cells [3], and
photodetectors [6]. In addition to practical applications, the
contribution of graphene to fundamental physics has also been
recognized. Specifically, charge transport in this 2D material
is of particular interest because it is analogous to quantum
electrodynamics (QED) [7]: In the low-energy limit of the
tight-binding model, electrons propagating on the honeycomb
lattice can be described by an effective theory based on a
massless 2D Dirac equation [2,8]. The latter is similar to the
Dirac equation governing the relativistic quantum behavior
of the electron, except for the fact that the speed of light
c is replaced by the Fermi velocity vF = 1.093 × 106 m/s.
Also, the interaction with the electromagnetic sector is slightly
different: In graphene, two-dimensional quasiparticles interact
with three-dimensional photons while in QED, both electrons
and photons “live” in the same number of dimensions. The
theory describing graphene is thus massless reduced quantum
electrodynamics (RQED3,2, where the index denotes the
photon and fermion dimensions, respectively) [9]. Owing to
this analogy, graphene can be used as a QED simulator if the
following minimal set of experimental conditions is fulfilled:

(1) intrinsic graphene,
(2) “perfect” lattice structure and relatively large domains,
(3) small thermal effects,
(4) small phonon dispersion,
(5) small coupling constant,
(6) momentum of quasiparticles close to Dirac points.
These conditions are now discussed. (1) The Fermi energy

has to be precisely at the Dirac point to simulate the QED
vacuum. By definition, intrinsic graphene obeys this property
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but may be challenging to produce experimentally because a
small external potential or doping will induce charge carriers
in the conduction band [10]. Nevertheless, QED can still
be simulated if the carrier density generated in this way is
negligible compared to the process under consideration, as
〈ñcarriers〉 � 〈ñ〉. Henceforth, 〈ñ〉 characterizes the creation of
electron-hole pairs by the Schwinger-like mechanism, which
will be described in detail in the next section. (2) The presence
of impurities and scattering on domain boundaries can change
the behavior of quasiparticles, thereby affecting the transport
properties of graphene [11]. This implies using single crystal
domains in the realization of a QED simulator with a size �

larger than the typical distance traveled by quasiparticles, i.e.,
� � vF ttravel, with ttravel the characteristic traveling time scale
of quasiparticles. Single crystal graphene with domain sizes
as large as 20 μm can be fabricated using currently available
technology [12]. (3) Intrinsic graphene at nonzero temperature
T has electrons in the conduction band due to thermal effects.
The resulting electronic density, given by [13]

〈ñthermal〉 = π

6

(
kBT

�vF

)2

� 〈ñ〉, (1)

where kB is Boltzmann’s constant, should be smaller than the
one produced by the process under consideration (〈ñ〉). (4)
Phonons can interact with quasiparticles through a gauge-like
coupling, introducing an additional scattering channel [11].
This scattering channel mainly results in a renormalization of
the graphene Fermi velocity. The impact of phonon coupling
on quasiparticle lifetime can be mitigated by performing
experiments at low temperature [14]. (5) Fermion interactions
can be neglected at leading order like in QED when the
coupling constant is small, i.e. when g := αc/εvF � 1,
where α ≈ 1/137 is the fine-structure constant and ε is the
dielectric constant of the substrate [7,15,16]. From this power
counting argument, suspended graphene (g � 2.3) would not
be suited to the experimental realization of a QED simulator.
Instead, embedding graphene layers in a medium with a
sufficiently high dielectric constant ε is required. For instance,
graphene deposited on SiO2 [17] yields a value of g � 0.9,
and substrates with higher dielectric constants are currently
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available [12]. However, even for a relatively large value of
the coupling constant (g � 2.3), graphene may behave as a
weakly coupled system where the Fermi velocity is renormal-
ized [15]. (6) The Dirac points are positioned at the absolute
momentum |K±| = 4π

3
√

3a
≈ 3361 eV, where a ≈ 1.42 × 10−10

m is the distance between carbon atoms [2,18]. Close to
these points, the dispersion relation is linear and is given
by

Ep = vF |p| + O(|p|/|K±|), (2)

where p is the relative momentum of quasiparticles measured
with respect to K± (here, the subscript ± refers to nonequiv-
alent Dirac points, as described in more detail below). The
dispersion relation holds when |p| � |K±|. In this paper,
the maximum momentum of quasiparticles is estimated to
be |pmax| ≈ 100 eV, corresponding to an energy of Ep,max ≈
0.36 eV, ensuring that quasiparticles have a linear dispersion
relation. We note that a similar value for |pmax| is found in
Ref. [18].

Although the above-mentioned conditions are stringent,
they may be more easily achieved experimentally than certain
requirements for the study of QED processes. For instance, the
study of Schwinger’s mechanism, whereby the vacuum decays
into electron-positron pairs in the presence of a strong classical
constant electromagnetic field, requires field strengths of
E0 ∼ ES := m2c3

e�
≈ 1.3 × 1018 V/m (here, m is the electron

mass). Fields of this magnitude are unattainable with current
laser technology: The highest field strengths attained are
approximately given by Eexp ∼ 1013 − 1014 V/m [19]. The
probability to create a pair in vacuum is given by [20,21]

PS ∼ e
−π

ES
E0 . (3)

Therefore, there is an exponential suppression of the rate
proportional to the mass gap �gap = mc2. In graphene, the
quasiparticles are massless, reducing considerably the field
strength required to produce electron-hole pairs [22–27]. This
and the fact that it is a QED simulator make graphene
a good candidate to study Schwinger-like processes. As a
matter of fact, several other QED-like phenomena have been
investigated in graphene [28–30] because these processes are
important to understand the conductivity and other properties
of this material.

In this paper, the process of electron-hole pair production
in graphene is investigated using analytical and numerical
methods in strong field RQED3,2. Similar studies have been
performed in the past [23–27], but the phenomenon of quantum
interference between each half cycle of an oscillating field
was generally overlooked as constant fields were generally
considered (the so-called T -constant field [31]). An oscil-
lating field has been considered in p-n graphene junctions
where it was demonstrated that quantum interferences are
responsible for the current asymmetry [32]. A similar applied
field was investigated in Ref. [33], where a mass gap was
considered. It was shown that a strong resonance behavior can
be observed in the electron-hole pair momentum spectrum.
Pair production with graphene Landau levels (i.e., in the
presence of a quantizing magnetic field) driven by circularly
and linearly polarized fields has also been investigated [34].

Finally, quantum interferometric phenomena in graphene were
considered for circularly polarized laser pulses [35].

In strong field QED, quantum interference is an important
topic because it explains the peak and valley structure seen in
numerical calculations of the time-dependent Schwinger-like
pair production mechanism [36]. This is usually interpreted
in terms of the Stokes phenomenon [37,38] or Landau-Zener-
Stückelberg interferometry (LZSI) [39] and makes the total
rate sensitive to field parameters [40]. Most known results
have been obtained by comparing numerical methods to
approximate analytical schemes such as semiclassical tech-
niques [41], the worldline formalism [42], and the adiabatic-
impulse model [39].

This paper focuses on the explanation of the two-
dimensional momentum-space interference patterns in the
electron momentum density induced by multiple avoided
crossings of the adiabatic energies in graphene subjected
to an oscillating electric field. Throughout, the Schwinger-
like regime is considered where the dimensionless Keldysh
parameter γ obeys

γ := m⊥ωvF

eE0
� 1, (4)

where m⊥ :=
√

p2
⊥

v2
F

+ m2
gap is the transverse mass, with mgap

the quasiparticle effective mass related to the gap � = mgapv
2
F ,

p⊥ is the transverse momentum in a plane perpendicular to the
external electric field, e > 0 is the magnitude of the electron
charge, ω is the frequency of the external field, and E0 is
its electric field strength. The opposite case, where γ � 1,
corresponds to the multiphoton regime and yields qualitatively
different results [27].

This paper is separated as follows. First, the pair production
formalism in graphene is given in Sec. II. Then, the adiabatic-
impulse model and its relation to pair production is presented
in Sec. III. Numerical results for a simple oscillating field
obtained from these two techniques are given and compared
in Sec. IV. In particular, the results for a few half cycles
can be found in Sec. IV A, where the concept of quantum
interference is used to explain the qualitative differences in
the electron momentum density for one and two half cycles.
The long-time limit of the pair creation results is interpreted in
terms of multiphoton quantum interference via Floquet theory
in Sec. IV B. In Sec. IV C, we discuss the analogy between
the adiabatic dynamics of quasiparticles in graphene and the
Kibble-Zurek mechanism in second order phase transitions.
Finally, the conclusion is in Sec. V. Everywhere, natural
units are used in which � = c = 1. In these units, the Fermi
velocity, that relates energy and momentum, takes the value
vF ≈ 0.0036.

II. PAIR PRODUCTION IN A STRONG
HOMOGENEOUS FIELD

The formalism to compute the electron momentum den-
sity produced by a strong classical electromagnetic field is
reviewed in Ref. [43] for QED. These QED techniques have
been adapted to RQED3,2 and applied to graphene physics:
For more details, we refer the reader to the work presented in
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Refs. [27,39]. Hereinafter, the main results of this analysis are
given with an emphasis on the definition of quantities required
to compute the electron density in graphene. Other techniques
to compute the pair density are also available [31,44,45].

It was demonstrated that the leading order contribution to
the electron momentum density d〈ñs,a〉/d2p, where d2p :=
dpxdpy , generated from electron-hole pair production for a
graphene sample immersed in a homogeneous electric field
can be written as [27]

d〈ñs,a〉
d2p

= 1

2Eout
p 2Ein

p

∣∣uout†
s,a (p)ψs,a(tf ,p)

∣∣2
, (5)

where s = ±1 denotes the physical spin of the electron
and a = K± indexes nonequivalent Dirac points. The wave
function is given by

ψs,a(tf ,p) = Up(tf ,ti)v
in
s,a(−p), (6)

where the evolution operator Up evolves the initial wave
function vin

s,a from the initial asymptotic time ti to the final
asymptotic time tf according to the following massless Dirac
equation expressed in momentum space [7]:

i∂tψs,K± (t,p) = HK±(t,p)ψs,K± (t,p), (7)

with a Hamiltonian defined by

HK± (t,p) := ±vF σ · [p − qA(t)], (8)

where q is the electric charge (q = −e for the electron), A is
the time-dependent vector potential and σ are Pauli matrices.
The electric field is given as usual by E(t) = −∂tA(t). To
derive Eq. (5), it is assumed that the electric field vanishes
at asymptotic times as E(t)|t∈[−∞,ti ]∪[tf ,∞] = 0. Although the
physical field is null in those asymptotic regions, it is possible
that the vector potential has a constant value (the value depends
on the gauge chosen). The constant value of the vector potential
in these temporal regions will be denoted by A(t)|t∈[−∞,ti ] =
Ain and A(t)|t∈[tf ,∞] = Aout. In all calculations, we choose a
gauge such that Aout = 0, ensuring that the numerical results
are expressed in terms of the physical momenta [27].

Other parameters are also evaluated at asymptotic times in
Eq. (5). To define these parameters, it is convenient to introduce
the kinematic momentum given by

P±(t) := ±p − qA(t). (9)

Then, the adiabatic free spinors can be written as

us,K+ (t,p) = 1√
Ep(t)

[
Ep(t)

vF [P+,x(t) + iP+,y(t)]

]
, (10)

vs,K+ (t,p) = 1√
E−p(t)

[
vF [−P−,x(t) + iP−,y(t)]

E−p(t)

]
, (11)

us,K− (t,p) = 1√
Ep(t)

[
Ep(t)

vF [−P+,x(t) − iP+,y(t)]

]
, (12)

vs,K− (t,p) = 1√
E−p(t)

[
vF [P−,x(t) − iP−,y(t)]

E−p(t)

]
, (13)

where the energy is defined as

E±p(t) := vF |P±(t)|. (14)

The spinors obey the usual property u
†
s,a(t,p)vs,a(t, − p) =

0. In Eqs. (5) and (6), free spinors have a subscript in/out,
denoting that these spinors are evaluated at times ti and tf ,
respectively (uout

s,a(p) := us,a(tf ,p) and vin
s,a(p) := vs,a(ti ,p)).

To summarize, the electron momentum density is computed
by preparing a free negative energy state with momentum p
at time ti , by evolving this state up to the final time tf with
the Dirac equation coupled to the field, and by projecting this
final state on a free positive energy state uout

s,a . This procedure
is performed for all momenta. The time evolution can be
computed by resorting to analytical solutions of the Dirac
equation or by employing a numerical scheme. The latter
option is taken here where a split-operator decomposition of
the evolution operator developed in previous studies [27,39] is
utilized.

III. ELECTRON-HOLE PRODUCTION IN THE
ADIABATIC-IMPULSE MODEL

In a homogeneous electric field, pair production is com-
puted by solving Eq. (7), which is analogous to a quantum two-
level system [39]. As a consequence, many of the analytical
techniques developed to study this class of quantum systems
can be employed to evaluate the pair or electron momentum
density. These approaches are important to understand the
physics of pair creation in some given regime. In particular,
we are interested in the adiabatic limit, characterized by the
following condition [46]:

� � min
{
evF max

t∈R
|A(t)|,vF |p⊥|}, (15)

where � is the characteristic inverse time scale for the variation
of the electromagnetic potential, assuming that the latter can
be written as A(�t).

In this regime, the quantum two-level system has been
studied extensively within the adiabatic perturbation theory
formalism [46–56]. In this adiabatic limit, it has been demon-
strated that the quantum dynamics proceeds by a sequence of
adiabatic evolution followed by nonadiabatic transitions. This
can be approximated through the adiabatic-impulse model,
which is now used to compute the electron density and to obtain
an intuitive understanding of the interference phenomenon
occurring in pair production. This approach has been used
in graphene to understand the anisotropy in the conductance
of p-n junctions [32].

The wave function in the adiabatic basis can be expressed
as

ψs,a(t,p) = B(u)
s,a(t)us,a(t,p) + B(v)

s,a(t)vs,a(t, − p), (16)

where B(u,v)
s,a are time-dependent coefficients of the adiabatic

basis expansion. Using the properties of free spinors, the
electron momentum density of Eq. (5), in the adiabatic
approximation, is written as

d〈ñs,a〉
d2p

= Eout
p

Ein
p

∣∣B(u)
s,a(tf )

∣∣2
. (17)

Here, the initial condition in the adiabatic basis is given by
Bs,a(ti) = [0,1]T. This is consistent with the required initial
condition for the pair density calculation given in Eq. (6).
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The result in Eq. (17) is independent of the representation
of Dirac matrices in which the free spinors u,v and the wave
function are expressed. Therefore, in the following discussion,
it is assumed that u,v are the solutions of the Dirac equation
in Eq. (7) with the substitutions

σx → σz and σy → σx. (18)

This change of representation can be performed via the unitary
transformation

Ur := e−iσy
π
4 e−iσx

π
4 . (19)

These transformations allow for the direct application of the
adiabatic-impulse results given in Ref. [49]. The latter is
now discussed for a more general field time dependence. In
particular, we consider a homogeneous electric field linearly
polarized in the x direction. In this case, the vector potential
has only one nonzero component and can be written as

A(t) =
[
A0 + A(t)

0

]
, (20)

where A0 is a constant shift of the vector potential while
A(t) is the function that determines its time dependence. The
general case, where all the components are nonzero, can also
be handled in principle and gives rise to the well-known Berry
phase [53]. This however is outside the scope of this paper.

For this class of potential, the coefficient B(u) can be
determined in the adiabatic-impulse model where the quantum
dynamics proceeds in steps where adiabatic evolutions are
followed by nonadiabatic transitions. Defining a vector in the
adiabatic basis space as Bs,a(t) := (B(u)

s,a(t),B(v)
s,a(t))T, the time

evolution of the adiabatic coefficients can then be given as [49]

Bs,a(tf ) = Uadia(tf ,tn)NnUadia(tn,tn−1)Nn−1

· · · N2Uadia(t2,t1)N1Uadia(t1,ti)Bs,a(ti), (21)

where t1, . . . ,tn are times when there is an avoided crossing
and when nonadiabatic transitions take place, as depicted
in Fig. 1. These occur at complex times (t∗j )j=1,...,n when
Ep(t∗j ) = −Ep(t∗j ) = 0, i.e., when the positive and negative
adiabatic energies cross in the complex time plane [49,57].
The crossing times are then given by tj = Re(t∗j )|j=1,...,n.
For γ � 1 and according to the adiabatic-impulse model,
these times can be evaluated approximately by determining
when the adiabatic mass gap �(t) := 2Ep(t) is minimal,
as shown in Appendix A. This also requires the squared
canonical momentum to be minimal. Therefore, the crossing
times are solutions of the following minimization problem (for
j = 1, . . . ,n):

tj = min
t∈Tj

P 2
+,x(t) = min

t∈Tj

[px + eA0 + eA(t)]2, (22)

where Tj represents the j th time interval where the function
is convex. This minimization problem can be solved by
computing the first and second time derivatives of P 2

+,x(t).
Therefore, the transition times are solutions of the following
system of equations:

[px + eA0 + eA(t)]Ex(t) = 0, (23)

− [px + eA0 + eA(t)]∂tEx(t) + E2
x(t) > 0, (24)

FIG. 1. Adiabatic energies in the driven two-level model. The
adiabatic energies are denoted by E± while PS represents the
transition probability. Nonadiabatic transitions occur at times t1,2,...

where the gap is minimal and given by �(t1,2) = 2vF |p⊥|. The red
lines represent different transition paths from negative to positive
energy states. At time t2 and all other times afterwards where a
nonadiabatic transition takes place, the negative energy portion of
the wave function that transits upward with probability PS interferes
with the positive energy part. This is the LZSI.

obtained from the first and second time derivatives, respec-
tively. Equations (23) and (24) yield two independent cases:

P+,x(t) := px + eA0 + eA(t) = 0,

E2
x (t) > 0, (25)

Ex(t) = 0, − P+,x(t)∂tEx(t) > 0. (26)

In the first case [Eq. (25)], the inequality is always fulfilled
because E2

x is positive definite. Accordingly, solutions of
P+,x(t) = 0 provide times where the mass gap is minimal and
given by �(tj ) = 2vF |p⊥|. However, there may exist values of
px for which P+,x(t) = 0 has no solution. These occurrences
are covered by the second case in Eq. (26), which corresponds
physically to a vanishing electric field. In this case, minima
are found when P+,x(t) and ∂tEx(t) have opposite signs. When
the electric field is zero, the nonadiabatic transition probability
is vanishing and therefore, the time evolution is adiabatic. As
a consequence, the adiabatic-impulse approach predicts that
there is no contribution to the electron momentum density from
these times because transitions are forbidden. Henceforth, we
will only consider the first case given in Eq. (25), assuming
that no pairs are produced when the second case [Eq. (26)] is
fulfilled. As seen below in numerical results, the model is not
accurate in this latter case. The reason for this discrepancy can
be traced back to the fact that in this regime, the times when
there is a minimal gap do not correspond to times where the
adiabatic energies are crossings, as discussed in Appendix A.
This is a limitation of the adiabatic-impulse model.

In Eq. (21), the operator Uadia is the adiabatic evolution
operator given by

Uadia(tn−1,tn) := exp

[
−iσz

∫ tn

tn−1

E+p(t)dt

]
, (27)

= exp[−iσzξn], (28)
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where ξn is the accumulated phase in the adiabatic evolution of
the system. Conversely, the matrices Nj |j=1,...,n are obtained
by solving the Dirac equation in a time region close to tj by
shifting to t ′. Close to these times, the potential is linearized
and expressed as

A(tj + t ′) ≈ A(tj ) + t ′∂tA(t)|t=tj , (29)

where t ′ is some small time. When the first condition in Eq. (25)
is fulfilled, the last equation can be written as

A(tj + t ′) ≈ −px

e
− A0 − t ′Ex(tj ). (30)

Then, using Eq. (30), the Dirac equation [Eq. (7)] becomes
formally similar to the Landau-Zener problem, which can be
solved exactly using parabolic cylinder functions [47]. Match-
ing this solution to the adiabatic solution using the asymptotic
expansion of parabolic cylinder functions, it is possible to
determine a transition matrix. It is given by [32,49,51]:

Nj :=
⎡
⎣

√
1 − P

(j )
S (p)e−iφ̃j −

√
P

(j )
S (p)√

P
(j )
S (p)

√
1 − P

(j )
S (p)eiφ̃j

⎤
⎦, (31)

where the Stokes phase, characterizing the phase accumulated
during nonadiabatic transitions, is defined as

φ̃j := −π

4
+ δj [ln(δj ) − 1] + arg �(1 − iδj ), (32)

with

δj := vF p2
y

2e|Ex(tj )| . (33)

The transition probability is then

P
(j )
S (p) = e−2πδj . (34)

The analytical result obtained so far is very similar to the one
given in earlier works [32,49]. However, it is slightly more
general because it covers any time dependence of the electric
field.

We are now in a position to consider a few cases of interest.
When there is one avoided crossing, the electron momentum
density is given by

d〈ñs,a〉
d2p

= P
(j )
S (p). (35)

On the other hand, when there are two avoided crossings, it
can be shown that

d〈ñs,a〉
d2p

= [
P

(1)
S (p) + P

(2)
S (p) − 2P

(1)
S (p)P (2)

S (p)

+
√

P
(1)
S (p)P (2)

S (p)
[
1 − P

(1)
S (p)

][
1 − P

(2)
S (p)

]
× cos(2ξ2 + φ̃1 + φ̃2)

]
. (36)

Other relations exist for any number of crossings but are not
shown here for simplicity.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, numerical results are obtained using the
computational techniques described in Secs. II and III. In the

long time limit, Floquet theory is also introduced to explain
some general features of the electron momentum density.

A simple homogeneous oscillating field is considered. The
latter can be generated experimentally by using counterprop-
agating laser fields where the magnetic field is canceled. The
electric field is characterized by (n ∈ N+ is the number of half
cycles)

Ex(t) =
⎧⎨
⎩

0 for t < 0
E0 sin(ωt) for t ∈ [0,nπ/ω]
0 for t > nπ/ω

, (37)

A(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E0
ω

for t < 0
E0
ω

cos(ωt) for t ∈ [0,nπ/ω]{E0
ω

n even
−E0

ω
n odd

for t > nπ/ω

, (38)

A0 =
{−E0

ω
n even

E0
ω

n odd
. (39)

For this electric field, the electron momentum density at
zero transverse momentum py = 0 can be evaluated analyt-
ically [27]. For n even, the electron momentum density is zero
while for n odd, it is given by

d〈ñs,K±〉
d2p

∣∣∣∣
py=0

=
⎧⎨
⎩

0 if px < −e 2E0
ω

0 if px > 0
1 if px < 0 and px > −e 2E0

ω

. (40)

A. Quantum interferences

The numerical results for the electron momentum density
produced by an electric field of strength E0 = 1.0 × 107 V/m
and frequency ν = 10.0 THz are displayed in Fig. 2 for a half
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(a)

(b)

FIG. 2. Numerical results for the electron momentum density for
an oscillating external field linearly polarized in the x coordinate,
with a field strength of E0 = 1.0 × 107 V/m and a frequency of
ν = 10.0 THz. (a) Electron momentum density after a semicycle. (b)
Electron momentum density after a full cycle. An interference pattern
can be seen in (b) where a peak and valley structure appears in the
electron momentum density.
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cycle (n = 1) and for a full cycle (n = 2). Such an electric field
corresponds to a laser field with an intensity of I ≈ 1.33 × 107

W/cm2. The results are obtained using the numerical technique
presented in Sec. II. When the field is applied for a half cycle,
no interference pattern can be observed, as seen in Fig. 2(a). In
this case, the electron momentum density is maximal at py = 0
and is nonzero on the momentum interval px ∈ [−95.4 eV,0],
consistent with Eq. (40).

On the other hand, when the field is applied for a full
cycle, the electron momentum density reveals large variations
of the density over the momentum range considered, shifting
from zero density to values close to ≈ 4.0, the largest value
allowed by the exclusion principle. This is typical of an
interference pattern: It induces a “peak and valley structure”
where the electron momentum density oscillates rapidly over
the momentum domain. As explained in more details in the
following, this can be interpreted as time domain quantum
interference and is an example of Landau-Zener-Stückelberg
interferometry.

The numerical results in Fig. 2 are consistent with the
ones obtained from the adiabatic-impulse model described
in Sec. III, as displayed in Figs. 3 and 4. Both approaches
yield an electron momentum density qualitatively similar,
having maxima and minima at the same momenta. Using
the intuitive physical interpretation of the adiabatic-impulse
model, it can be concluded that pair production in graphene,
in the adiabatic regime, occurs by a sequence of adiabatic
evolutions followed by nonadiabatic transitions arising when
the energy gap is minimal. The interference pattern appears
after one cycle, as seen in Fig. 4, because the lower and
upper energy states accumulate different phases. Then, these
energy states are coherently recombined at each nonadiabatic
transition, resulting in quantum interference patterns for n > 1.
When they interfere constructively (destructively), the result
is a maxima (minima) in the electron momentum density.
This makes for a realization of Landau-Zener-Stückelberg
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FIG. 3. Comparison between the full numerical approach (a) and
the adiabatic-impulse model (b) for the calculation of the electron
momentum density. The electric field considered is linearly polarized
in the x coordinate and has a field strength of E0 = 1.0 × 107 V/m,
a frequency of ν = 10.0 THz, and is applied for a half cycle.
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FIG. 4. Comparison between the full numerical approach (a) and
the adiabatic-impulse model (b) for the calculation of the electron
momentum density. The electric field considered is linearly polarized
in the x coordinate and has a field strength of E0 = 1.0 × 107 V/m,
a frequency of ν = 10.0 THz, and is applied for a full cycle.

interferometry (defined in Fig. 1) using quasiparticles in
graphene. A similar phenomenon was predicted to occur in
superconducting qubits using similar calculational tools as
presented in this paper [58], and this approach was later
confirmed experimentally [59]. In addition, LZSI was recently
used to describe the conduction current in graphene [60].

By comparing numerical results for the half cycle (Fig. 3)
with the adiabatic-impulse model, one can also explain the
directionality of the electron momentum density. The transi-
tion probability, given in Eq. (34), is exponentially suppressed
at higher transverse momenta, confirming that the transverse
momentum acts like a mass gap since P

(j )
S (p) has the same

form as the Schwinger probability in Eq. (3).

B. Long time limit: Floquet theory

The numerical results in the long time limit, after ten
cycles (n = 20), are displayed in Fig. 5(a). The electron
momentum density forms an intricate pattern where fast
oscillations are superimposed over slowly varying and ringlike
structures. The fast oscillations originate from the accumulated
adiabatic phase and quantum interference, as in the one cycle
case discussed in the last section. For n � 1, the system
goes through many nonadiabatic transitions and therefore,
there are several possible paths generating a transition from
negative to positive energy states. For each path, a different
phase is accumulated resulting in constructive and destructive
interferences. This produces fast oscillations in the electron
momentum density.

The other slowly-varying structures presented in Fig. 5(a)
can be explained in terms of multiphoton quantum interference
via Floquet theory. The Floquet treatment side-steps the need
for exhaustive time-dependent calculations, instead requiring
the diagonalization of the Floquet Hamiltonian, an infinite-
dimensional time-independent matrix. Starting from the Dirac
equation, Eq. (7), using the unitary transformation in Eq. (19)
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FIG. 5. (a) Numerical results for the electron momentum density
for an oscillating external field linearly polarized in the x coordinate,
with a field strength of E0 = 1.0 × 107 V/m and a frequency of
ν = 10.0 THz. The electron momentum density is calculated in
the long time limit, after ten cycles. An interference pattern can
be seen where an intricate peak and valley structure appears in the
electron momentum density. (b) Time-averaged transition probability
between field-free eigenstates |−〉 and |+〉 computed via Floquet
theory [Eq. (47)] for the same driving field.

and the vector potential in Eq. (38) for an even number of
cycles, one can write the graphene Hamiltonian as

HK±(t,p) = − 1
2 (εx + A cos ωt)σz − 1

2εyσx, (41)

where

εx := ∓2vF px − A, (42)

εy := ∓2vF py, (43)

A := ∓2vF eE0/ω. (44)

The Hamiltonian in Eq. (41) is of the generic form describing a
strongly, periodically driven two-level system: The transverse
momentum py plays the role of a coupling strength between
the two basis states [49,55]. Other quantum systems described
by this Hamiltonian include atoms in intense laser fields [49]
and superconducting qubits [59,61].

The Floquet theorem can be applied to Eq. (41) to obtain
a formally exact solution. The Floquet state nomenclature

introduced in Son et al. reads [61]

|αn〉 = |α〉 ⊗ |n〉, (45)

where α is the system index and n is the Fourier index.
Switching to Fourier space, the Floquet eigenvalue equation
reads ∑

β

∑
m

〈αn|HF |βm〉〈βm|ql〉 = ql〈αn|ql〉, (46)

where ql are the Floquet quasienergies, |ql〉 are the Floquet
eigenvectors, and HF is the Floquet Hamiltonian whose blocks
are obtained by taking the Fourier transform of Eq. (41).
Once this eigenvalue problem is solved numerically, the
time-averaged transition probability between the field-free
eigenstates |−〉 and |+〉 can be written as a sum of k-photon
transition probabilities [61]

P̄|−〉→|+〉 =
∑

k

∑
l

|〈+,k|ql〉〈ql | − ,0〉|2, (47)

where

| − ,k〉 = εx + |ε|
N |αk〉 + εy

N |βk〉, (48)

| + ,k〉 = − εy

N |αk〉 + εx + |ε|
N |βk〉, (49)

|ε| :=
√

ε2
x + ε2

y, (50)

N :=
√

(εx + |ε|)2 + ε2
y. (51)

In all numerical calculations presented in this section, the
Floquet Hamiltonian is truncated to 75 blocks, for a total matrix
size of 302 × 302. This ensures a numerically converged
solution.

In the small transverse momentum limit, i.e., ε2
y �

ε2
x,|Aω|, the field-free eigenstates reduce to those of σz and

a leading order perturbation treatment applied to the Floquet
Hamiltonian leads to the following analytic formula for the
transition probability [59,61]

P̄|−〉→|+〉 =
∑

k

1

2

[εyJk(A/ω)]2

[εyJk(A/ω)]2 + [kω − εx]2
, (52)

where Jk is the Bessel function of the first kind. In other terms,
the time-averaged transition probability can be expressed as the
superposition of Lorentzian k-photon resonances in the small
transverse momentum limit. This result can also be obtained
using the adiabatic impulse model in the fast-passage limit,
that is |Aω| � ε2

y [49].
The time-dependent electron momentum density after

several periods of the applied field and the time-averaged
transition probability [Eq. (47)] are in good agreement (see
Fig. 5). The appearance of multiphoton rings can be seen
on both results, and a similar number of cusps is obtained in
individual rings with both approaches. Consistent with Floquet
theory, the low-order multiphoton resonances are broadened
as the transverse momentum increases and they interact with
each other, forming an intricate structure in momentum space.
As described by Son et al., the nonmonotonical variation of the
resonances’ width can be directly related to the photoinduced
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FIG. 6. Comparison of the electron momentum density (EMD)
per spin per Dirac point calculated via the full numerical approach
after 50 cycles (top) and the transition probability computed via Flo-
quet theory (bottom), with py = 3.0 eV. The electric field considered
is linearly polarized in the x coordinate and has a field strength of
E0 = 1.0 × 107 V/m, a frequency of ν = 10.0 THz. A Gaussian filter
with a standard deviation of 0.15 eV may be applied to the EMD to
facilitate the comparison (middle). Dashed lines indicate the expected
location of multiphoton resonances, px − E0/ω = nω/2vF .

gap between Floquet quasienergies [61]. The overall time-
dependent momentum pattern is also symmetrical with respect
to px = eE0/ω � 47.7 eV (or εx = 0), which is a property of
the two-level Hamiltonian in Eq. (41).

The time-dependent and Floquet approach however differ
if one considers the fast momentum space oscillations in the
time-dependent momentum map [see Fig. 5(a)]. These fast
oscillations can be explained by the fact that the system only
passes through a finite number of Landau-Zener transitions in
the time-dependent picture, whereas in the Floquet approach
the field is assumed to be periodic and applied for an infinite
time. The exact resonance condition for the fast momentum
space oscillations (which are averaged out in the Floquet
picture) can not, in general, be determined analytically [49].
However, the oscillations are faster for a greater number of
cycles [compare for instance Figs. 4 and 5(a)]. They are also
faster for small values of py , since the Stokes phase associated
with every Landau-Zener transition, Eq. (32), is accordingly
smaller. This smaller Stokes phase implies that the resonant
values of px are more closely spaced with decreasing py .

A more thorough comparison between time-dependent
results and Floquet theory can be made for a fixed value
of py = 3.0 eV (Fig. 6). The agreement is more apparent
when filtering out the fast momentum space oscillations
of the electron momentum density (Fig. 6, middle panel).
Both the time-dependent electron momentum density and the
time-independent result exhibit multiphoton peaks located at
px − eE0/ω � nω/2vF with n an integer, consistent with the
small py result [Eq. (52)]. The width of the multiphoton peaks
is also well reproduced by the Floquet treatment.

The time-dependent and Floquet approach can be further
compared for larger values of the transverse momentum py ,
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FIG. 7. Comparison of the electron momentum density (EMD)
per spin per Dirac point calculated via the full numerical approach
after 50 cycles (top) and the transition probability computed via
Floquet theory (bottom), with py = 12.0 eV. The applied field
parameters are the same as in Fig. 6. A Gaussian filter with a standard
deviation of 0.6 eV may be applied to the EMD to facilitate the
comparison (middle). Dashed lines indicate the expected location of
multiphoton resonances, px − E0/ω = nω/2vF .

but in this case the agreement is less good (see Fig. 7 for
py = 12.0 eV). The pair production peaks can no longer be
explained in terms of a superposition of Lorentzian shaped
resonances, since the condition |Aω| � ε2

y is no longer
satisfied. However, the shifts of the time-dependent peaks as
the transverse momentum increases are qualitatively predicted
by the numerical Floquet treatment.

The resonance shift at larger transverse momenta corre-
sponds to the ac Stark effect in atomic and molecular physics.
As described by Son et al., the magnitude of the ac Stark effect
increases with the ratio εy/εx [61]. In other words, lower order
multiphoton “rings” experience a stronger Stark shift, as can
be seen in Fig. 5. This explains the elliptic shape of the lower
order resonance patterns, whereas higher order rings (k � 10)
are more circular in shape, consistent with previously obtained
results for stronger fields [27].

C. Relation to second order phase transitions

The Kibble-Zurek mechanism (KZM) gives a qualitative
explanation of nonequilibrium processes occurring in second
order phase transitions induced by a linear quench and has ap-
plications in cosmological and condensed matter systems [62–
66]. In particular, it predicts the density of topological defects
formation after the phase transition has taken place. In this
setting, the physical system is initially, at t → −∞, in a
high-symmetric phase. Then, the quench drives the system
across the critical point at t = 0 and continues to t → ∞.
Far from the critical point, the equilibrium relaxation time τ ,
which characterizes how fast a system returns to equilibrium
when thermodynamic conditions are modified, is short, leading
to adiabatic dynamics. Close to the critical point however,
τ diverges: the equilibrium time is then much longer than
other characteristic time scales and thus, the system is frozen.
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This approximate description, where adiabatic evolution is
followed by frozen dynamics and adiabatic evolution again, is
reminiscent of Landau-Zener transitions in two-level systems
discussed in Sec. III. This analogy was first noted by
Damski [52,67] and was put on firm basis for the Ising
model [68]. This was used to simulate the KZM using an
optical interferometer [69] and superconducting qubits [70].
In the adiabatic limit considered in this paper, graphene can
also be used as a “nonequilibrium physics simulator” owing
to the description of quasiparticles in terms of Landau-Zener
transitions.

This connection can be made explicit by following the
discussion given in Ref. [67]. First, the relaxation time is
related to the inverse of the gap as

τ (t) := 1

�(t)
= 1

vF

√
[eEx(tj )t]2 + p2

y

, (53)

close to the j th nonadiabatic transition. Using this definition in
the quantum setting for graphene, the relaxation time is large
in the vicinity of nonadiabatic transitions where the system is
effectively frozen, analogously to the thermodynamic setting.
Zurek’s equation then reads [67]

τ (t̂) = ξ t̂, (54)

where ξ = π/2 [52] and t̂ is the freeze-out time that determines
when the system switches from an adiabatic to a nonadiabatic
evolution. In other words, for t ∈ [tj − t̂ ,tj + t̂] for j =
1, . . . ,n, the dynamics is nonadiabatic while for every other
times, it is adiabatic.

A solution to Eq. (54) can be found and is given by

t̂j = τ
(j )
Q√
2

√√√√√
√√√√1 + 4τ 2

0

ξ 2
(
τ

(j )
Q

)2 − 1, (55)

where

τ0 := 1

vF |py | , τ
(j )
Q := |py |

eEx(tj )
. (56)

Here, τ0 is a constant that characterizes the relaxation time
and τ

(j )
Q is the quench time scale. The freeze-out time can be

computed for the electric field considered in Sec. IV A (a),
for one half cycle. The numerical result is displayed in Fig. 8
where the normalized freeze-out time is given for all momenta
px considered for the adiabatic-impulse model calculations in
Sec. IV A. Close to px ≈ 0.0 and px ≈ −95.4 eV, the freeze-
out time becomes large, of the same order as the half period.
This also explains the discrepancy between exact numerical
results and the ones obtained from the adiabatic-impulse
model: close to px ≈ 0.0 and px ≈ −95.4 eV, the freeze-out
or nonadiabatic behavior lasts for almost all the half cycle.
Therefore, the dynamics does not proceed by a sequence of
adiabatic evolution and nonadiabatic transitions, as assumed
in the adiabatic-impulse model. Rather, it is always in the
nonadiabatic regime, resulting in less accurate results.

Once the time scales relating thermodynamic systems
to graphene are defined, as given in Eqs. (53)–(56), it is
possible to interpret the electron momentum density as the
density of topological defects. Using scaling laws, it has been
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FIG. 8. Numerical results for the normalized freeze-out time
t̂/T1/2, where T1/2 is a half period of an oscillating external field
linearly polarized in the x coordinate, with a field strength of
E0 = 1.0 × 107 V/m and a frequency of ν = 10.0 THz.

demonstrated that the density of topological defects for a
quenched quantum Ising model scales like [71]

〈ntopo〉 ∼
√

τ0

τQ

, (57)

where here, τQ is the quench time of the Ising model,
analogously to Eq. (56). In graphene, the same scaling can be
found by looking at the electron momentum density obtained
after one nonadiabatic transition, given in Eq. (35). Integrating
the latter on the transverse momentum py and assuming
px ∈ [−eAx,in,0], we get

d〈ñs,a〉
dpx

∣∣∣∣
px∈[−eAx,in,0]

=
√

eEx(tj )

vF p2
y

=
√

τ0

τ
(j )
Q

. (58)

This result for the electron momentum density at a given
px is consistent with the scaling of defects in the Ising
model, Eq. (57), confirming the analogy between the adiabatic
dynamics of quasiparticles in graphene and topological defect
production in second order phase transitions. A similar result
was found in Ref. [23].

V. CONCLUSION

In this paper, the electron momentum density in graphene
created by an external classical electric field was computed
using numerical methods combined with techniques borrowed
from strong field QED. Several time dependences of the
applied field have been studied in the tunneling/Schwinger
regime where γ � 1. It was demonstrated that when the
system is driven periodically, nonadiabatic transitions occur
when the adiabatic mass gap is minimal, resulting in a
quantum interference pattern in the pair momentum density,
reminiscent of Landau-Zener-Stückelberg interferometry. This
interpretation was confirmed by using the adiabatic-impulse
model, which corrects the full adiabatic evolution by adding
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nonadiabatic transitions when the adiabatic mass gap is
minimal.

In this adiabatic limit, the production of electron-hole pairs
in graphene is analogous to the generation of topological
defects in quenched second order transitions. Using estimates
obtained from the analysis of the quenched quantum Ising
model, it was possible to evaluate the graphene analog
to the freeze-out time. Using this freeze-out time, it was
possible to explain the discrepancy between exact numerical
results and the ones obtained from the adiabatic-impulse
model: in some momentum regions, t̂ is of the same order of
magnitude as the half period, meaning that the system is never
adiabatic, contrary to the assumption in the adiabatic-impulse
model. Finally, comparing again to results obtained for the
Ising model, it was demonstrated that the defect density is
analogous to the electron momentum density in graphene
at fixed px . Therefore, Schwinger-like pair production in
graphene could be used as a simulator for the Kibble-Zurek
mechanism, in the same spirit as some recent experimental
investigations using superconducting qubit systems [70].

In the long time limit, the system goes through many
avoided crossings. As a consequence, an intricate interference
pattern appears in the pair momentum density. Its time-
averaged features can be understood in the low transverse
momentum limit by introducing the Floquet formalism. In par-
ticular, in the limit of a large number of cycles, the electron mo-
mentum density exhibits multiphoton rings which are formed
by the sequential nonadiabatic transitions. Clearly, the rings
appear for momenta where constructive interference occurs.
Destructive interference, on the other hand, is associated with
the phenomenon of coherent destruction of tunneling [49,72].

It is interesting to see the appearance of multiphoton rings
in the long time limit as these are usually understood as a
signature of the multiphoton regime where γ � 1 [27]. Our
study shows that multiphoton rings are also present in the tun-
neling regime as a result of quantum interference. Therefore, it
is possible that γ characterizes how rapidly multiphoton rings
come into existence. This will be investigated further in other
studies.
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APPENDIX: CROSSING OF RESONANCES
AND MINIMAL GAP

The complex times when there is a crossing of the adiabatic
energies are solutions of

E2
p(�t∗) = v2

F [px + eA0 + eA(�t∗)] + v2
F p2

y = 0, (A1)

where � is the typical time scale of the vector potential. Of
course, because the time t∗ is complex, the vector potential is
a complex-valued function A(t∗) ∈ C. Splitting the real and
imaginary parts as A(t∗) = AR(t∗) + iAI(t∗), we obtain two
equations:

[px + eA0 + eAR(�t∗)]AI(�t∗) = 0, (A2)

[px + eA0 + eAR(�t∗)]2 − e2A2
I (�t∗) + p2

y = 0. (A3)

For the following, it is convenient to express the complex
time as t∗ = tR + itI. Then, as demonstrated in Eq. (23), the
minimal gap occurs when the condition

px + eA0 + eAR(�tR) = 0, (A4)

is fulfilled. Here, we assume that the imaginary part is small
such that �tI � 1, allowing for an expansion of the vector
potential as

AI(�t∗) = AI(�tR) + tI
[
∂tIAI(�t∗)

]
tI=0 + O

(
�2t2

I

)
, (A5)

= tI
[
∂tRAR(t∗)

]
tI=0, (A6)

= −tIEx(tR), (A7)

where the second equation is obtained from the Cauchy-
Riemann equations and from the fact that AI(�tR) = 0. A
similar argument can be performed for AR and it can be shown
that

AR(�t∗) = AR(�tR) + O
(
�2t2

I

)
, (A8)

using the fact that Im[Ex(�tR)] = 0. Reporting the result of
Eqs. (A7) and (A8) into Eqs. (A2) and (A3), along with the
minimal gap condition [Eq. (A4)], we get the solution

tI = |py |
e|Ex(�tR)| + O

(
�2t2

I

)
. (A9)

Then, the condition to expand the vector potential becomes

�tI = �|py |
e|Ex(�tR)| = γ � 1, (A10)

consistent with the tunneling regime given in Eq. (4). Finally,
tI is related to the transition probability [49] and it can be
shown that it yields the parameter δj defined in Eq. (33). As
a consequence, nonadiabatic transitions really occur when the
gap is minimal, up to corrections O(γ 2). This also confirms
the validity of the adiabatic-impulse approach in this regime.
However, there are some parameters where the reasoning
presented in this Appendix does not hold, in particular when
the gap is not minimized by the condition Eq. (A4) but rather,
by Ex(t) = 0 [see Eq. (24)]. In this case, the crossing of
adiabatic energies and the minimum gap occur at different
times. Then, other more sophisticated techniques have to be
employed [37,41,57].
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