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Helical gaps in interacting Rashba wires at low electron densities
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Rashba spin-orbit coupling and a magnetic field perpendicular to the Rashba axis have been predicted to open
a partial gap (“helical gap”) in the energy spectrum of noninteracting or weakly interacting one-dimensional
quantum wires. By comparing kinetic energy and Coulomb energy we show that this gap opening typically
occurs at low electron densities where the Coulomb energy dominates. To address this strongly correlated limit,
we investigate Rashba wires using Wigner crystal theory. We find that the helical gap exists even in the limit
of strong interactions but its dependence on electron density differs significantly from the weakly interacting
case. In particular, we find that the critical magnetic field for opening the gap becomes an oscillatory function of
electron density. This changes strongly the expected signature of the helical gap in conductance measurements.
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I. INTRODUCTION

The past years have brought a rapid growth of interest
in quantum wires with Rashba spin-orbit coupling (RSOC).
Much of this activity results from the discovery that, if sub-
jected to the proximity effect of a nearby superconductor and
a magnetic field, such wires can host Majorana bound states
at their ends [1,2]. Experimental signatures of these elusive
quantum states have already been found in indium arsenide
(InAs) or indium antimonide (InSb) quantum wires [3–7].

While many of the expected properties of Majorana bound
states have been verified, ruling out all possible alternative
explanations still requires a better understanding of the wires
used in experiments. Therefore, more experimental effort
has recently been devoted to the investigation of normal-
conducting Rashba wires and in particular to the character-
ization of their RSOC itself [8–11]. A rather straightforward
experimental signature of RSOC would be a “helical gap,” i.e.,
the opening of a partial gap in the energy spectrum of a Rashba
wire in response to an applied magnetic field perpendicular to
the Rashba axis; see Fig. 1. Indications of such a gap have al-
ready been found in another material [12], and experimental ef-
forts in InAs and InSb quantum wires are currently under way.

In its simplest form, the helical gap can be understood
based on a single-particle theory. It is evident, however, that
this gap appears near the band bottom and thus at low electron
densities ρ ≈ (π�so)−1, where �so is the spin-orbit length. Not
only does this present a major challenge for experimentalists,
it also renders the theoretical description in the presence
of electron-electron interactions more complicated. A direct
comparison shows that at the required electron densities the
Coulomb energy actually exceeds the kinetic energy of the
electrons. In this case, the energy range accessible to Luttinger
liquid (LL) theory is exponentially suppressed as a function
of density [13,14]. For electrons without spin-orbit coupling,
this limit was reviewed in detail recently in the context of
spin-incoherent LLs [15].

The low-density limit mandates a theoretical descrip-
tion in terms of a one-dimensional (1D) Wigner crystal
[16–18]. This approach has advanced considerably over the
past decade [13,19–23], and experiments have already shown
signs of Wigner crystal phases in quantum wires [24–27] and
carbon nanotubes [28].

To study the helical gap, we extend the theory of 1D Wigner
crystals to systems with RSOC. We start with a short discussion
of the noninteracting case, followed by an estimate of the
Coulomb energy. Next, we derive the effective Hamiltonian
governing the charge and spin sectors of the Rashba wire at
low densities. We find that the spin Hamiltonian has a spectral
gap for magnetic fields above a critical field Bcrit(ρ) which
depends in a nontrivial way on the electron density ρ. Finally,
we calculate the differential conductance of the interacting
quantum wire which is the most accessible experimental probe
of the helical gap.

II. MODEL

We start by considering a single electron with band mass
m moving in a one-dimensional wire along the z direction. In
the presence of RSOC with strength αR , and a magnetic field
perpendicular to the wire in the x direction, the single-particle
Hamiltonian and its spectrum read [1,2] (using � = 1)

H1 = p2

2m
− αRpσ z − gμB

�B · �S, (1)

ε±(k) = k2

2m
±
√

(gμBB/2)2 + α2
Rk2, (2)

where p is the momentum operator, and the electron spin
is given by �S = �σ/2 where �σ = (σx,σ y,σ z) is the vector of
Pauli matrices. The magnetic field �B = (B,0,0), where we
assume B > 0, gives rise to the Zeeman energy gμBB which
depends on the g factor and the Bohr magneton μB . The
appearance of the helical gap is an immediate consequence of
the spectrum (2), which is shown in Fig. 1. For small magnetic
fields (gμBB < mα2

R) the spectrum develops a local maximum
and a gap of width gμBB at k = 0, whereas the outer modes
remain largely unaffected.

To connect to later results for the interacting case, we
rephrase the condition for a helical gap in terms of the
electron density ρ. At zero magnetic field, the spectrum
consists of two shifted parabolas and the chemical potential
can be written as a function of the electron density as
μ(ρ) = (πρ)2/(8m) − mα2

R/2. We define the critical field Bcrit

as the minimum magnetic field needed to gap out the modes at
a given chemical potential μ. Hence, we find gμBBcrit = |μ|,
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FIG. 1. Single-particle spectra ε±(k) for a weak magnetic field
(gμBB < mα2

R). The color coding shows the spin orientation as a
function of momentum. The corresponding density axis is shown on
the right, and values of Bcrit(ρ) for two densities are indicated.

which expressed in terms of electron density reads

gμBBcrit(ρ) = EF

∣∣∣∣1 −
(ϕ

π

)2
∣∣∣∣, ϕ = 1

ρ�so
, (3)

where we defined the Fermi energy EF = (πρ)2/(8m) and the
spin-orbit length �so = (2mαR)−1. Therefore, at the critical
density ρ = (π�so)−1 (corresponding to μ = 0), an infinites-
imal magnetic field opens the helical gap. Away from this
density, a finite magnetic field Bcrit ∝ |ϕ − π | is needed. The
size of the gap as a function of the deviation from the critical
field, δB = B − Bcrit, is given by


(ρ,B) = gμBδB. (4)

The simplest experimental signature of the helical gap is a dip
in the zero-bias conductance as a function of electron density.
At zero temperature, it is given by

G(ρ,B) = 2G0 − G0�[B − Bcrit(ρ)], (5)

where �(x) denotes the Heaviside function and G0 = e2/h

is the conductance quantum. At a given electron density, the
dip in the conductance remains visible up to temperatures
T ≈ 
(ρ,B) [29]. The case of weak interactions can be
approached using bosonization [30–35], which predicts a
renormalization of system parameters but does not change
the structure of the helical gap qualitatively. A comparison of
our results to bosonization results is shown in Appendix C.

Experimental estimates for the spin-orbit lengths are in the
range of �so ≈ 200 nm [3,36], so observing the helical gap
requires rather low densities ρ ≈ (π�so)−1. Such low electron
densities increase the effect of the Coulomb potential V (z) =
e2/(ε|z|), where ε is the dielectric constant and e the electron
charge. This is a peculiar consequence of Fermi statistics,
which entails that the kinetic energy per particle scales as
Ekin ∝ ρ2, while the Coulomb energy per particle scales as
Epot ∝ ρ. More precisely, the Coulomb energy dominates
for densities ρaB � 1, where aB = 4πε/(me2) is the Bohr
radius. The bare Coulomb repulsion is usually screened at
large distances. If screening is due to a gate at a distance d

from the wire, the potential reads V (z) = (e2/ε)(|z|−1 − |z2 +

4d2|−1/2) and the Coulomb energy dominates if [13,19,20],

aB � 1

ρ
� d2

aB

. (6)

Equation (6) specifies the density range where the results we
derive below are applicable. For InSb (ε ≈ 17, m ≈ 0.015me;
see Ref. [3]), one finds aB ≈ 60 nm; for InAs (ε ≈ 15,
m ≈ 0.033me; see Ref. [36]), the Bohr radius is aB ≈ 25 nm.
Screening is discussed in more detail in Appendix D, and
we show there that metallic gates comparable in size to the
nanowire are insufficient for screening. The most important
contribution to screening is thus provided by a macroscopic
gate. Wigner crystal formation in carbon nanotubes has
been observed for a gate distance on the order of d ≈ 600
nm [28]. A similar gate distance in a Rashba nanowire would
lead to d2/aB ≈ 104 nm. Hence, near the critical electron
density ρ−1 ≈ π�so ≈ 600 nm required for the observation of
the helical gap, inequality (6) is fulfilled and the Coulomb
repulsion indeed dominates over the kinetic energy. We
therefore develop a theoretical model of the helical gap taking
into account the strong effect of the Coulomb repulsion.

We would like to point out that most investigations on
Rashba wires have so far focused on Majorana wires, where
a nearby superconductor screens the Coulomb interaction. In
that case, the interactions can be modeled using bosonization
and have much weaker effects. In contrast, this article focuses
on bare wires where screening is less efficient. In this case,
the fact that d � aB opens a large density window (6) for the
Wigner crystal formation.

III. WIGNER CRYSTAL THEORY

To develop a 1D Wigner crystal theory for systems with
RSOC, we start by considering a system of N electrons, each
of which is described by the Hamiltonian (1), and add the
interaction term V (zm − zn), where zn denotes the position of
the nth particle. Moreover, it is convenient to perform a unitary
transformation U = ∏

n exp (2imαRznS
z
n) on Eq. (1) to gauge

away the Rashba term at the expense of turning the constant
magnetic field into a spiral magnetic field in the spin-x-y plane.
Importantly, this transformation commutes with the interaction
Hamiltonian. Hence, the transformed Hamiltonian reads (see
Appendix A)

H =
N∑

n=1

⎡
⎣ p2

n

2m
− gμBB

⎛
⎝ cos(2mαRzn)

− sin(2mαRzn)
0

⎞
⎠ · �Sn

⎤
⎦

+
N∑

n<m

V (zm − zn). (7)

For B = 0, the low-density limit of this Hamiltonian was
studied in Refs. [19]. Strong repulsions favor a crystalline
alignment of the electrons near lattice position zn ≈ an,
where a = 1/ρ is the lattice spacing. Including the kinetic
energy allows fluctuations about these lattice positions and
gives rise to a single branch of acoustic phonons with wave
vector k ∈ [−πρ,πρ]. The charge sector of the system can be
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described by the Hamiltonian

Hc =
∑

k

ω(k)a†
kak, (8)

where ak are bosonic operators. For unscreened Coulomb
repulsion, the phonon dispersion ω(k) has a logarithmic
singularity at k = 0. If screening by a metallic gate at a
distance d from the wire is taken into account, the phonon
spectrum near k = 0 becomes linear, ω(k) ∝ vck, with a
sound velocity vc = [2e2ρ log(8ρd)/(εm)]1/2 [17]. Denoting
by vF = πρ/(2m) the Fermi velocity of the noninteracting
electron system, the low-energy continuum limit of Eq. (8) is
a LL with Luttinger parameter Kc = vF /vc � 1.

To lowest order, the Coulomb repulsion does not affect the
spin sector, thus leaving a 2N -fold spin degeneracy. The latter is
lifted, however, by virtual spin exchange between neighboring
lattice sites. Taking this into account, one finds that in the
absence of magnetic field, the spins are described by an
antiferromagnetic XXX Heisenberg chain [19], in accordance
with the Lieb-Mattis theorem [37]. Including the magnetic
field, we obtain the spin Hamiltonian,

Hs = J (ρ)
N−1∑
n=1

�Sn · �Sn+1 − gμB

N∑
n=1

�Bn · �Sn, (9)

with exchange constant J (ρ) ≈ EF exp(−η/
√

ρaB ) � EF

and η ≈ 2.8 [13,38]. In addition to the antiferromagnetic
exchange term, the Hamiltonian contains a spiral magnetic
field �Bn = B[cos(ϕn), sin(ϕn),0], where ϕ is defined in Eq. (3)
and symmetry allows us to restrict our analysis to ϕ ∈ [0,π ].
For B = 0, the spectrum is gapless and a low-energy limit leads
back to a LL Hamiltonian for the spin sector at temperatures
T � J [15]. In contrast, the Wigner crystal remains stable
up to much higher temperatures J � T � EF . We note that,
due to the dependence of J on ρ, the Wigner crystal picture
naturally gives rise to the spin-charge coupling expected when
going beyond the linear-spectrum approximation of Luttinger
theory [14,39,40].

The helical gap shows up as an opening of the spectral gap
in the spin Hamiltonian (9) above a critical magnetic field.
Before discussing the phase diagram of the Hamiltonian Hs ,
let us discuss some simple limits. On the one hand, for large
densities (ϕ � 1) the magnetic field is essentially constant.
In that case, Hs describes a Heisenberg XXZ model, whose
phase diagram is well known: the system remains gapless up to
a critical magnetic field Bcrit = 2J (ρ). For larger fields, a gap
opens and the spins order ferromagnetically along the applied
field.

On the other hand, for ϕ = π , corresponding to the
critical density ρ = (π�so)−1, the magnetic field is precisely
staggered: Bx

n = (−1)nB. This type of Heisenberg model was
investigated using bosonization, and it was found that it is
quantum critical. For B = 0, the spectrum is gapless, whereas
a finite B opens a gap of order 
/J ∝ (B/J )2/3 [41]. Hence,
at the critical density, an infinitesimal field is sufficient to open
the helical gap.

To investigate the full crossover between the limits of
constant (ϕ = 0) and staggered (ϕ = π ) magnetic fields, we
solve the Hamiltonian (9) numerically via a density-matrix
renormalization group (DMRG) analysis using the ALPS

0
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2

3

4

/21

0 0

FIG. 2. Helical gap 
 as a function of magnetic field B and
inverse electron density ϕ = 1/(ρ�so). The surface plot and the green
(bright) lines denote the numerical results obtained using DMRG
analysis. The red line shows the critical magnetic field Bcrit(ρ); see
Eq. (10).

package [42,43]. The results for the spectral gap as a function
of magnetic field for different values of ϕ are shown in
Fig. 2. Comparing different system lengths (from N = 64 up to
N = 256) to mitigate finite-size effects, we find by fitting the
numerical results that the critical magnetic field as a function
of electron density reads

gμBBcrit(ρ) = J (ρ)[cos (ϕ) + 1], ϕ = 1

ρ�so
. (10)

This equation is the central result of this article. It predicts
that the critical magnetic field to open a helical gap at a given
electron density is actually an oscillatory function of density,
in stark contrast to the noninteracting result (3) and results
based on Luttinger liquid theory. A comparison between
interacting and noninteracting results is shown in Fig. 3. The
figure also illustrates that the helical gap can be regarded as a
commensurability effect between the pitch of the effective
spiral magnetic field and the density. We now discuss the
implications of this result and compare it to existing results.

The expression (10) for the critical field can be reproduced
using spin-wave theory. Despite being a large-S expansion,
this semiclassical approximation is known to often yield
qualitatively correct results even for S = 1/2 Heisenberg
chains [44]. As we show in Appendix B, in addition to Eq. (10),
spin-wave theory predicts the following scaling of the helical
gap for B = Bcrit + δB:


(ρ,B) = gμB

√
δB
√

δB + J [1 − cos(ϕ)]. (11)

Hence, we find the expected linear gap opening 
 ∝ δB for
ϕ � 1, similarly to the noninteracting limit in Eq. (4). On
the other hand, for δB � J [1 − cos(ϕ)], spin-wave theory
predicts that the gap opens with a square-root cusp, 
 ∝ δBγ

with γ = 1/2. The fact that 
(δB) changes from linear to
power-law behavior as ϕ is increased agrees well with our
DMRG results. However, the true exponent of the power law
differs from the spin-wave theory prediction. Indeed, from our
numerical simulation we find γ ≈ 0.66 at ϕ = π , in agreement
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FIG. 3. Critical magnetic field Bcrit as a function of density ρ for
the noninteracting (red line) and the interacting (blue line) cases.
In the noninteracting case, Bcrit = 0 only at the critical density
πρ = 1/�so. In the interacting case, in contrast, we find Bcrit = 0
whenever the particle density is commensurate with the pitch of the
effective spiral magnetic field. Examples for commensurate densities
are shown in the right-hand panel, where the dots denote the electron
positions and the spiral indicates the effective magnetic field; see
Eq. (7).

with the bosonization result 
 ∝ δB2/3 for the Heisenberg
chain in a staggered magnetic field [41].

IV. DIFFERENTIAL CONDUCTANCE

A possible way to observe the helical gap which is currently
being explored in experiments [8,10,11] is to study the
zero-bias conductance of Rashba wires as the electron density
is lowered. Therefore, let us briefly discuss this quantity in
the low-density regime. Calculating the conductance of an
interacting quantum wire is a nontrivial problem because
of the importance of the contacts [45–47]. In the case of
Rashba wires, it is known in particular that the contact profile
can modify the amplitude of the conductance step [48].
In the Wigner crystal regime, the conductance of a wire
with noninteracting contacts can be derived by studying the
dissipated heat when the system is subject to an ac drive
current I (t) = I0 cos(ωt) [19], and taking the limit ω → 0.
The method was reviewed in detail in Ref. [13]. Adapting it
to our system, we find that at low temperatures T � J,
, the
conductance is given by Eq. (5) with the modified critical field
Bcrit(ρ) in Eq. (10), which is now an oscillatory function of ρ.
Hence, at the critical density ρ = (π�so)−1, the conductance
reaches the value G0 and increases towards 2G0 in its vicinity.
However, as shown in Fig. 3 a reduced conductance G0 is
reached again at lower densities ρ � (π�so)−1, whenever the
electron density is commensurate with the spin-orbit length. A
schematic plot of the conductance as a function of density is
shown in Fig. 4. For low densities (at fixed aB), Bcrit → 0,
so the conductance is reduced to G = G0 for any finite
magnetic field. This is in stark contrast to the behavior for
noninteracting or weakly interacting systems [see Eq. (3)],

(a)

(b)

FIG. 4. Schematic plots of the conductance G(ρ) for different
values of B. For clarity, the lines for larger magnetic fields have been
shifted downwards. In the interacting case (a), the conductance drops
whenever the Wigner lattice is commensurate with the Rashba length.
Moreover, the conductance saturates at G0 towards low densities
because J (ρ) → 0, in stark contrast to the noninteracting case (b).

where gμBBcrit = mα2
R/2 for ρ → 0, so G(ρ → 0,B) = 2G0

for weak magnetic fields B < Bcrit.
Disorder is always an important concern in one dimension,

both from the point of view of Luttinger liquids where it is
renormalization-group relevant for repulsive interactions, and
in the Wigner crystal where it can drive a Peierls instability. In
this respect, it is encouraging to note that recent experiments
have managed to realize good contacts [10], suspended
wires [9], and ballistic transport with a mean free path of
several micrometers in InSb nanowires [11]. We therefore
expect our predictions to be observable in these state-of-the-art
wires.

V. CONCLUSIONS

To conclude, we have shown that at the low electron
densities ρ needed to see the helical gap in experiments on
Rashba wires, Coulomb repulsion dominates over the kinetic
energy of electrons. To access this regime, we developed a
Wigner crystal theory for 1D systems with RSOC. Within
this theory, the helical gap arises in the spin sector as a
consequence of commensurability between the Wigner lattice
spacing 1/ρ and the Rashba length �so. We studied the critical
magnetic field for the opening of a helical gap as a function
of the electron density. We found that, in contrast to the
noninteracting or weakly interacting cases, the critical field
is an oscillatory function of density, with strong implications
for conductance measurements. Hence, the effect of strong
Coulomb interactions needs to be taken into account when
looking for experimental signatures of the helical gap in
Rashba wires.
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APPENDIX A: HAMILTONIAN WITH RASHBA SOC

1. Background

Let us briefly discuss the theoretical approaches taken so
far to describe Rashba wires with interactions.

In the case of weak interactions, it is possible to start
with the single-particle spectrum of the free fermions (see
Fig. 1 of the main text), linearize it near the Fermi points,
and use bosonization to account for the interactions [30–35].
Without magnetic field, this results in Luttinger Hamiltonians
describing the charge and spin sectors. In this language, a
magnetic field generates a sine-Gordon term, and a perturba-
tive renormalization group (RG) analysis allows an estimate
of the helical gap, which was shown to open for arbitrary
repulsive interactions, and increases in magnitude for stronger
interactions.

Parts of this approach continue to work for strong inter-
actions (or low densities). Without magnetic field, a linear
Rashba term ∝ αRpσ z can simply be gauged away and the
Hamiltonian becomes identical to that of SU(2) invariant
spinful fermions. In that case, the spectrum in both charge
sector and spin sector remains gapless for arbitrarily strong
repulsive interactions. The charge sector is then a Luttinger
liquid with Luttinger parameter Kc � 1 and sound velocity
vc � vF , vF being the Fermi velocity of the noninteracting
particles. The parameters of the spin sector are vs � vF and
Ks = 1 due to SU(2) invariance [49]. Luttinger theory in the
two sectors remains valid up to energies Ec,s ∼ vc,sρ, where
ρ is the electron density [13]. A magnetic field can again
be added to the system as a perturbation. One finds again a
helical gap, but this approach is limited to small magnetic
fields gμBB � Es � Ec.

Hence, in the limit of strong interactions, the Luttinger
liquid approach suffers from certain shortcomings. First, lin-
earizing the free particle spectrum is not a good starting point
for strong interactions. Second, the energy range accessible
to LL theory tends to zero for strong interactions [19], a
circumstance which has been discussed in detail in the context
of spin-incoherent LLs [15]. In our strongly interacting system
this means that while LL theory remains correct in the limit
of zero energies, it cannot give correct predictions at the
interesting magnetic field strengths. Finally, the RG arguments
leading to the gap scaling equations are perturbative and valid
only for small magnetic fields.

2. Wigner crystal theory

To extend the existing approaches for the conductance
of Rashba wires [29,33,34] towards strong interactions, we
build on successful efforts over the past decades to develop
a consistent theory for interacting electrons in one dimension
at low densities, which is referred to as a 1D Wigner crystal
theory [13,16–19]. Clearly, the concept of a Wigner crystal in
one dimension has to be taken with a pinch of salt, because the
Mermin-Wagner theorem rules out a spontaneous breaking
of the translation symmetry in the thermodynamic limit.
Moreover, long-range crystalline order is evidently unstable

against quantum fluctuations in one dimension. These issues
were discussed in detail in a recent review [13].

In the limit of low energies, Wigner crystal predictions
agree with LL theory [49]. In particular, long-range cor-
relations decay as power laws with interaction-dependent
exponents [18]. However, its advantages over LL theory are
twofold: first, at low densities its energy range of validity
is much larger than that of LL theory [19], and second, it
often allows a quantitative estimate of the parameters [19],
whereas the parameters entering the LL Hamiltonian, i.e.,
the Luttinger parameter and the sound velocity, are usually
phenomenological at strong interactions [49].

We consider the following Hamiltonian which describes
N spinful electrons with quadratic spectrum subject to Rashba
spin-orbit coupling, a magnetic field perpendicular to the spin-
orbit axis, and interactions:

H =
N∑

n=1

[
p2

n

2m
− αRpnσ

z
n

]
+ 1

2

∑
m�=n

V (zm − zn)

− gμBB

2

N∑
n=1

σx
n . (A1)

Here, pn and zn are the momentum and position operators
of the nth particle, αR denotes the strength of the spin-orbit
coupling, and σx,z

n denotes Pauli matrices corresponding to
the particle n. First, it is convenient to remove the spin-orbit
coupling by a unitary transformation. Using the action of
the translation operator eizp0pe−izp0 = p − p0, we shift the
momentum of particle n by mαRσz

n ,

U = exp

{
i
∑

n

mαRznσ
z
n

}
. (A2)

Under this transformation, the Hamiltonian becomes

H̃ = UHU †

=
N∑

n=1

p2
n

2m
+ 1

2

∑
m�=n

V (zm − zn) − Nεso

− gμBB

2

N∑
n=1

[
cos(2mαRzn)σx

n − sin(2mαRzn)σy
n

]
(A3)

where εso = mα2
R/2.

3. Charge Hamiltonian

Let us first review the case B = 0. In that case, the
transformed Hamiltonian H̃c := H̃ (B = 0) is independent of
Rashba spin-orbit coupling, so we just reproduce the known
results for a Wigner lattice here [19]. If the electron density is
sufficiently small, the potential energy will dominate over the
kinetic energy term. A Wigner lattice will then form [16,18],
where the electrons are localized approximately at positions
zn ≈ nL/N = an. Here, L denotes the length of the system
and a = 1/ρ = L/N is the lattice spacing. In that limit, we
can introduce the small displacement operator,

z′
n := zn − an � a, (A4)

125420-5



THOMAS L. SCHMIDT AND CHRISTOPHER J. PEDDER PHYSICAL REVIEW B 94, 125420 (2016)

which is canonically conjugate to pn. Expanding to second
order in the displacement, we find

H̃c ≈
N∑

n=1

p2
n

2m
+ 1

4

N∑
n=1

∑
j �=0

V ′′(aj )(z′
n+j − z′

n)2 − Nεso,

(A5)

where we used V ′(am − an) = 0 which holds because the
equilibrium positions of the particles minimize the potential
energy. The summation over j is over N − 1 values. We can
assume periodic boundary conditions, i.e., pn = pN+n and
z′
n = z′

n+N , to simplify that sum to
∑N−1

j=1 . The Hamiltonian
can now easily be diagonalized by Fourier transformation. We
introduce the normal modes

�k = 1√
N

N∑
n=1

e−ikanpn, Qk = 1√
N

N∑
n=1

eikanz′
n, (A6)

where k = 2πm/L runs over N momenta in the first Brillouin
zone. These operators satisfy the canonical commutation
relations [�k,Qk′] = −iδkk′ . It is easy to show that this
transforms the Hamiltonian to

H̃c =
∑

k

[
�

†
k�k

2m
+ 1

2
mω2(k)Q†

kQk − εso

]
, (A7)

where we introduced the mode frequencies

ω2(k) = 1

m

N−1∑
j=1

V ′′(aj )[1 − cos(kaj )]. (A8)

If we were to consider a short-range potential, we would only
keep the terms j = 1 and j = N − 1, in which case we would
find the typical spectrum of acoustic phonons,

ω(k) = 2
√

V ′′(a)/m| sin(ak/2)|, (A9)

which corresponds to a linear spectrum for small k. On the
other hand, for a generic interaction potential, we should
express ω(k) in terms of the Fourier transform of the interaction
potential. Using V (x) = (1/N)

∑
q eiqxVq , we have

ω2(k) = k2

m
Vk. (A10)

Finally, we introduce the conventional creation and annihila-
tion operators,

�k = i

√
mω(k)

2
(a†

k − a−k),
(A11)

Qk = 1√
2mω(k)

(a†
−k + ak),

which leads to the Hamiltonian

H̃c =
∑

k

ω(k)

(
a
†
kak − 1

2

)
− Nεso, (A12)

which coincides, up to a constant, with Eq. (8) in the main
text. Because ω(k) → 0 for k → 0, the excitation spectrum
is gapless (except for a trivial finite-size gap ∝ 1/L). The
low-energy excitations are acoustic phonons with spectrum
ω(k) ∝ k. Its eigenstates are Fock states with a certain
set of phonon quantum numbers. Each of the eigenvalues

has a degeneracy 2N because the eigenenergies are spin
independent within our approximation. A complete basis of
this Hamiltonian is given by the vectors{∣∣nk1 , . . . ,nkN

,σ z
1 , . . . σ z

N

〉}
, (A13)

where nk ∈ N0 denotes the number of phonons in mode k and
σ z

n ∈ {−1,1} denotes the z component of the spin on lattice
site n.

4. Spin exchange

The spin degeneracy is due to the fact that we assumed
B = 0 and restricted the position of each electron to one site
in the Wigner lattice. The most important process we neglected
so far is tunneling between neighboring sites. Due to the strong
interactions, each lattice site should always be singly occupied.
But even in this limit spin exchange between neighboring sites
is possible, albeit weak. In order to investigate this effect,
we follow Ref. [19] and consider the positions of N − 2
particles as fixed, and only investigate the dynamics of the
two remaining particles.

Starting from Eq. (A3) and keeping B = 0, these assump-
tions lead to the two-particle Hamiltonian,

H̃2 = p2
1

2m
+ p2

2

2m
+ V (z1 − z2) + Vr (z1) + Vr (z2), (A14)

where Vr (x) denotes the potential generated by the remaining
N − 2 stationary electrons. The two particles are in a double-
well potential, which we call U (z). Such a scenario was
investigated in Ref. [19] for an unscreened Coulomb potential
V (z) = e2/(ε|z|), and a formula for U (z) was derived there.
The effective Hamiltonian in real space is now a two-body
problem,[

− ∂2
z1

2m
− ∂2

z2

2m
+ U (z1 − z2)

]
φ(z1,z2) = Eφ(z1,z2). (A15)

It is known that the ground-state wave function φS is
symmetric in z1 and z2, whereas the first excited state φA

is antisymmetric [19]. The two states are split by an energy
which can be determined using the Wentzel-Kramers-Brillouin
approximation

J = U ′′(a)

m
√

eπ
exp

{
−
∫ z0

−z0

dz
√

2m[U (z) − U ′′(a)/2m]

}
,

(A16)

where ±z0 are the edges of the classically forbidden region
of the potential U (z). Importantly, this energy splitting is
independent of the spins of the two particles. Therefore, we
can construct the following ground-state and first-excited-state
wave functions, which consist of a spin-independent orbital
part, and a singlet or triplet spin part. The ground-state wave
function is nondegenerate and reads

ψ0(z1,σ1,z2,σ2) = φS(z1,z2)
[
δσ1↑δσ2↓ − δσ1↓δσ2↑

]
. (A17)

The first excited state is a threefold degenerate triplet and reads

ψ1,−1(z1,σ1,z2,σ2) = φA(z1,z2)δσ1↓δσ2↓,

ψ1,0(z1,σ1,z2,σ2) = φA(z1,z2)
[
δσ1↑δσ2↓ + δσ1↓δσ2↑

]
,

ψ1,1(z1,σ1,z2,σ2) = φA(z1,z2)δσ1↑δσ2↑. (A18)
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If we are only interested in the spin degrees of freedom, we
can therefore describe this by a Hamiltonian,

H̃2 = J �S1 · �S2. (A19)

The alignment of nearest neighbors’ spins is antiferromagnetic
in accordance with the Lieb-Mattis theorem [37]. So far, we
showed this for two sites. But since next-nearest-neighbor
hopping is exponentially suppressed compared to nearest-
neighbor hopping, we can use the following Heisenberg
Hamiltonian for the spin system:

H̃s = J

N∑
n=1

�Sn · �Sn+1. (A20)

It should be pointed out that J depends on the positions of the
electrons and may in principle be nonuniform, J → Jn. In that
sense, H̃s implicitly contains spin-charge coupling. Treating
J as a constant works as long as z′

n � a.

APPENDIX B: SPIN-WAVE THEORY

We start from the Hamiltonian (9) in the main text. To
investigate the case for general ϕ, it is convenient to restore

translation invariance by mapping the system with spiral
magnetic field onto a system with constant magnetic field and
modified exchange terms:

H ′
s = J (ρ)

N−1∑
n=1

[
cos(ϕ)

(
Sx

nSx
n+1 + Sy

nS
y

n+1

)

+ sin(ϕ)
(
Sx

nS
y

n+1−Sy
nSx

n+1

)+Sz
nS

z
n+1

]−gμBB

N∑
n=1

Sx
n .

(B1)

As we are mainly interested in physical effects near the critical
field, we use the ferromagnetic large-field state as a starting
point for spin-wave theory. For B � J > 0, the spins are all
polarized in the +x direction, and we can use the Holstein-
Primakoff transformation where the largest component is in
the x direction,

�Sn ≈
(

S − c†ncn,

√
S

2
(c†n + cn), i

√
S

2
(c†n − cn)

)
, (B2)

where cn and c
†
n are bosonic annihilation and creation operators

and S = 1/2. Hence, we obtain the following terms:

J cos(ϕ)Sx
nSx

n+1 = J cos(ϕ)S2 − JS cos(ϕ)c†ncn − JS cos(ϕ)c†n+1cn+1 + irrelevant terms,

J cos(ϕ)Sy
nS

y

n+1 = J cos(ϕ)S

2
(c†nc

†
n+1 + c†ncn+1 + cnc

†
n+1 + cncn+1),

JSz
nS

z
n+1 = −JS

2
(c†nc

†
n+1 − c†ncn+1 − cnc

†
n+1 + cncn+1),

J sin(ϕ)Sx
nS

y

n+1 = J sin(ϕ)

[
S
√

S√
2

(c†n+1 + cn+1) −
√

S

2
c†ncn(c†n+1 + cn+1)

]
,

J sin(ϕ)Sy
nSx

n+1 = J sin(ϕ)

[
S
√

S√
2

(c†n + cn) −
√

S

2
(c†n + cn)c†n+1cn+1

]
. (B3)

Spin-wave theory is based on a large-S expansion. When
summed over n in the Hamiltonian the terms ∝ S3/2 cancel.
Moreover, the terms ∝ √

S are subleading and can be ignored.
To do a systematic expansion, we assume that B is also of
order S [41] and keep only the terms of order S. We obtain,
after Fourier transform,

H =
∑

k

{
(−2JS cos(ϕ) + B)c†kck

+ JS

2
(cos(ϕ) − 1)(eikc

†
kc

†
−k + H.c.)

+ JS

2
(cos(ϕ) + 1)(eikc

†
kck + H.c.)

}
. (B4)

Therefore, we can write this as

H = 1

2

∑
k

(
c
†
k

c−k

)T(
X Y

Y ∗ X

)(
ck

c
†
−k

)
, (B5)

where

X = −2JS cos(ϕ) + B + JS(cos(ϕ) + 1) cos(k),

Y = JS(cos(ϕ) − 1)eik. (B6)

We solve the Hamiltonian using a Bogoliubov transforma-
tion. We write the operators as c

†
k = ub

†
k + vb−k and c

†
−k =

ub
†
−k + vbk . If we assume that bk fulfill bosonic commutation

relations, this leads to [ck,c
†
k′ ] = (|u|2 − |v|2)δkk′ and thus

to the requirement |u|2 − |v|2 = 1, which we can satisfy by
setting u = eiφ1 cosh θ and v = eiφ2 sinh θ . In terms of the new
operators, we find

H = 1

2

∑
k

(
b
†
k

b−k

)T(
X′ Y ′
Y ′∗ X′

)(
bk

b
†
−k

)
,

X′ = X cosh(2θ ) + Y cos(φ1 + φ2) sinh(2θ ),

Y ′ = ei(φ1−φ2)[X sinh(2θ ) + Yei(φ1+φ2) cosh2(θ )

+Y ∗e−i(φ1+φ2) sinh2(θ )]. (B7)

125420-7



THOMAS L. SCHMIDT AND CHRISTOPHER J. PEDDER PHYSICAL REVIEW B 94, 125420 (2016)

We would like to choose the parameters in such a way that
the off-diagonal part vanishes. We can achieve this by first
demanding that Yei(φ1+φ2) is real, i.e., φ1 + φ2 = − arg Y .
Having fixed this, vanishing off-diagonal elements leads to

tanh(2θ ) = −|Y |
X

, (B8)

which has a real solution only if |Y | < X. With these parame-
ters, the Hamiltonian takes the form H = ∑

k ε(k,ϕ)b†kbk with
the eigenenergies

ε(k,ϕ) := X′ = X2 − |Y |ReY√
X2 − |Y |2

. (B9)

Unfortunately, in general there seems to be no simple solution
of the energies. We find, however, a rather simple expression
for ϕ = 0 and ϕ = π :

ε(k,ϕ = 0) = |J [cos(k) − 1] + B|,

ε(k,ϕ = π ) = (B + J )2 + J 2 cos(k)√
B(B + 2J )

. (B10)

We see that ε(k,ϕ = 0) is gapped for all B > 2J . In contrast,
ε(k,ϕ = π ) is gapped for all B > 0. These limits coincide with
Eq. (10) of the main text. To study the behavior for arbitrary ϕ,
we observe by plotting the general function ε(k,ϕ) that when
increasing J for fixed B, the gap closing always occurs at
k = π . In this case, we also find a simple result

ε(k = π,ϕ) =
√

(B − 2J cos ϕ)(B − J − J cos ϕ). (B11)

From this equation, one finds Eq. (10) of the main text as the
condition for having a finite gap. Expanding ε(k = π,ϕ) close
to this critical field, i.e., using B = J (1 + cos ϕ) + δB, we
find

ε(k = π,ϕ,Bcrit + δB) =
√

(J − J cos ϕ) + δB)δB. (B12)

For ϕ = 0, the gap opens indeed linearly, ε ∝ δB. On the other
hand, for J (1 − cos ϕ) � δB, the gap opens with a square-root
dependence.

APPENDIX C: CONNECTION TO BOSONIZATION

The helical gap for interacting systems was studied in
Ref. [34] based on Luttinger theory, and we would like to
connect to their results. Such a comparison is possible exactly
at the critical density, i.e., at chemical potential μ = 0, where
the chemical potential is exactly at the band crossing. In this
case, the effective magnetic field after removing the Rashba
spin-orbit coupling is just staggered, the critical field for
opening a gap vanishes, and we can compare the gap width as
a function of magnetic field.

To use bosonization for chemical potential μ = 0, we lin-
earize the spectrum around k = ±kF = ±2mαR and k = 0 and
introduce left-moving and right-moving fermionic operators
by decomposing the physical fermions as [34]

ψ↑ = ψL↑ + eikF xψR↑,

ψ↓ = e−ikF xψL↓ + ψR↓. (C1)

We bosonize these according to ψασ = (2πa)−1/2e−i(αφσ −θσ ),
where α = R,L = +,−, σ = ↑,↓, and a denotes the short-

distance cutoff. Next, we introduce charge and spin modes,
φc,s = (φ↑ ± φ↓)/

√
2 and analogously for θc,s . In the absence

of magnetic field, the resulting Luttinger Hamiltonian is
characterized by two Luttinger parameters, Kc and Ks , for
the charge and spin sectors, respectively. In the limit of strong
repulsive interactions, we have Kc � 1, whereas Ks = 1 is
fixed by SU(2) symmetry.

Next, we add the magnetic field term, which couples to a
linear combination of charge and spin modes:

HB = B

∫
dx[ψ†

↑(x)ψ↓(x) + H.c.]

= B

πa

∫
dx cos[

√
2(φc − θs)]. (C2)

In Ref. [34] it was found using an RG analysis that to leading
order the Zeeman term obeys the following scaling equation:

dB

d�
= (3 − Kc)

2
B,

(C3)
B(�) = B(0)eγ �,

where γ = (3 − Kc)/2. Here, � is the logarithmically scaled
cutoff and is related to the physical cutoff as a(�) = a0e

−�. HB

is thus a relevant perturbation. At the end of the RG flow (say,
at � = �∗), HB dominates and generates a gap proportional to
B; hence 
(�∗) ≈ B(�∗). From this we can calculate the bare
gap [49],


(0) = e−�∗

(�∗) =

(
B(0)

B(�∗)

)1/γ

B(�∗) ∝ B(0)1/γ . (C4)

Therefore, at μ = 0, we find in the limits of weakly interacting
and strongly interacting fermions, respectively,


(B) ∝ B for Kc = 1,


(B) ∝ B2/3 for Kc = 0. (C5)

The exponent 1 for Kc = 1 agrees with the trivial noninteract-
ing result; see Eq. (4) in the main text. The exponent 2/3 in the
strongly interacting limit agrees with what we found from our
Heisenberg model from the DMRG solution at the staggered
point and from the bosonization solution of the corresponding
Heisenberg model [41]; see Eq. (11) in the main text, and the
following paragraph.

APPENDIX D: SCREENING

Wigner crystal ordering can be expected when the potential
energy per particle dominates over the kinetic energy. Whereas
the latter scales as Ekin ∝ ρ2 due to the Pauli principle,
the former scales as Epot ∝ ρ1+γ if the physical interaction
potential between the electrons behaves as V (z) ∝ z−1−γ .
Hence, for an unscreened Coulomb potential (γ = 0), one
finds always Epot > Ekin for low densities.

However, in many realistic situations, the interaction poten-
tial decays faster than 1/z for large z due to screening (γ > 0).
In that case, the condition Epot > Ekin can again be violated
for too-low densities. Here, we discuss how this condition
is affected by screening due to nearby metallic gates held at
fixed electric potential. The screening models we compare are
depicted in Fig. 5.
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FIG. 5. Different models for screening Coulomb interactions due
to a metal at distance d from an electron with charge e in a nanowire
along the z direction: (a) infinite metallic surface, (b) metallic sphere,
and (c) metallic cylinder.

If the gate is modeled as an infinite metallic surface in the
x-z plane, at a distance d to a point charge in the nanowire
at position �r0 = (0,d,0), the theory of image charges predicts
that the total electric potential at some position �r is given by

�(�r) = e

|�r − �r0| + q

|�r − �rq | , (D1)

where �rq = (0,−d,0) is the position of the image charge and
its charge q = −e. If we place a probe charge in nanowire
at position �r = (0,d,z), the total potential acting on it will be
given by

�(z) = e

|z| − e√
z2 + 4d2

≈ 2d2

|z|3 for z � d. (D2)

Hence, screening by an infinite metallic plane parallel to the
nanowire leads to the screened Coulomb potential discussed
in the main text. The scaling ∝z−3 for z → ∞ corresponds to
γ = 2, so this screened potential gives a low-density threshold
for the Wigner crystal formation. This model of an infinite
surface can be used to describe screening due to nearby
macroscopic metallic gates, such as a back gate used to deplete
the nanowire.

Let us compare this with screening due to a metallic gate
with finite size. A simple example is screening due to a metallic
sphere. We consider a metallic sphere with radius R centered at
(0,−R,0). In this case, it is well known that the total potential
of point charge and sphere is again given by Eq. (D1), but with

q = −e
R

R + d
,

�rq =
(

0,−d
R

R + d
− 1,0

)
. (D3)

For an infinite sphere (R → ∞), the result is equivalent to the
previous one of the metallic surface. For finite R, however,
the image charge is less than the electron charge, |q| < |e|.
Therefore, a probe charge far away at position �r = (0,d,z)

R�d � 0.05

R�d � 0.1

R�d � 0.3

R�d � 0.5

200 400 600 800 1000
z�d

0.05

0.10

0.15

f�z�d�

FIG. 6. Correction to the Coulomb potential due to screening by
a metallic cylindrical gate with radius R at distance d to the wire.

experiences the potential,

�(z) = e

|z|
d

d + R
+ O

(
1

z3

)
. (D4)

Therefore, the 1/z behavior remains the leading contribution
for all finite R. Hence, the finite sphere cannot screen the
Coulomb interactions at large distances and the Wigner crystal
formation remains possible up to the lowest densities. This
model for screening applies, for instance, to gate wires running
perpendicular to the nanowire, which as a consequence do not
significantly screen the Coulomb repulsion.

In order to create low electron densities in the wires, some
form of metallic gate running parallel to the nanowire axis
is usually necessary. It can be modeled most realistically as
a cylindrical wire parallel to the nanowire. Calculating the
potential of a single point charge at a distance d from a metallic
cylinder with radius R is a complicated electrostatics problem
and was solved only recently using Green’s functions [50].
The resulting equation contains an integral over a product of
Bessel functions, which can be evaluated numerically. One
finds that the leading long-range asymptotic behavior for
z � d is given by

�(z) = e

|z|f
(

z

d
,
R

d

)
, (D5)

where the function f (z/d) is plotted in Fig. 6 for different
values of R/d. This function is approximately given by
f (x) = ax−γ . The prefactor a depends strongly on R/d;
the exponent is approximately γ ≈ 0.3 for the values of
R/d considered. Only towards R � d does one find again
a stronger correction to the exponent and ultimately one
recovers the behavior �(z) ∝ 1/|z|3 for R → ∞. This allows
us to conclude that for the experimentally realistic distances,
i.e., for d on the same order as R, a thin cylindrical gate
cannot effectively screen the Coulomb interaction and the
long-range behavior gets only weakly modified.

From this discussion, we can conclude that if only thin gate
wires are present, the Wigner crystals remains intact up to the
lowest densities. Therefore, the low-density threshold for the
Wigner crystal formation will be rather given by a macroscopic
metallic depletion gate.
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