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The strong coupling between electronic transport in a single-level quantum dot and a capacitively coupled
nanomechanical oscillator may lead to a transition towards a mechanically bistable and blocked-current state. Its
observation is at reach in carbon-nanotube state-of-art experiments. In a recent publication [Phys. Rev. Lett. 115,
206802 (2015)] we have shown that this transition is characterized by pronounced signatures on the oscillator
mechanical properties: the susceptibility, the displacement fluctuation spectrum, and the ring-down time. These
properties are extracted from transport measurements, however the relation between the mechanical quantities
and the electronic signal is not always straightforward. Moreover the dependence of the same quantities on
temperature, bias or gate voltage, and external dissipation has not been studied. The purpose of this paper is
to fill this gap and provide a detailed description of the transition. Specifically we find (i) the relation between
the current-noise and the displacement spectrum; (ii) the peculiar behavior of the gate-voltage dependence of
these spectra at the transition; (iii) the robustness of the transition towards the effect of external fluctuations and
dissipation.
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I. INTRODUCTION

Detection and actuation of mechanical systems at the
nanoscale is a present-day challenge that has important funda-
mental and application perspectives [1–8]. Electronic transport
allows for detection of the displacement of extremely small
mechanical oscillators, like carbon nanotubes [9]. Increasing
the coupling between electronic transport and mechanical
displacement allows for a more sensitive detection and more
precise actuation of the mechanical motion. However, strong
coupling can also lead to an unexpected behavior of the system,
as it was recognized in studying coherent electronic transport
in molecular junctions coupled to low-frequency (classical)
vibrations [10,11]. In nanomechanical systems the importance
of the electron back-action on the mechanical degrees of
freedom was recognized very early [12–17], and concerned
the case of oscillators coupled to single-electron transistors
in the orthodox incoherent Coulomb blockade regime. In this
regime it was found that for sufficiently strong coupling the
system presents a mechanical bistability with a suppression of
the current [18], analogous to the coherent case of molecular
junctions [19]. In both cases the transition to the bistable state is
controlled by the intensity of the electromechanical coupling
εP , defined as F 2

0 /k, where k is the spring constant of the
oscillator and F0 is the force acting on the oscillator when one
electron is added to the quantum dot or to the metallic island of
the single-electron transistor. The bistability and suppression
of the current is expected when both the temperature T and
the bias voltage V are smaller than εP (we work throughout
the paper with the notation that the electric charge e, the
Boltzmann constant kB , and the reduced Planck constant �

are equal to 1). In the coherent transport case an additional
condition has to be satisfied: εP larger than �, the typical
width of the electron state. Observation of this effect is not
easy, since in general the value of εP is very small. In order to
increase its value it has been proposed, for instance, to study
a mechanical system close to the Euler-buckling instability,
since there k vanishes, leading to an increase of two orders of

magnitude of εP [20–22]. However the transition has not been
observed yet, contrary to the related, but different, effect known
as the Franck-Condon blockade [23–26]. The latter concerns
high-frequency phonons in the regime � � T � ω0, where
ω0/2π is the phonon frequency.

The experimental situation changed recently with the
impressive progress that has been achieved in the detection
and manipulation of carbon-nanotube mechanical oscillators.
After the observation of the mechanical resonance [9] it has
been possible to observe the back-action of single-electron
transport on the mechanical mode [27,28]. This opened the
way to an impressive series of applications for mass [3,29],
force [7], magnetic [30] and biological sensors [31], high
quality factor resonators [32,33], as well as the observation of
phenomena related to the nonlinear behavior of the oscillator
[34,35]. In particular, recently the group of S. Ilani reported the
observation of devices with values of εP of the order of 0.3 K
[36,37]. The system they study is well modelled by a quantum
dot coupled to a mechanical oscillator. In a very recent
publication we investigated some of the features expected
when the transition is studied varying the coupling constant
εP at low temperature (ω0 � V,T � εP ) [38]. Specifically
we found that the mechanical mode softens at the transition to
the bistable state, with a minimal value controlled by the bias
voltage, and that phase fluctuations dominate the dynamics
leading to a universal quality factor of 1.71. This provided a
glance on the transition scenario, but several points deserve to
be investigated in order to clarify the full picture.

In this paper we analyze the current-noise spectrum and,
in particular, we investigate its relation to the displacement
spectrum. The two spectra may be proportional to each other,
since the current is modulated by the displacement, but in
general more complex relations exist.

One of the clearest proofs of the back-action of single-
electron transport on the mechanical degrees of freedom is the
observation of a weak softening of the mode as a function
of the gate voltage around the degenerate point. Since at the
transition the mode softens spectacularly, we investigate how
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this reflects on the gate-voltage dependence of the mechanical
resonance.

In general the system is out of equilibrium and the bias
voltage plays the role of the temperature. Both the bias voltage
and the temperature influence the transition, mainly smearing
it. We thus investigate the region where its observation is still
possible.

Finally real systems are always coupled to other degrees
of freedom that induce dissipation. We consider the effect of
the presence of a finite dissipation. We find that it can either
have no effect on the main physical quantities, or improve
the visibility of the transition when the temperature of the
environment is lower than the bias voltage.

The plan of the paper is the following. In Sec. II we
introduce the microscopic model describing a single-level
quantum dot coupled to a mechanical oscillator; we present
then a Langevin and Fokker-Planck description of the system
dynamics. In Sec. III we derive the average electric current
through the device. In Sec. IV we obtain and study the
current-fluctuation spectrum relating it to the displacement
spectrum. In Sec. V we study the gate voltage dependence of
the aforementioned spectra. In Sec. VI the effect of thermal
and off-equilibrium fluctuations is discussed. In Sec. VII the
influence of an external damping is considered on the oscillator
quality factor. Finally Sec. VIII gives our conclusions and
perspectives.

II. MODEL AND PREREQUISITES

A. Model

Following the literature on the subject [11,38] we describe
the quantum dot by a spinless single electronic level coupled
to a mechanical oscillator. The Hamiltonian reads

H = HL + HR + HT + (ε0 − F0x)d†d + p2

2m
+ kx2

2
, (1)

where d and ε0 are the destruction operator and the energy
of the electronic level on the dot, respectively, x is the
displacement of the relevant mechanical mode, p is its
conjugated momentum, m is the mode effective mass, k is the
spring constant (with ω0 = √

k/m), and F0 is the electrostatic
force acting on the oscillator when the electronic level is
occupied. The first three terms describe the leads and their
coupling to the electronic level: Hα = ∑

k(εαk − μα)c†αkcαk ,
HT = ∑

k tαc
†
αkd + H.c., with α = L(R) for the left (right)

lead, c and εαk the destruction operator and the energy of
the electrons in the leads, respectively, and μα the chemical
potential. From these quantities one can define the lead’s
tunneling rate �α ≡ πt2

αρα with ρα the density of states and
the single-level width � ≡ �L + �R . For simplicity in the
following we choose �L = �R = �/2 and μL = −μR = V/2,
with V the bias voltage. In the following we will always
consider the regime that is realized in current experiments
with carbon nanotubes. This corresponds to the limit �α � ω0

and ω0 � max(T ,V ) that allows one to solve the problem
within the Born-Oppenheimer approximation and to treat the
mechanical mode classically [11]. We will not consider in this
paper the case of strongly coupled fast (quantum) oscillator,
that is more relevant for molecular transport [25,39–41].

B. Classical stochastic description

With these assumptions the displacement dynamics of the
mechanical mode can be described by a Langevin equation:

mẍ + A(x)ẋ + mω2
0x = Fe(x) + ξ (t), (2)

where the charge fluctuations on the dot are at the origin of the
average force Fe(x), the dissipation A(x), and the stochastic
force ξ (t), that satisfies 〈ξ (t)ξ (t ′)〉 = D(x)δ(t − t ′) (actually
the time range of the correlation function is �−1, but since
� � ω0 we approximate it by a Dirac δ function) [11,18]. The
coefficients read Fe(x) = F0n(x), D(x) = F 2

0 Snn(x,ω = 0),
A(x) = −F 2

0 (∂Snn/∂ω)(x,ω)|ω=0, with n = d†d, n(x) = 〈n〉
the average occupation of the dot, and Snn(x,ω) = 〈n(t)n(0)〉ω
the charge fluctuation spectrum. The explicit expression for
A, Fe, and D has been obtained in Ref. [11] (we provide an
alternative and more elementary derivation in Appendix):

〈n〉 =
∫ +∞

−∞

dω

2π�
(fL + fR)τ, (3)

Snn|ω=0 =
∑
α,β

∫ +∞

−∞

dω

2π�2
fα(1 − fβ)τ 2, (4)

dSnn

dω

∣∣∣∣
ω=0

=
∑
α,β

∫ +∞

−∞

dω

2π�2
fατ [f ′

βτ − (1 − fβ)τ ′], (5)

where fα(T ,ω) = fF (ω − μα), fF (ω) = (1 + eω/T )−1 is the
Fermi function, τ (ω,x) = 1/{1 + [(ω − ε0 + F0x)/�]2} is
the energy-dependent electronic transmission factor through
the quantum dot, and the prime in Eq. (5) indicates the
derivative with respect to ω.

Since the stochastic force is short-ranged in time one
can derive a Fokker-Planck equation for the probability
distribution P (x,p,t) [13,42]:

∂tP = p

m
∂xP − F∂pP + A

m
∂p(pP ) + D

2
∂2
pP, (6)

where F (x) = −kx + Fe(x).

C. Effective potential determined by F(x)

The total deterministic force F (x) acting on the oscillator is
given by the sum of the mechanical restoring force −kx and of
the electronic contribution F0〈n〉. For vanishing temperature
(the finite temperature case will be discussed in Sec. VI) and
arbitrary bias voltage one finds

F (x) = −kx + F0

2
+ F0

2π

∑
α=±

arctan
αV/2 − ε0 + F0x

�
.

(7)
One can verify that for ε0 = εP /2 the force is antisymmetric
with respect to the point x0 = F0/2k. This value of the gating
is special and corresponds to the new electron-hole symmetry
point for the system. We will focus mainly on this case in the
remainder of the paper, dedicating Sec. V to a discussion on
the ε0 dependence of different physical quantities. The force
is more conveniently expressed in terms of the dimensionless
variable y = F0(x − x0)/�, for which one can write a Taylor
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expansion in y:

F (y) = F0

∞∑
n=0

a2n+1y
2n+1, (8)

with

a1 = −�/εP + arctan′(V/2�)/π (9)

and an = arctan(n)(V/2�)/[πn!] for n > 1. From the form
of F follows immediately the form of the effective potential
defined as

U (x) = −
∫ x

F (x ′)dx ′. (10)

As a function of y it reads U (y) =
−�

∑∞
n=0 a2n+1y

2n+2/(2n + 1). The condition a1 < 0
determines the stability of the minimum in y = 0 and gives
the equation εP < εc(V ) with

εc(V ) = π�

(
1 + V 2

4�2

)
(11)

defining the critical line. By graphical solution of the equation
F (y) = 0 one finds that there is always one solution at y = 0,
and then there can be one or two additional pairs of solutions
at ±y1 and ±y2. Since the function is regular, the stationary
points correspond either to maxima or minima of the potential,
that alternate. Moreover the system has always at least one
stable solution, thus when the solution at y = 0 is unstable
there can be only two stable solutions at ±y1 (three solutions).
This proves that in the region of the phase diagram εP > εc(V )
the potential has two symmetric minima (see also Fig. 1). The
situation is more complex when the origin is stable (a1 < 0),
but a3 and a5 are not both negative. In this case the origin can be
either the only minimum or two additional side minima may
appear. By direct calculation one finds that a3 > 0 for V >

2�/
√

3. Thus along the critical line this point [εc(2�/
√

3) =
4π/3�] marks the beginning of the multistability. The full

FIG. 1. Phase diagram for the stability of the effective potential in
the V -εP plane for ε0 = εP /2 and vanishing temperature. The thick
line indicates the critical line εc.

behavior is shown in Fig. 1, as obtained by numerically solving
F (y) = 0.

In the following we will limit to voltages smaller than
2�/

√
3, thus the two possible phases are the stable and bistable

one, separated by the line εc(V ). For vanishing voltage and
temperature the effective potential reads

U (y) = �

2εP

y2 − �

2π
[2y arctan y − ln(1 + y2)], (12)

that expanded around y = 0 gives

U (y) = �

2π

π�

εP

[(
1 − εP

π�

)
y2 + 1

6

εP

π�
y4 + O(y6)

]
. (13)

In this case the transition takes place at the value εP = π� =
εc(0) ≡ εc.

The first important consequence of the transition is the
softening of the mechanical mode. Let us define

ω2
m = − 1

m

dF

dx
(14)

for x at the minimum of the potential. This gives

ω2
m = ω2

0

(
1 − εP

εc

)
(15)

for εP � εc and

ω2
m ≈ 2ω2

0

(
εP

εc

− 1

)
(16)

for εP � εc and (εP − εc)/εc � 1. As discussed in Ref. [38]
the softening of the mechanical mode has important conse-
quences that can be observed in the response functions.

The appearance of the bistability marks also the beginning
of the reduction of the current, as we will discuss more in
detail in the following. In Fig. 2 we provide a simple picture
of the blockade: The presence of an electron changes also the
stable position of the oscillator and consequently the energy
of its level (ε0). When the shift in the energy (εP ) exceeds the
bias voltage both the occupied and empty state are out of the

FIG. 2. A pictorial view of the current blockade mechanism. We
show the position of the electronic level of the dot for the two stable
positions of the oscillators depending on the state of the dot, empty
(upper level) or full (lower level). When εP > V both levels are out
of the conducting window and for thus � � V,εP the current cannot
flow stabilizing both states. For � of the order of V and εP the picture
is blurred by the finite width of the energy level, leading simply to a
reduction of the current.
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bias window, thus in a blocked current state. This holds strictly
when � � εP , but in general a residual current is possible, due
to the finite width in energy of the single electronic level.

D. Stationary solution for V,T � �

In the regime V,T � � the stationary solution of the
Fokker-Planck equation (6) can be found analytically. As a
matter of fact the coefficients A and D depend weakly on x.
In general when their ratio is independent of the position it is
possible to define an effective temperature:

Teff = D(x)

2A(x)
. (17)

One can verify by substitution that the function

Pst(x,p) = N−1e−E(x,p)/Teff , (18)

solves Eq. (6). Here E(x,p) = p2/2m + U (x) is the os-
cillator energy, U is defined by Eq. (10), and N =∫

dx dp exp (−E(x,p)
Teff

) is a normalization factor. The explicit
expressions for A and D in the limit V,T � � can be cal-
culated by exploiting the weak ω dependence of τ (ω,x) with
respect to the fast variation of the Fermi functions. Expanding
the expression of τ (ω,x) around ω = 0 and integrating in ω

we obtain

A(x) = F 2
0

π�2
τ 2

0 (x)

[
1 + 2π2

3

[
5τ0(x) − 6τ 2

0 (x)
](T

�

)2
]
,

(19)
where τ0(x) = τ (0,x), with the remarkable relation

D(x)

2A(x)
= T

2

(
1 + V

2T
coth

V

2T
+ · · ·

)
≡ Teff. (20)

We thus find that at lowest order in T/� and V/� the ratio
D/A does not depend on x. This is not surprising for V � T ,
since in this case the system is essentially in equilibrium and
Teff ≈ T , but it is somewhat unexpected for (� �)V � T ,
i.e., far from equilibrium. In this limit we find Teff ≈ V/4
that agrees with what is found for a metallic single-electron
transistor in Ref. [12]. Most numerical simulations presented
in this paper are performed for V/� = 5 × 10−3, thus in this
regime.

From the form of the stationary solution it is clear that the
effective potential plays a crucial role. It is thus convenient to
introduce a parametrization of the phase space (x-p) of the
oscillator in terms of the energy E(x,p) and of the time along
a trajectory of given energy:

tE(x,p) = 1

(2m)1/2

∫ x dx ′

[E(x ′,p) − U (x ′)]1/2 . (21)

The Jacobian of the transformation is unitary. In terms
of the new variables the distribution is uniform along the
trajectory, thus leading to the following form for the stationary
distribution integrated over the trajectories:

Pst(E) = 2π

ω(E)
e−E/Teff/N (22)

with N = ∫
dE2πe−E/Teff/ω(E), and 2π/ω(E) the period of

the trajectory of energy E.

Let us finally briefly discuss ω(E). This can be obtained
analytically for the potential containing only the quadratic and
quartic part [43,44]. We give its expression in the stable phase
εP < εc:

ω(E)

ω0
= π

2

√
B(E)

K[−m(E)]
, (23)

with

B(E) = εc − εP

2εc

+
√

3(εc − εP )2εc + 4π2ε2
P E

12ε3
c

,

m(E) =
√

(εc − εP )2 + 4π2ε2
P E/3εc − (εc − εP )√

(εc − εP )2 + 4π2ε2
P E/3εc + (εc − εP )

and K[−m(E)] the complete elliptic integral of the first kind
with parameter −m(E). At the critical point εP = εc the
expression simplifies:

ω(E)

ω0
=

(
π3

48

)1/4
�[3/4]

�[5/4]
(E/�)1/4 ≈ 1.212(E/�)1/4,

(24)
with �[x], the Euler-� function. In the other limit, for εP � εc

one can expand in E obtaining

ω(E) = ωm + ω′E (25)

with

ω′ ≡ dωm

dE
= π2ω0

4εc

(
εP

εc

)2(
1 − εP

εc

)−3/2

. (26)

In the next sections we will consider in some detail how
different physical quantities behave as a function of the
coupling strength εP , particularly at the transition to the
bistable phase.

III. ELECTRONIC CURRENT

We begin by considering the current flowing through the
quantum dot. In the classical regime considered in this paper
for given value of x one can write

I (x) =
∫

dω

2π
τ (ω,x)[fL(ω) − fR(ω)]. (27)

The current is the average of this quantity over the positions
visited by the oscillator:

I (t) =
∫

dω

2π

∫
dxdpP (x,p,t)I (x). (28)

In the stationary regime I does not depend on t and one can
use the stationary distribution for the probability. We define
the low voltage conductance as G(V ) = I/V for small V . For
T = 0 and V � � it reads

G(V ) = GQ

∫
dxdpPst(x,p)τ (0,x) + O(V/�), (29)

where GQ = 1/2π is the quantum of conductance in the
units � = e = 1. Figure 3 shows the conductance evaluated
numerically from Eq. (29) for different values of V , T = 0,
and ε0 = εP /2. The extreme limit V → 0 shows very well the
presence of a transition for εP = εc, the conductance is flat for
εP < εc and decreases smoothly for εP > εc, with a cusp at
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FIG. 3. Conductance as a function of the coupling constant εP for
T = 0 and different values of V as indicated in the legend. The dotted
(green) line is the asymptotic behavior of the conductance obtained
for εP � εc, when the system is in the bistable phase.

εP = εc. Already at this value it is clear that the suppression
of the current is relatively slow as a function of the coupling.
This is due to the Lorentzian decay of the transparency τ as
a function of the energy. For higher values of the voltage the
transition is smooth.

When the effective potential is truncated to fourth order
[cf. Eq. (13)] it is possible to obtain an analytic expression
of the conductance. The dot transparency can be expressed as
a power series of y: τ (0,x) = ∑+∞

n=0 (−1)ny2n. By expanding
the y4 term in the exponential of the stationary distribution one
can evaluate all the Gaussian integrals for εP � εc obtaining
for the conductance

〈G〉 = GQ

+∞∑
n=0

(−1)n
(

12π2Teff

εc

)n/2

�n[α] (30)

with

�n[α] =
∑+∞

p=0
(−α)p

p! �
[ 1+2(n+p)

4

]
∑+∞

p=0
(−α)p

p! �
[ 1+2p

4

] , (31)

α = (εc − εP )/εP

√
3εc/π2Teff � 0.

The expression simplifies for εP � εc:

G = GQ

(
1 − π2

4

εP V

ε2
c

)
. (32)

Close to the transition (specifically for α � 1) we find

G(V ) ≈ GQ

{
1 −

(
3π2V

εc

)1/2
�[3/4]

�[1/4]

− 6
εc − εP

εP

�[3/4]

�[1/4]

[
�[3/4]

�[1/4]
− �[5/4]

�[3/4]

]}
. (33)

This indicates that G(V ) decreases rapidly with V at criticality,
as can be seen in the figure.

Finally we investigate the behavior deep in the bistable
regime. For εP � εc the two stable solutions are at y =
±εP /2�. By simply taking the value of the transparency for
these values of y we have

G = GQ

1 + (πεP /2εc)2
. (34)

The conductance vanishes as a power law for large coupling.
We show this curve dotted in Fig. 3. This value can be corrected
by taking into account the Gaussian fluctuations around the two
minima that add a correction 1 + 3εcV/2ε2

P that increases the
conductance a bit by increasing the effective temperature.

In conclusion we have seen that the current is slowly
suppressed as a function of the coupling constant, but in
general there is not a spectacular effect at the transition. This
is in contrast to what happens for large values of the coupling
and finite voltage V � �, for which the current has quite a
sharp dependence on the voltage [19]. In the following we
will consider the current-noise spectrum. We will see that it is
directly related to the mechanical dynamics and presents thus
clear signatures of the transition.

IV. POWER SPECTRAL DENSITY OF CURRENT
FLUCTUATIONS

The interest in the measurement of the current-fluctuation
spectrum is that it allows one to detect the motion of
the mechanical oscillator without driving it. The current is
modulated by a variation of the displacement, thus each
fluctuation of the displacement will appear also as a fluctuation
of the current. In Ref. [38] we have investigated in some
details the behavior of the displacement fluctuation spectrum
[Sxx(ω)] at the transition. As it can be seen from Eqs. (15) and
(16) the mechanical mode becomes soft at the transition as
predicted by the effective potential behavior. At the transition
the fluctuations are very strong, and the meaning of mechanical
mode is not so clear anymore. That is why it is necessary
to consider measurable manifestations of the mechanical
dynamics. The study of the displacement fluctuation spectrum
allows us to follow the evolution of the mechanical mode and
to see its behavior at the transition. We refer to Ref. [38] for
a detailed discussion, but it may be useful to recall the main
features: The position of the main peak of the spectrum has a
minimum as a function of the coupling constant at εP = εc; the
minimum value is not zero, but a finite value that is controlled
by the bias voltage (or the effective temperature). It vanishes
like (Teff/�)1/4 and the quality factor is universal with value
1.7. The displacement spectrum is related to the response
function to an external weak driving force by a relation
of the fluctuation-dissipation kind. A direct measurement
can be possible by detection of the current noise. But the
relation between the displacement fluctuation spectrum and
the current fluctuation spectrum is not always straightforward,
in particular close to the transition. In this section, we discuss
the behavior of the current-correlation function and its relation
to the displacement fluctuation spectrum.

We begin with its definition:

SII (ω) = 1

2

∫ +∞

−∞
dteiωt 〈Ĩ (t)Ĩ (0) + Ĩ (0)Ĩ (t)〉, (35)
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where Ĩ (t) = I (t) − 〈I 〉 is the quantum current operator (note
that we define the spectrum with a factor of 1/2 with respect
to the usual convention for quantum noise). The time-scale
separation between the fast electronic degrees of freedom and
the slow mechanical ones allows us to distinguish the purely
electronic contribution to the current noise, coming from the
granularity of the charge, and the one coming from the slow
fluctuations of the position of the oscillator.

Let us first discuss briefly the electronic contribution. For
fixed and given x the electronic noise reads Se

II (ω � �) =
τ (x)[1 − τ (x)]〈I 〉 [45]. The spectrum is flat for ω � �, and
to obtain the observed value it is sufficient to average the
above expression with P (x,p). In the following we will neglect
this contribution, since it has no frequency dependence at the
interesting mechanical frequencies.

We thus consider only the current fluctuations originating
from the displacement fluctuation. We can then write

SII (ω) =
∫ +∞

−∞
dteiωt 〈Ĩ [x(t)]Ĩ [x(0)]〉, (36)

with I (x) given by Eq. (27). Starting from this expression one
can compute numerically the average current following the
method presented in Ref. [19]. It implies the numerical solution
of the Laplace transform of the Fokker-Planck equation and it
gives

SII (ω) = −2Tr

[
(Î − 〈I 〉) L0

ω2 + L2
0

(Î − 〈I 〉)Pst

]
, (37)

where Î is the operator that at each point in the x-p phase
space associates the current Eq. (27), L0 is the Fokker-Planck
matrix that comes from writing Eq. (6) as ∂tP = L0P , and Pst

is the steady-state solution satisfying L0Pst = 0.
We will use this numerical method in the following, but first

it is instructive to study the explicit relation between the current
spectral density and the displacement spectrum defined as

Sxx(ω) =
∫ +∞

−∞
eiωt 〈x̃(t)x̃(0)〉dt, (38)

with x̃(t) = x(t) − 〈x〉. Since we are mainly concerned with
the case V,T � � we can linearize the current in the voltage.
The current correlation function can then be written as

SII (t) = G2
QV 2〈τ̃ [x(t)]τ̃ [x(0)]〉, (39)

where τ̃ = τ − 〈τ 〉. This expression shows that the relation be-
tween SII and Sxx depends on the regime considered. When the
relevant dependence of τ on x is linear the result may be a direct
proportionality, but in general a more complex relation exists.

Finally the current correlator can be calculated analytically
in the regime of very small damping rate A/m � �ω, with
�ω the width of the main peak in the spectral density
induced by the oscillator nonlinearity [38]. Following the
method introduced by Dykman et al. [44] and Ref. [38], the
autocorrelation function for the current fluctuations in this
regime can be well approximated by

SII (t)

(GQV )2
=

∫ +∞

0
dE

∫ 2π/ω(E)

0
dτPst(E,τ )τ̃

× [xE(t + τ )]τ̃ [xE(τ )], (40)

where xE(t) is the function with period 2π/ω(E) that satisfies
the equation of motion mẍ = F (x) for given energy E =
p2/2m + U (x). In the next subsections we present the results
for the current spectrum in different regimes.

A. SI I in the monostable phase εP � εc

For εP � εc (and V,T � �) the effective potential has a
single minimum at x = F0/2k, around which the system oscil-
lates. When the amplitude of these oscillations is sufficiently
small (essentially for Teff � �, see also the section on the
finite temperature) we can expand the transmission factor to
second order in x:

τ [x(t)] ≈ 1 − [F0x(t)/�]2. (41)

This leads to the following expression for the current
fluctuations:

SII (t) ≈ (GQV )2

(
F0

�

)4

〈x̃2(t)x̃2(0)〉. (42)

This relation allows one to relate the current spectrum to
the displacement spectrum only in the weak-coupling regime
where the position fluctuations are still Gaussian. In this case
using Wick theorem we obtain

SII (t) ≈ 2(GQV )2

(
F0

�

)4

S2
xx(t), (43)

or equivalently its Fourier transform,

SII (ω) = 2(GQV )2

(
F0

�

)4 ∫ +∞

−∞

dω′

2π
Sxx(ω − ω′)Sxx(ω′).

(44)
For extremely small εP � εc the displacement spectrum

Sxx(ω) shows two Lorentzian peaks at frequencies ±ωm

whose width is dominated by the dissipation A/m � �ω.
In this regime SII (ω) will thus show three Lorentzian peaks,
centered at ω = 0 and ω = ±2ωm with a width of 2A/m. As
discussed in Ref. [38] the nonlinear terms in the potential
generate a finite width in the displacement spectrum �ω,
and when �ω � A/m [for εP � εc the condition reads
(V/ω0)(εP /εc) � 1] the Gaussian approximation cannot be
used anymore to evaluate SII . We can nevertheless directly
calculate the current spectrum using Eq. (40). We restrict to
the (dominant) first harmonics (n = ±1) in the Fourier series
xE(t) = ∑+∞

n=−∞ e−inω(E)t xn(E). Expanding ω(E) in E one
finds that the spectral density has two contributions:

SII (ω) ≈ S
reg
II (ω) + S

sing
II (ω), (45)

a regular [Sreg
II (ω)] and a singular [Ssing

II (ω)] one. They read

S
reg
II (ω)

(GQV )2
= π

4

(
εP

�

)2
ωmTeff

|ω′|�2ω
f1

(
ω − 2ωm

2ω′Teff

)
, (46)

S
sing
II (ω)

(GQV )2
= 7π5

2

ε2
P

ε4
c

ω4
0

ω4
m

T 2
effδ(ω) (47)

with f1(u) = u2e−u. The singular contribution in reality is
broadened by the dissipative term that if included in the
calculation would give a width 2A/m. Note that this sharp
low-frequency contribution is not related to telegraph noise,
as is the case in the bistable phase, since there is a single
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FIG. 4. Power spectral density of current fluctuations SII (ω) for
different values of the coupling constant εP /εc = 0.64, 1, 1.3 (as
indicated in each panel) and for �/ω0 = 103, V/� = 5 × 10−3, T =
0. Blue solid lines give the result of the numerical evaluation of
Eq. (37), while dotted lines show analytical results: In panel (a) the
(orange) dotted line represents the convolution of the mechanical
fluctuations Sxx(ω), as given in Eq. (44). In panel (b) the (green)
dotted line gives the analytical result of current fluctuations coming
from Eq. (49). In panel (c) the (orange) dotted line is proportional to
Sxx , as written in Eq. (53).

minimum of the potential. The location ωM of the maximum of
the power spectral density and the full width at half maximum
�ω of the spectral line read

ωM = 2(ωm + 2ω′Teff) (48)

with a width �ω ≈ 6.79ω′Teff. We also notice that the width is
roughly twice the width found for the displacement spectrum
and the position of the maximum is exactly at twice the position
of the maximum of the displacement spectrum. The numerical
results obtained from Eq. (37) in this regime are shown in
Fig. 4(a). A comparison with the analytical calculation (dotted
line) shows that the agreement is very good. We observe
that the peak at vanishing frequency appears also in the
non-Gaussian limit and that its width is of the same order
of the width dominated by the nonlinear fluctuations of the
peak at ω ≈ 2ωm.

We cannot extend the expansion too close to the critical
point εP = εc, but exactly at the critical point the poten-
tial is purely quartic, U (y) = (�/12π )y4, and thus we can
evaluate Eq. (40) analytically. The first harmonics of the
oscillator displacement reads x1(E) = α1�/F0(12πE/�)1/4

with a numerical factor α1 ≈ −0.477 (see Supplemental
Material of Ref. [38]). The spectrum has the form given by

Eq. (45) with

S
reg
II (ω) ≈ B1

(GQV )2

ω0

(
Teff

�

)3/4

f2

(
ω

ωM

)
, (49)

S
sing
II (ω) ≈ B2(GQV )2 Teff

�
δ(ω), (50)

with a universal line shape of the resonance given by f2(u) =
u6e−3/2(u4−1) and B1 = α4

196�[5/4]π5/437/4(2e)−3/2/�

[3/4]2 ≈ 6.797, B2 = α4
124π2[4�[7/4] − �[5/4]2/�[3/4]]/

�[3/4] ≈ 30.2.
From these expressions we infer that the maximum position

and its width are

ωM ≈ B3 ω0

(
Teff

�

)1/4

, �ω ≈ 0.479 ωM, (51)

with B3 = π3/4�[3/4]2−1/4/�[5/4] ≈ 2.68. In analogy to
what found in Ref. [38] for the width of the displacement
spectrum, we find that the peak in the noise spectrum
has a universal quality factor of Q = (ωM/�ω) ≈ 2.09. We
note however that this differs from the one obtained for
the displacement spectrum that is 1.71. The difference is a
signature of the non-Gaussian fluctuations, that breaks the
simple relation (44). In Fig. 4(b) we compare the prediction of
Eq. (49) (green-dotted line) with the full numerical calculation
obtained with Eq. (37) (full line). The overall shape of the
main peak is well reproduced. We verified that the small
overestimation (the plot is in logarithmic scale) of the peak
width is due to the absence in the analytical calculation of the
sixth-order term of the potential.

B. SI I in the bistable phase εP > εc

An analytical description is difficult close to the transition,
but as soon as the potential minima become sufficiently deep,
we can again describe the oscillator as a harmonic oscillator
around the new minima. For (εP � εc) thus the probability
distribution becomes Gaussian around each minimum, related
to the blocked current state in the occupied and empty
electronic state. As a consequence, Wick theorem still holds if
we expand displacement fluctuations separately around each
minimum y = ±πεP /2εc. We can thus evaluate Eq. (39)
obtaining

SII (t) = 2(GQV )2τ

[
(1 − τ )

F 2
0 Sxx(t)

�2

+ τ 3(3 − 4τ )2

(
F 2

0 Sxx(t)

�2

)2

+ 12τ (1 − τ )(1 − 2τ )
F 2

0 〈x2〉
�2

F 2
0 Sxx(t)

�2

]
. (52)

[Note that we recover Eq. (43) for the weak-coupling
regime if we set τ = 1.] In the strong-coupling regime,
τ ≈ (2εc/πεP )2 � 1 and the dominating term in Eq. (52) is

SII (ω) ≈ 2

(
GQV

F0

�

)2

τ (1 − τ )Sxx(ω). (53)

Deep in the bistable regime we thus find that a simple linear
relation between SII (ω) and Sxx(ω) holds. In Fig. 4(c) we plot
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SII (ω) obtained from Eq. (53) in orange-dotted line, compared
to the full numerical calculation of Eq. (37). We see that
all the features are well reproduced with a reasonably good
quantitative agreement.

V. GATE VOLTAGE DEPENDENCE

One of the most spectacular and direct proofs of the
back-action of the electronic transport on the mechanical
dynamics is the observation of a maximum in the softening
of the mechanical mode as a function of the gate voltage
in coincidence with the maximum of the conductance of the
quantum dot [27,28,37]. As we have seen, the softening of
the mechanical mode is also a signature of the transition
to the bistable phase, but so far we have discussed only
its dependence on the coupling εP when the gate voltage
is adjusted so that ε0 = εP /2. In experiments the values of
both εP and ε0 are actually controlled by the value of the
gate voltage. The first corresponds essentially to the number
of excess electrons on the gate lead, while the second is
linearly related to the gate voltage. Close to the symmetry point
ε0 = εP /2 one can neglect the weak gate voltage dependence
of εP . It is then very interesting to study the behavior of
the mechanical mode for small variation of the gate voltage
close to the symmetry point for a given value of εP . As for
the previous case it is understood that the mode cannot be
characterized only by the value of its resonance, since the
spectrum has typically a complex behavior. For this reason
in this section we will study the displacement and current
spectrum as a function of the gate voltage, or, as it appears in
the present model, as a function of �ε0 = ε0 − εP /2.

A. Softening of the mechanical mode from the effective potential

Let us begin from the behavior of ωm as defined by Eq. (14).
For V = T = 0 we can write the force as a function of y as
follows:

F (y)

F0
= − �

εP

y + 1

π
arctan (y − ε̃0), (54)

where ε̃0 = �ε0/�. The presence of ε̃0 changes the position
of the solutions of F (y) = 0, but by graphical analysis one
can verify that there can be only either one or three solutions.
Applying the definition of ωm by calculating the first derivative
of F (y) at y0 one finds

ω2
m

ω2
0

= 1 − τ (y0)
εP

εc

, (55)

where τ (y0) = [1 + (y0 − ε̃0)2]−1 is the transparency of the
junction at the y0 solution of the equation F (y0) = 0. The
equation for y0 can be written as

y0 = εP

εc

arctan(y0 − ε̃0). (56)

Equation (55) generalizes Eq. (15). It is exact, but finding the
value of y0 may require some approximations. We consider
thus three limiting cases.

(i) In the weak-coupling limit for εP � εc the value of
y0 is very small. Iterating Eq. (56) one can then write y0 ≈
εP

εc
arctan[ εP

εc
arctan(−ε̃0) − ε̃0] which has the correct small and

large ε̃0 behavior. Keeping only the leading order one finds for
the softening a Lorentzian behavior

ω2
m

ω2
0

= 1 − (εP /εc)

1 + ε̃2
0

, (57)

as observed in experiments [27,28,36,37].
(ii) At criticality for εP = εc Eq. (56) can be solved for

ε̃0 � 1 by expanding the right-hand side to third order. This
gives y0 = ε̃0 − (3ε̃0)1/3 and consequently ωm = ω0(3|ε̃0|)1/3

that is singular at the transition.
Finally (iii) for εP > εc and ε̃0 = 0 there exist two (stable)

solutions of Eq. (56) y0(ε̃0 = 0) = ±z0, with z0 > 0. For small
value of ε̃0 > 0 one can find the solution of Eq. (56) as

y0 = −z0 + (ε̃0/4)

εP /εc − 1
(58)

that is valid for 0 < ε̃0 � (εP /εc − 1)3/2. For ε̃0 < 0 the stable
solution is −y0 [y0(ε̃0) = −y0(−ε̃0)], and sweeping ε̃0 through
0 the system jumps from one solution to the other. We can thus
simply concentrate on the positive values of ε̃0. The linear
dependence of y0 leads to a linear dependence of ω2

m close to
ε̃0 > 0. For 0 < εP − εc � εc one finds

ωm

ω0
= [2(εP /εc − 1)]1/2 + ε̃0εP

2(εP − εc)

(
3εc

2εP

)1/2

. (59)

The slope diverges at εP → εc, in agreement with the results at
criticality that gives ωmε̃

1/3
0 . Since the curve is symmetric, the

linear dependence leads to a cusp in the softening dependence
on the gate voltage. This can be an indication of the bistability.

The results for εP < εc and εP > εc are shown in Figs. 5
and 6. The behavior discussed by simple analytical argument
agrees with what is found by solving numerically Eq. (56)
and substituting the result into Eq. (55) (dotted lines in both
figures). As explained before, the calculation of the resonating
frequency by this method gives only an indication of the
mechanical dynamics, that is actually more complex. In the
next subsection we thus discuss the form of the displacement
and current spectrum taking into account the effect of the
fluctuations.

B. Displacement spectra and current spectra as a function of ε̃0

Using the numerical methods described above we obtain
the displacement and current spectrum. For εP � εc the
displacement spectrum shows a clear peak at frequencies that
are very close to the results obtained by the analytical method.
The position of the peak is shown by the continuous lines in
Fig. 5. For weak coupling the agreement is essentially perfect.
For εP = εc one sees instead that the peak remains at a higher
energy. As we found for the case ε̃0 = 0 in Ref. [38] the strong
nonlinear form (x4) of the potential at that point is at the origin
of this difference. There the spectrum has a form

Sxx(ω) = Sxx(ωM )

(
ω

ωM

)4

e−[(ω/ωM )4−1], (60)

with ωM ≈ 1.212ω0(Teff/�)1/4. The width of the peak is due
to the phase fluctuation, and it is so wide since ω(E) given by
Eq. (24) vanishes for E = 0.
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FIG. 5. Gate voltage dependence (ε̃0) of the mechanical res-
onating frequency for different values of the coupling εP � εc, as
indicated in the legend. The dotted lines indicate the numerical
solution of the mean field Eqs. (56) and (55). The continuous lines
indicate the positions of the maxima in the Sxx(ω) spectrum. The
parameters are �/ω0 = 103, V/� = 5 × 10−3, T = 0. Lower panel:
Sketch of the effective potential as a function of the oscillator’s
position for various values of the dot’s detuning; n represents the
occupation of the dot, and the vertical axis has a range of 4Teff.

FIG. 6. Same as Fig. 5 but for εP = 1.1εc, corresponding to
the bistable region. The orange dotted lines indicate the numerical
solution of the mean field Eqs. (56) and (55). The dots indicate the
positions of the dominant maxima in the Sxx(ω) spectrum, with a dot
size proportional to the peak height.

At finite value of ε̃0, the effective potential of the oscillator
gets an asymmetric minimum (see lower panel of Fig. 5)
which is responsible for a nonvanishing ω(E) at E = 0, as
given by Eq. (55). This reduces the range over which the
frequency can vary. As a consequence, at sufficiently large
detuning ε̃0 � 0.1�, the peak quite rapidly follows again
the mean-field prediction shown by the light-blue dashed
curve in Fig. 7 (left panel). For smaller dot-level detuning
ε̃0 < 0.05�, the spectrum becomes more complex, with the
emergence of a secondary peak that is not described by the
mean-field mode softening. This is due to the existence of
a precise value of the energy E0 > 0 (dependent on ε̃0) for
which the dispersion relation ω(E) of the oscillator develops a
minimum. For ω ≈ ω(E0) there is a square-root divergence
of the spectrum Sxx(ω) ∝ E0

√
ω′′(E0)/2[ω − ω(E0)]. This

divergence is further widened by dissipation and leads to a
narrow peak, as shown by the dark-blue dashed curve in Fig. 7
(left panel). The double-peak feature rapidly disappears close
to criticality, where one recovers the spectrum described by
Eq. (60).

Particularly interesting is the case εP > εc. As we have seen
analytically in Eq. (59), we expect a cusp in the mean-field
peak position close to ε̃0 = 0. This is also found numerically,
as it can be seen from Fig. 6, branch (1), at least for ε̃0 not
too small. When we look more in detail close to ε̃0 = 0, we
find two minima in the effective potential, one stable and one
metastable. We assign the peaks in branch (1) to oscillations
around the stable minimum. The contribution of the metastable
state rapidly vanishes due to its population, exponentially small
in the regime Teff � �. It can still be seen close to its merging
with the stable-minimum peak, arising at branch (2). However,
its presence is fundamental to generate branch (3), that is
associated to oscillations around both minima and of which
frequency is roughly half the frequency of branch (1).

We can calculate also the current spectrum. We show in
Fig. 7 the result for εP = εc. In order to understand the relation
with the displacement spectrum one can generalize Eq. (39):

SII (t)

(F0/�)2
≈ (GQV )2τ 3

{
4(1 − τ )Sxx(t)

+ �2

F 2
0

τ (3 − 4τ )2[〈y2(t)y2(0)〉 − 〈y4(0)〉]

+ �2

F 2
0

16(1 − τ )(1−2τ )[〈y(t)y3(0)〉−〈y4(0)〉]
}
.

(61)

The first term in Eq. (61) is proportional to the mechanical
noise Sxx(t). It dominates the spectral signal for the detuned
dot-level position (�ε0 = 0 and τ = 1) and is at the origin of
the double V shape seen in Fig. 7(b). The second and third
terms in Eq. (61) are related to the fourth-order correlation
functions of the oscillator position. The second term dominates
the spectrum in the region close to the critical point (�ε0 = 0
and τ = 1). The line shape in this regime is well reproduced by
Eq. (49) giving the regular part of the spectral density. Finally,
we remark on the presence of a low-frequency noise due to the
singular part of the spectral density written in Eq. (50).
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FIG. 7. Density plot of the displacement spectrum Sxx (left panel) and current spectrum SII (right panel) as a function of dot-level detuning
�ε0 and frequency ω. The dashed light-blue line shows the position of ωm from the solution of Eqs. (56) and (55). The dashed dark-blue
line shows the position of ω(E0) at which the dispersion relation has a minimum. The maximum value in the density scale has been chosen
according to the most important finite-frequency peak, and the minimum value has been chosen four orders of magnitude below. The plot is
presented in logarithmic scale. Note that a zero-frequency noise peak is present and is typically several orders of magnitude above the max of
the scale, especially in the current plot. The parameters are the same of the previous two figures.

To conclude, we have seen that the transition to the bistable
phase can be detected by studying the displacement or current
spectrum as a function of the detuning of the single-electron
level. Specifically the shape of the softening depends strongly
on the value of the interaction. A cusp should appear for
coupling larger than the critical value. Clearly, fluctuations
smoothen the transition, but the characteristic dependence on
the bias voltage of the structures should be also a valuable
indication of the true nature of the transition.

VI. TRANSITION AT FINITE TEMPERATURE

In this section we discuss the behavior of the system
when the electronic leads are kept at finite temperature.
Two different manifestations of the finite temperature are
as follows: (i) The distribution of the electronic population
of the metallic leads modifies the transport properties of the
quantum dot and in particular its average electronic occupation
[〈n(x)〉] that is responsible for the effective force acting
on the oscillator. (ii) Thermal electronic fluctuations induce
equilibrium fluctuations of n(x) thus leading to a stochastic
force that heats the oscillator even for V = 0.

A. Temperature dependence of the effective potential

Equation (3) gives the expression of the average electronic
occupation of the dot. At finite temperature it can be expressed
in terms of the digamma function (�):

n = 1

2
+ 1

2π
Im

∑
α=L,R

�

(
1

2
+ � + i(μα − ε0 + F0x)

2πT

)
.

(62)
We are interested in studying how the transition is modified
by the temperature. For this we begin by considering the
behavior of ω2

m as defined by Eq. (14). The change of sign
of ω2

m indicates that the stationary point is no more stable. For

simplicity we focus on the V = 0 case. The critical value of
the coupling constant for which ω2

m = 0 reads then

εc(T ) = −
(

∂n

∂ε0

)−1

= 2π2T

�(1)(1/2 + �/2πT )
, (63)

with �(n)(z) = dn�(z)/dzn the nth derivative of the digamma
function and we consider only the case ε0 = εP /2. Using
known properties of the digamma function [�(1)(1/2) = π2/2,
�(z) ≈ 1/z + 1/(2z2) + 1/(6z3) + · · · for large z], [46] one
finds the asymptotic T � � behavior,

εc(T � �) = 4T

1 + �(2)(1/2)�/(T π3)
, (64)

and the low-temperature one,

εc(T � �) = π�

(
1 + π2

3

T 2

�2

)
(65)

(the last expression can also be obtained by Sommerfeld
expansion). One thus finds that the transition in principle can
be also observed at high temperatures, provided a coupling
constant of the order of 4T . By a comparison with the
result (11) for the bias voltage dependence of εc, one sees
that the temperature (for T � �) is less effective in the
renormalization of the spring constant. Clearly the same
expressions allow one to study the evolution of ωm:

ω2
m

ω2
0

= 1 − εP

εc(T )
. (66)

At mean-field level the temperature simply changes the critical
value of the coupling. The critical line (63) is shown in Fig. 8
(lower panel, full line). The dotted (orange) curve shows the
low-temperature approximation (65).

To conclude the discussion we remark that not only the
coefficient of the quadratic term in the effective potential
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FIG. 8. Top panels: displacement spectrum Sxx(ω) for (a) T/� =
4 × 10−3 and (b) T/� = 0.1. Solid (blue) lines indicate the numerical
results from Eq. (37), while dotted (orange) lines stand for the
analytical low-temperature approximation of Eq. (60) with renor-
malized parameters. The dashed (red) lines correspond to evaluating
numerically Eq. (40) for the mechanical noise, using the exact
expression for the effective potential. Bottom panel: Phase diagram of
the system in the plane T -εP . The bistability is present only in the area
to the right of the transition, as is illustrated by the potential energy
(see the insets). The analytical transition line for T � � is shown
in dotted (orange) line following Eq. (65). The two stars indicate the
values at which the top panels are calculated. The parameters are the
same of previous figures.

is modified by the temperature, but also the higher-order
ones. Using the fact that �(z) = ln�(z)/dz we can write an
analytical expression also for the effective potential:

U (y) = �2

2εP

y2 + 2T Reln�

[
1

2
+ �

2πT
(1 + iy)

]
, (67)

where we have used the dimensionless position y introduced
above. One can verify using the asymptotic behavior for large
z of ln� = zlnz − z − ln(z/2π )/2 + · · · [46] that Eq. (67)
reduces to Eq. (12) for T � �. The generic n term of the

expansion of U (y) = ∑∞
n=2 Uny

n reads

Un = δn,2
�2

2εP

+ �

πn!
�(n−1)

(
1

2
+ �

2πT

)(
�

2πT

)n−1

,

(68)
with Un nonvanishing only for n even. This gives immediately
that the quartic term U4 is always positive and vanishes for
large T as 1/T 4. In general the effective potential induced by
the electrons vanishes for large temperature, since in this limit
the average occupation of the dot, n, depends very weakly
on the position of the level. In the opposite limit, for T � �,
one finds for the quartic term of the expansion of U (y) : U4 =
(�/12π )[1 − 2π2(T/�)2].

B. Effect of thermal fluctuations on mechanical noise

In thermal equilibrium (V = 0) the distribution function is
always given by Eq. (18) with Teff = T . One can thus obtain
the spectrum of both I and x from expressions like Eq. (40).
The only difference with the previous case is the form of the
effective potential U that leads to a different expression for
ω(E) and xE(t).

Specifically at the critical line the quadratic term vanishes
and as far as the quartic term dominates over the higher-order
terms the universal line shape for Sxx(ω) given in Eq. (60)
holds. The only difference is the value of the maximum of the
peak ωM ,

ωM (T ) ≈ 1.212ω0

(
T

�

)1/4
[

1 − π2

2

(
T

�

)2
]
. (69)

Hence with increasing temperature, the maximum of the
spectral line Sxx(ω) moves toward higher frequencies while
its width increases.

In Fig. 8, upper panels, we plot the displacement spectrum
Sxx(ω) obtained at two different temperatures T/� = 4 ×
10−4 [panel (a)] and T/� = 0.1 [panel (b)]: The (orange)
dotted line presents the analytical results given by Eq. (60)
and the (blue) solid line presents the full numeric calculations
given by Eq. (37). We observe that the analytical results are
qualitatively consistent with the numerics: Namely, we find a
shift of the peak toward higher frequencies and an enlarged
broadening of the resonance upon increasing temperature.
However a quantitative discrepancy is evident, especially at
higher temperature [panel (b)]. This is due to the fact that
by increasing the temperature the fluctuations increase and
at some point the sixth- and higher-order terms cannot be
neglected anymore. Let us assume that the distribution function
is P ∼ e−U4y

4/T . We can then evaluate the contribution of any
term in the expansion of U (y):

〈xn〉 = �[1/4 + n/4]

�[1/4]

(
T

U4

)n/4

. (70)

We thus find that Un〈xn〉/(U4〈x4〉) ∼ (Un/U4)(T/U4)(n−4)/4.
From expression (68) one finds that for T → 0 the coefficients
Un ∼ �. This gives the condition (T/�)(n−4)/4 � 1 in order to
neglect the term of order n with respect to the term of order 4.
For the case in panel (b) the condition for the sixth terms reads
∼√

T/� ≈ 0.3. We verified that by evaluating numerically the
expression equivalent to Eq. (40) for Sxx taking into account
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the exact form of the potential (see dashed lines in the figure)
we recover the results of the full numerical solution.

VII. EFFECTS OF A DISSIPATIVE COUPLING

Up to this moment, we considered the coupling with the
electrons to be the only source of dissipation of the system.
In this section we consider the effect of a coupling to a
bath at the same temperature of the electronic degrees of
freedom, but with an independent coupling constant modeled
by the damping rate γe. The fluctuations induced by this
coupling satisfy the fluctuation-dissipation theorem, leading
to a modification of the Fokker-Planck Eq. (6) as follows:

A

m
→ A

m
+ γe, D → D + 2γemT. (71)

In the limit T ,V � � the stationary solution is still of the
Gibbs form (18) with effective temperature:

Teff(γe) = D + 2mγeT

2A + 2mγe
= Teff(0) + T mγe/A

1 + mγe/A
. (72)

From this expression one can conclude that for mγe/A � 1
and T mγe/A � Teff(0) the effect of an additional dissipative
channel can be neglected. Since Teff(0) � T as given by
Eq. (20), the first condition is sufficient to neglect the effect of
fluctuations.

When mγe/A is not small there are two possibilities. If T �
V , then one simply finds Teff(γe) = Teff(0) = T , independently
of γe. More interesting is the opposite limit, of T � V , in this
case Teff(0) = V/4 and we find

Teff(γe) = Teff(0)

1 + mγe/A
. (73)

The effect of the dissipation is then to cool down the oscillator.
This is not surprising: the presence of a voltage bias induces
heating and by coupling the mechanical oscillator to the cold
environment one can reduce the effective temperature. Thus
we find that for the observation of the transition the presence
of an additional (and in general unavoidable) dissipation is
either uninfluential or an advantage (in the case T � V ).

In order to see this we solve numerically the problem and
show in Fig. 9 as a function of γe for T = 0 the dependence
of the main peak position of Sxx(ω), its width, its quality
factor Q, and the effective temperature of the system Teff. One
clearly sees that increasing the dissipation reduces the position
of the main peak and its width, but the ratio remains perfectly
constant, as shown by the evolution of the quality factor. All
the dependence can be explained by the renormalization of the
effective temperature predicted by Eq. (73).

The only point that requires some additional explanation
is the way the peak becomes overdamped when γe ≈ ωM . We
found that this can be understood in terms of a simple model.
Let us consider the displacement spectrum for a damped
harmonic oscillator of frequency ωt and damping γ driven
by a force noise ξ (t): Sxx(ω) = [|ξ (ω)|2/m2][(ω2 − ω2

t )2 +
ω2γ 2]−1. Assuming a white noise ξ (ω) ≈ ξ (0) we find that
Sxx(ω) has two maxima at ω = ±ω1 with

ω1 = (ω2
t − γ 2/2)1/2 (74)

FIG. 9. We plot as a function of the damping constant γe the
position and the width of the maximum of Sxx(ω) (upper panel), the
quality factor (middle panel), and the effective temperature Teff (lower
panel). Solid lines represent the numerical results obtained by solving
the Fokker-Planck equation. The dashed lines in the upper and central
panels indicate the evolution of ωm and �ω given by the analytical
expression ωM = 1.2ω0(Teff/�)1/4 and Q = ωM/�ω = 1.71 valid
at criticality. The dot-dashed line in the upper panel is given by
Eqs. (75) and (74). The parameters are � = 1000ω0, εP = εc, T = 0,
and V/� = 5 × 10−3.

for γ <
√

2ωt and a single maximum at ω = 0 for γ �
√

2ωt.
Assuming that ωM plays the role of ωt we plot as a dot-dashed
line in the upper panel of Fig. 9 the expected behavior of the
maximum on Sxx(ω) as predicted by Eq. (74). This agrees
remarkably well with the full numerics, even if the origin of
the peak is due to quartic fluctuations. We think that the reason
is that the dissipation dominates, thus it is not very important
the origin of the peak. Pushing even further the model in the
overdamped regime we looked at the evolution of the peak by
calculating the value of ω for which Sxx(ω2) = Sxx(0)/2. We
find

ω2 =
⎡
⎣ω2

t − γ 2

2
+

√(
ω2

t − γ 2

2

)2

+ ω4
t

⎤
⎦

1/2

. (75)

We compare then 2ω2 with the full width half maximum found
numerically. Note that numerically when the peak has only
one side that allows us to find the half value we simply double
the distance from the maximum to this frequency. Again a
comparison of the linear model and the full numerics works
remarkably well.

VIII. CONCLUSIONS

In this paper we have studied the transition to a mechanical
bistability induced by the strong coupling between a mechani-
cal degree of freedom and the charge in a quantum dot. We have
considered the experimentally relevant regime of � � ω0. We
have studied the phase diagram of the problem as a function
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of the bias voltage (cf. Fig. 1), the temperature (cf. Fig. 8), and
the gate voltage (cf. Figs. 5 and 6). The critical value of the
coupling εc to observe the transition depends on the voltage
quadratically [cf. Eq. (11)] and on the temperature linearly
[cf. Eq. (63)]. Since reaching large coupling is a difficult
experimental problem, the ideal situation for the observation of
the transition is the low-temperature and low bias voltage case
for which εc = π�. We investigated this limit in a previous
publication [38]. One of the main messages was that the
mechanical degrees of freedom had a much stronger response
at the transition than the electronic ones. To clarify better this
point in the present paper we considered in detail the behavior
of the conductance (cf. Fig. 3). We find that it has a singular
behavior at exactly vanishing temperature and bias voltage, but
in practice it becomes smooth very rapidly when V > 0 and
it has a slow power-law decrease for large coupling. Thus for
sufficiently large coupling this leads to a well defined blockade
[19], but in the range relevant for the present experiments
the conductance does not provide an unambiguous proof of
the bistability. For this reason we investigate in detail the
quantities that are directly related to the mechanical degrees
of freedom. The main effect at the transition is the softening
of the mechanical mode as predicted by the behavior of the
electronic effective potential. This is reflected in the response
function to an external driving force, in the ring-down time,
and in particular in the displacement fluctuation spectrum
Sxx(ω) [38]. Here we have investigated in detail the behavior
of the current-spectral density SII (ω). This quantity has been
measured for suspended carbon nanotubes [33]. We found that
measurement of SII (ω) can give a direct access to Sxx(ω),
but in a simple way only deep in the bistable phase. Actually
in the most interesting case of resonant tunneling (�ε0 = 0)
the transparency of the junction depends quadratically on the
displacement, leading to a relation (44) between SII and Sxx ,
that breaks down at the transition due to the strong nonlinearity.
One can nevertheless obtain the behavior of the current noise,
that has similar remarkable features of Sxx at the transition [cf.
Eqs. (49) and (50)]. The behavior of the peak position (ωM )
and of its width constitutes robust fingerprints of the transition.

We investigated the role of a detuning of the dot level
�ε0 and of a finite temperature T on this critical behavior.
We showed that the dependence of the mode softening with
�ε0 is extremely sharp close to criticality, scaling with
(3|�ε0|/�)1/3. This is in striking contrast with the Lorentzian
behavior expected in the weak-coupling limit and actually
observed in all current experiments. We found that the main
effect of the temperature is to change the value of the critical
coupling needed to observe the transition and, of course, to
increase the fluctuations by changing the effective temperature.
Finally we showed that the effect of a dissipation not due to the
electrons is actually in general useful to keep the oscillator cold
in the case where the voltage bias is larger than the electronic
temperature.

We gave thus a global picture of the transition, investigating
the main physical quantities, and showing that several features
can be used to characterize without ambiguity the transition
to the bistable state. These results give clear indications
opening the way to the observation of this phenomenon with
state-of-the-art experiments.

The experimental observation of the transition would indi-
cate that one has entered a completely different regime, where
the interaction due to a single electron has a dramatic effect
on transport and mechanical behavior. In molecular devices
these kinds of effects might have been observed [47–50], but
in these systems is nearly impossible to tune the electron-
phonon coupling. Observation of the transition in nanoelectro
mechanical systems, like the suspended carbon nanotubes,
would then open the way to controlled investigations of the
strong-coupling regime. The increase in the coupling leads
naturally to an increase in the sensitivity of the detection, with
improvement in the sensitivity of the device (for instance for
mass or force detection). From the fundamental point of view, a
better understanding of the behavior of mechanical resonators
in the ultrastrong coupling regime could pave the way for
testing decoherence [51] as well as reaching the ultimate limits
in the control of mechanical motion at the nanoscale [52].

From the theoretical point of view there are still open
questions. At the moment it is difficult to perform experiments
in the quantum regime (ω0 ∼ T ), but the observation of very
high-frequency mechanical resonators [32] leaves open the
possibility of reaching at some point this limit and thus should
motivate theoretical studies. An even more stringent question
is opened by a recent publication [53], where by mapping the
quantum problem to an effective Kondo problem it was shown
that the bistability in the quantum regime may be washed out.
The study was performed in equilibrium and focused only on
the probability distribution. An investigation of the response
functions Sxx in that regime would be extremely interesting in
order to clarify the expected evolution of measurable quantities
at the transition for low temperatures.
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APPENDIX: DERIVATION OF 〈n〉 AND 〈n(t)n(0)〉
In this Appendix we present a derivation [54] of the 〈n〉

and 〈n(t)n(0)〉 based on the method known as input-output
theory widely used in quantum optics for bosonic fields (see for
instance Ref. [55]), but much less used to describe fermions.
We consider the Hamiltonian (1) for given εd = ε0 − F0x: x

here is a constant c number. The Hamiltonian is quadratic
in the fermionic operators. One can then calculate exactly
all correlation functions. We begin by writing the equation
of motions for the fermionic operators in the Heisenberg
representation:

ḋ(t) = −iεd d(t) − i
∑
αk

t∗α cαk(t)

ċαk(t) = −iεαk cαk(t) − itα d(t). (A1)

It is convenient to introduce new operators: d̃(t) =
exp(iεd t)d(t) and c̃αk(t) = exp(iεd t)cαk(t). In terms of these
operators we can solve the second of the two equations (A1):

c̃αk(t) = −itα

∫ t

0
e−i�αk (t−t ′)d̃(t ′)dt ′ + e−i�αkt c̃αk(0), (A2)
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where we have defined the energy difference �αk = εαk − εd

and c̃αk(0) is the initial condition for the equation. Substituting
the form (A2) into Eq. (A1) we have

˙̃d(t) = −
∑
αk

[
|tα|2

∫ t

0
e−i�αk (t−t ′)d̃(t ′)dt ′ + it∗αe−i�αkt c̃αk(0)

]
.

(A3)
Since the leads are metallic the summation over k can be
replaced by an integration over the energy by defining the den-
sity of states of the system: ρα(να) = ∑

k δ(να − �αk). In the
wide-band approximation we neglect the energy dependence
of the density of states and we obtain∑

k

|tα|2
∫ t

0
dt ′e−i�αk (t−t ′) = 2�α δ(t − t ′),

where we have introduced �α as defined in Sec. II.
It is convenient to define an incoming field:

c̃α,in(t) =
∑

k

e−i�αkt cαk(0). (A4)

Defining tα = |tα| exp(−iφα) we have

˙̃d(t) = −�d̃(t) −
∑

α

ie−iφα (�α/π ρα)1/2c̃α,in(t) (A5)

that can be solved by Fourier transform:

d̃(ω) = −iχ (ω)
∑

α

eiφα (�α/π ρα)1/2 c̃α,in(ω), (A6)

where we have defined χ (ω) = (iω + �)−1.
In order to be able to compute the correlation functions

we need to specify the averages of the c operators for t =
0. We assume that the Fermions are in thermal equilibrium

for t = 0:

〈c†α,k(t)cβ,k′(0)〉 = δα,βδk,k′eiεαk tfF (εαk − μα), (A7)

〈cα,k(t)c†β,k′(0)〉 = δα,βδk,k′e−iεαk t [1 − fF (εαk − μα)]

(A8)

with vanishing 〈cc〉 and 〈c†c†〉 and where we have defined
the Fermi distribution function fF (ε) = 1/(1 + eε/T ). One can
then obtain the form of the correlation function for d:

〈d†(τ ) d(0)〉ω = 2|χ (ω − εd )|2
∑

α

�α fα(ω), (A9)

where fα(ω) = fF (ω − μα).
At equal time (t = 0) Eq. (A9) gives the average charge on

the dot,

〈n〉 = 2
∫ +∞

−∞

dω

2π

�LfL(ω) + �RfR(ω)

�2 + (ω − εd )2
, (A10)

that leads to Eq. (3) in the main text.
We consider now Snn(t). By using Wick’s theorem we can

write it as a product of two correlation functions of the form
(A9): Snn(t) = 〈d†(t)d(0)〉〈d(t)d†(0)〉. The Fourier transform
gives then

Snn(ω) =
∑
α,β

∫ +∞

−∞

dω′

2π

2�αfα(ω′)
�2 + (ω′ − εd )2

·

× 2�β[1 − fβ(ω′ − ω)]

�2 + (ω′ − ω − εd )2
(A11)

from which the expressions Eqs. (4) and (5) can be derived.
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[45] Y. M. Blanter and M. Büttiker, Phys. Rep. 336, 1 (2000).
[46] Handbook of Mathematical Functions: With Formulas, Graphs,

and Mathematical Tables, edited by M. Abramowitz and I. A.
Stegun, 9th ed., Dover Books on Mathematics (Dover, New
York, 2013).

[47] N. Tao, Nat. Nanotechnol. 1, 173 (2006).
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