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Tunable anomalous Andreev reflection and triplet pairings in spin-orbit-coupled graphene
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We theoretically study scattering process and superconducting triplet correlations in a graphene junction
comprised of ferromagnet-RSO-superconductor in which RSO stands for a region with Rashba spin-orbit
interaction. Our results reveal spin-polarized subgap transport through the system due to an anomalous equal-spin
Andreev reflection in addition to conventional backscatterings. We calculate equal- and opposite-spin pair
correlations near the F-RSO interface and demonstrate direct link of the anomalous Andreev reflection and
equal-spin pairings arisen due to the proximity effect in the presence of RSO interaction. Moreover, we show
that the amplitude of anomalous Andreev reflection, and thus the triplet pairings, are experimentally controllable
when incorporating the influences of both tunable strain and Fermi level in the nonsuperconducting region.
Our findings can be confirmed by a conductance spectroscopy experiment and may provide more insights into
the proximity-induced RSO coupling in graphene layers reported recently in experiments [A. Avsar et al., Nat.
Commun. 5, 4875 (2014); Z. Wang et al., Phys. Rev. Lett. 114, 016603 (2015); J. B. S. Mendes et al., Phys.
Rev. Lett. 115, 226601 (2015); S. Dushenko et al., Phys. Rev. Lett. 116, 166102 (2016)].
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I. INTRODUCTION

Ferromagnetism and s wave superconductivity are two
phases of matter with incompatible order parameters. The in-
terplay of superconductivity and ferromagnetism in a junction
platform results in intriguing and peculiar phenomena [1–3].
For instance, in a standard uniform superconductor-
ferromagnet-superconductor (S-F-S) junction, supercurrent
can go under multiple reversals when varying temperature,
exchange field, and junction thickness [4]. These sign reversals
are due to the apparence of triplet opposite-spin pairings
(OSPs) and thus the oscillation of Cooper pairs’ amplitude in
the time-reversal broken region, i.e., F [1,2,5,6]. If magnetiza-
tion in the F region follows a nonuniform pattern a new type of
superconducting correlations arises: triplet equal-spin pairings
(ESPs). The equal-spin pair correlations are long range and can
extensively propagate in materials with uniform magnetization
and strong scattering resources [1–3,6]. This long range nature
of spin-polarized superconducting correlations has turned
the ESPs to a highly attractive perspective in nanoscale
spintronics [3,7–13]. Another source to generate the ESPs is a
combination of spin orbit interactions and uniform Zeeman
field proximitized to a superconducting electrode [16–19].
One of the main advantages of making use of spin orbit
interactions to induce the ESPs is an all electrical control over
the ESPs [14–21].

Graphene is a single layer of carbon atoms, arranged in
hexagonal lattices, with a linear dispersion at low energies and
tunable Fermi level that can be simply manipulated by a gate
voltage [22,23]. These exceptional characteristics in addition
to a long spin relaxation time of moving charged carriers,
compared to their counterparts in a standard conductor, has
turned graphene to a promising material for spintronics
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devices [22,23]. Superconductivity, ferromagnetism, and spin
orbit interactions can be induced into graphene layers by
means of the proximity effect [24–34]. It was experimentally
demonstrated that a graphene monolayer can support strong
Rashba spin orbit interaction of the order of ∼17 meV by prox-
imity to a semiconducting tungsten disulphide substrate [30].
Recent developments have achieved large proximity-induced
ferromagnetism and spin orbit interactions in CVD grown
graphene single layers coupled to an atomically flat yttrium
iron garnet [31,33,34]. To demonstrate the existence of
proximity-induced RSO interaction in the graphene layer, a
dc voltage along the graphene layer is measured by spin to
charge current conversion which is interpreted as the inverse
Rashba-Edelstein effect [31,33,34]. The Edelstein effect was
first discussed in connection with the spin polarization of
conduction electrons in the presence of an electric current [35].
Furthermore, graphene has the capability of sustaining strain
and deformations without rupture [36,37]. The application
of strain to graphene layers can result in important and
interesting phenomena [38–47]. For example, the interplay
of massive electrons with spin orbit coupling in the presence
of strain in a graphene layer yields controllable spatially
separated spin-valley filtering [38,39]. Therefore, this property
can be employed as a means to control the spin-transport
graphene-based spintronics devices [46].

In this paper, we incorporate RSO interaction, superconduc-
tivity, ferromagnetism, and two different types of strain in a
setup of graphene-based F-RSO-S contact (depicted in Fig. 1)
and propose an experimentally feasible device to generate
“controllable” odd-frequency superconducting triplet correla-
tions. Our results reveal a finite anomalous equal-spin Andreev
reflection due to the RSO interaction. We demonstrate that this
anomalous reflection results in nonvanishing superconducting
ESPs in the ferromagnetic region near the F-RSO interface.
We also vary the Fermi level (that can be experimentally
achieved using a gate voltage) and the strength of an applied
strain and show that by simply tuning these two physical
quantities one can suppress the amplitude of opposite-spin
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FIG. 1. Schematic of the graphene-based F-RSO-S junction. The
junction resides in the xy plane and the RSO region has a thickness
of L that extends from x = 0 to L. The uniform ferromagnetic and
superconducting regions are semi-infinite and constitute interfaces
with the RSO region at x = 0 and x = L. We denote the displacement
unit vectors of graphene unit cells by δ1,2,3. A possible trajectory of
spin-up particles incident at the F-RSO interface within the F region
is shown.

superconducting correlations while simultaneously increasing
the equal-spin pairings at the F-RSO interface. Furthermore,
we study the charge and spin conductances of the junction
and show that the anomalous equal-spin Andreev reflection
yields a finite tunable spin-polarized subgap conductance
which is experimentally measurable. Such a spectroscopy
experiment can be an alternative to those of Refs. [30,31,33,34]
for demonstrating the existence of proximity-induced RSO
in graphene layers and determining its characteristics. We
complement our findings by investigating the system’s band
structure and discussing its aspects.

The paper is organized as follows. We first summarize the
theoretical framework used in Sec. II. The results are discussed
in Sec. III in three subsections: in subsec. III A we study the
band structure of system and discuss various reflection and
transmission probabilities, in subsec. III B the explored anoma-
lous Andreev reflection is linked to the ESPs, and we study the
spin and charge conductances in subsec. III C. More details of
analytics and calculations are discussed in the Appendix. We
finally summarize concluding remarks in Sec. IV.

II. FORMALISM AND THEORY

Because of the specific band shape of monolayer graphene
in low energies, carriers in such a system can be treated
as massless Dirac fermions [22]. Thus, to describe the low-
energy excitations of the structure shown in Fig. 1, one can
incorporate the Dirac Hamiltonian with the Bogoilubov–de
Gennes equation to reach at a Dirac–Bogoliubov–de Gennes
(DBdG) equation in the presence of RSO coupling and
exchange field as follows [48]:(
HD + Hi − μi �

�� μi − T [HD − Hi]T −1

)(
u

v

)
= ε

(
u

v

)
,

(1)

where ε is the quasiparticles’ energy and u and v refer to
the electron and hole parts of spinors, respectively. HD =

s0 ⊗ (σxv
i
xkx + σyv

i
yky) is a two dimensional massless Dirac

Hamiltonian which governs low energy excitations in one
valley of graphene and T is the time reversal operator [23].
kx and ky are components of wave vector in the x and y

directions, respectively. σi and si are Pauli matrices, acting on
pseuedospin and real spin spaces of graphene (σ0 and s0 are
2 × 2 unit matrices) and natural units are used: � = 1. The
index i labels F, RSO, or S regions as seen in Fig. 1:

Hi(x) =

⎧⎪⎨
⎪⎩
HF = (sz ⊗ σ0)h, x � 0,

HRSO = λ(sy ⊗ σx − sx ⊗ σy), 0 � x � L,

HS = −U0s0 ⊗ σ0, x � L,

(2)
where L indicates the thickness of RSO region. Here λ is the
energy scale of spin orbit coupling and U0 is the electrostatic
potential in the superconducting region. Because of valley
degeneracy in a single layer of graphene, one can simply
multiply final results by a factor of two. In a graphene
layer under strain vi

x �= vi
y which implies anisotropic Fermi

velocity in F, RSO, and S regions. The Fermi energy in each
region is shown by μi . In the Hamiltonian of F segment,
Eq. (2), h represents the exchange field which is added to
the Dirac Hamiltonian via the Stoner approach. For simplicity
in our calculations, we assume that h is oriented along the
z direction without loss of generality [49]. This choice turns
the exchange field to a good quantum number that allows
for explicitly considering spin-up and -down quasiparticles
in the F region and helps having insightful analyses of spin-
dependent phenomena in the system. The superconducting gap
� is a matrix in the particle-hole space (nonzero in L � x) and
is given by

� = �(x − L)

⎛
⎜⎜⎜⎝

�0e
iφ 0 0 0

0 �0e
iφ 0 0

0 0 �0e
iφ 0

0 0 0 �0e
iφ

⎞
⎟⎟⎟⎠, (3)

in which �0 is the superconducting gap at zero temperature, φ
is the macroscopic phase of superconductor, and � denotes a
Heaviside step function. This step function assumption made
is valid as far as the Fermi wavelength in the S region is
much smaller than F and RSO regions, i.e., λS

F � λF
F ,λRSO

F .
Otherwise, a self-consistent approach is favorable to accurately
determine the spatial profile of the pair potential [49,50]. We
also assume that the F-RSO junction can be described by a step
change from the ferromagnetic region to RSO. Although we
initially do not consider a smooth change at this junction (that
can happen in realistic systems due to the proximity effect),
each region eventually gains its own neighbor properties
near the boundary by matching their wave functions at this
location [23]. We note that such modifications, including weak
nonmagnetic impurities and moderately rough interfaces, can
only alter the amplitude of scattering probabilities and not the
conclusions of our work.

To describe a strained graphene layer, we follow Ref. [37].
Expanding the tight-binding model band structure with
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arbitrary hopping energies around the Dirac point, one finds

ε = ±
∣∣∣∣∣

3∑
i=1

tie
−ik·δ

∣∣∣∣∣, (4)

where δ is the lattice vector as depicted in Fig. 1. The position
of one of the Dirac points KD is (cos−1(−1/2η)/

√
3ax,0).

Here, we assume t1,2 = t�, t3 = t , and η = t�/t in our calcula-
tions (see Ref. [51]). These assumptions constitute asymmetric
velocities to the Dirac fermions in different directions.

To satisfy the mean field approximation in the S region
(which is experimentally relevant) namely, the Fermi wave
vector in the superconductor should be much larger than its
F and RSO counterparts kS

F � kF
F ,kRSO

F [23], we consider a
heavily dopped superconductor, that is achieved by U0 �
ε,�0 [48]. The resulting wave functions are 1 × 8 spinors
(see the Appendix). We match these wave functions at the
boundaries, i.e., at x = 0 and x = L, and calculate various
probabilities of the electron-hole scatterings. We normalize
energies by the superconducting gap at zero temperature
�0 and lengths by the superconducting coherent length
ξS = �vF /�0. The gap of superconductor depends on the
temperature (T ) and we consider T = 0.01Tc throughout
our calculations in which Tc is the critical temperature of
superconductor. We also set the length of RSO region fixed
at L = 0.2ξS .

III. RESULTS AND DISCUSSIONS

In this section we present the main results of the paper.

A. Band structure and reflection probabilities

The electronic band structure of each region can provide
helpful insights into the properties of system, particularly the
various backscatterings and superconducting correlations. To
obtain dispersion relations and corresponding spinors in each
region, we diagonalize the DBdG Hamiltonian Eq. (1). The

system band structure at low energies within F, RSO, and S
regions can be expressed by

ε = ±μF ± [(
vF

x kF
x

)2 + (
vF

y ky

)2]1/2 ± h, (5)

ε = ±μRSO + ζ
[(

vRSO
x kRSO

x

)2 + (
vRSO

y ky

)2 + λ2
]1/2 + ηλ,

(6)

where η,ζ = ∓ ± 1 and

ε = [|�0|2 + (
μS + U0 ±

√(
vS

x kS
x

)2 + (
vS

y ky

)2
)2]1/2

. (7)

Figure 2 illustrates the excitation spectrums in the F, RSO,
and S regions. The superconductor is assumed highly doped
so that the low energy excitation spectrum is a parabola. In our
calculations of the reflection and transmission probabilities
we consider a scenario where an electron with spin-up hits
the F-RSO interface. Due to the tunable Fermi level in a
graphene layer, one can consider three regimes: (i) undoped
regime with μ = 0, (ii) low doped limit with μ ≈ �0, and
(iii) heavily doped limit with μ � �0. In the RSO region,
the band structure has two subbands considering η and ζ

({±,∓}) signs. Due to the subbands, the RSO region serves
as a spin mixer in the transport mechanism. Therefore, when
an electron with spin-up hits the F-RSO interface, there is
a finite probability for a hole reflection with spin-up. The
influences of μ and h are shown in the F region. The solid
circles show the electrons in the bands and circles stand for
the holes. For a subgap electron with spin-up and ε < μ + h,
corresponding backscattering possibilities are labeled by a–e.
The backscattering of a → b is the normal electron reflection,
a → c is the normal spin-flipped, a → d is the anomalous
Andreev reflection where the backscattered hole lies in the
conduction band, and a → e is the conventional Andreev
reflection where the backscattered hole passes through the
valance band. We also show a case where the energy of incident
electron takes a value of ε > μ + h by a′-e′ labels. In this

0μ = 0μ ≠

μ

Ferromagnet Rashba spin orbit coupled region Superconductor 

{+,+} 
{−,+} 

{+, −} 

{−,−} 

2 ∆0 

μ

h 

μh 

spin-↑ sub-band spin-↓ sub-band 

ε 

ε 

a b c 

d e 

ε' 

ε' 

a' b' c' 

d' e' 

{+,+} 

{−,+} 

{+, −} 

{−,−} 

k 

ε

FIG. 2. Band structure of each region. The left panel shows the band structure of F region, illustrating different reflection possibilities
including retro and specular reflections discussed in the text. The circles stand for the holes while the solid circles show the electrons. The
middle panel is the band structure of RSO region at the charge neutrality point and away from it, i.e., μ = 0 and μ �= 0, respectively. The ± signs
refer to ζ and η in Eq. (6) due to the band splitting effect of RSO interaction. The right panel is the band structure of a doped superconductor.
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FIG. 3. Backscattering probabilities of an incident spin-up particle at x = 0 as a function of applied voltage eV across the junction and
the transverse momentum qnξS . (a) Conventional normal reflection |r↑

N |2, (b) conventional Andreev reflection |r↓
A|2, (c) spin-flipped normal

reflection |r↓
N |2, and (d) anomalous Andreev reflection |r↑

A|2 vs the transverse component of wave vector qn. The vertical axis is the applied
voltage across the junction. Top row: μ = h = �0 and λ = 1.5�0. Bottom row: μ = 0.5�0, h = 7.0�0, and λ = 1.5�0.

case, the anomalous Andreev reflected hole passes through the
valence band.

In an undoped graphene layer, the chemical potential
is vanishingly small μ ≈ 0. Depending on the energy of
the incident particle, a new type of Andreev reflection can
take place which is called specular Andreev reflection [48].
The specular Andreev reflection occurs when an electron in
the conduction band is converted into a hole in the valence
band upon the scattering process. It shows the possibility
of an unusual electron-hole conversion in the reflection of
relativistic electrons in graphene junctions [48]. In the retro
Andreev reflection however electron and hole both lie in the
conduction band as shown in Fig. 2. To gain more insights
into various reflections that shall be discussed below, we
have presented details of calculations and reflections in the
Appendix. In the low doped regime (μ ≈ �0), by tuning
the system parameters, different effects can occur. (1) μ =
h ≈ �0: in this limit, if the RSO parameter is zero (λ = 0),
the Rashba region acts similarly to a normal region with a
finite width where the particles can experience resonances
upon multiple reflections from boundaries. Hence there are
only two reflection probabilities present: (a) conventional
normal reflection (r↑

N ) and (b) either retro Andreev reflection
(ε � μ + h) or specular Andreev reflection (ε � μ − h),
depending on the quasiparticle’s energy discussed above.
The conventional normal reflection dominates at energies
below the superconducting gap (ε � �0) [48]. In this regime,
because μ and exchange field h are equal, the population
of spin-down electrons is minority and thus r

↓
N ∼ 0 and

r
↓
A has a finite probability. (2) At nonzero values of λ, a

spin-up particle arriving from the F region can undergo a spin
mixing process in the RSO segment. In this limit, in addition
to the normal reflection r

↑
N , the probabilities of anomalous

Andreev reflection (r↓
A) and unconventional normal reflection

(r↓
N ) have finite amplitudes (see the Appendix). Using this

choice of parameters, the conventional Andreev reflected
hole is placed in the valence band while the anomalous one
passes through the conduction band. Moreover, a hole in
the conduction band belongs to the retroreflection process,
whereas a hole in the valence band belongs to the specular
reflection mechanism [48]. Thus the reflected holes can follow
two different processes inside the F region depending on their
spin orientation (see left panel of Fig. 2). In a heavily doped
graphene μ � �0, the Andreev reflection is of retro type. The
propagation of carriers are limited by critical angles that can
describe their incident or reflection angles:

αc
e↓ = arcsin

(
ε + μ − h

ε + μ + h

)
,

αc
h↓ = arcsin

(
ε − μ + h

ε + μ + h

)
,

αc
h↑ = arcsin

(
ε − μ − h

ε + μ + h

)
. (8)

As seen, in a regime where μ = h � �0, ε, the critical
angles αc

e,↓ ≈ αc
h,↓ ≈ 0 vanish. Therefore, their corresponding

probabilities do not contribute to the quantum transport.
Our investigations demonstrate that in a certain regime of
parameter space where λ = μ = h, the anomalous Andreev
reflection highly dominates in the eV − qn space. This regime
results in zero conventional Andreev reflection while at λ � h

the probability of anomalous Andreev reflection at the edge
of superconducting gap becomes unity. This effect suggests
a spin-polarized Andreev-Klein reflection [52]. Note that the
existence of phenomena described above are dependent on the
presence of λ.

Figure 3 exhibits backscattering probabilities of an incident
particle with spin-up at the F-RSO interface. Throughout our
calculations, we consider a fairly narrow region that allows
more clear analysis of the ESPs and anomalous Andreev
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reflection. In the top row panels we set the chemical potential
at the superconducting gap μ = �0 and plot probabilities as a
function of an applied voltage across the junction eV/�0 and
the transverse particle’s momentum qnξS which is a conserved
quantity during the scattering process throughout the system.
Here we also consider vi

x = vi
y corresponding to zero strain

exertion into the system. As seen, in the presence of RSO
region, an Andreev reflected hole with the same spin direction
as the incident particle |r↑

A|2 can occur with a finite probability.
Furthermore, by calibrating μ, spin-orbit-coupling strength
λ, and strain one can suppress the conventional Andreev
reflection and simultaneously generate anomalous Andreev
reflected holes with a finite probability. We note that |r↑

A|2 is
absent in uniformly magnetized junctions without the RSO
region [52–54]. In Fig. 3, bottom row, we change μ to 0.5�

and h = 7.0�. Comparing panels (a)–(d), we see that by
tuning the Fermi level one can have a great control over
a dominant reflection type at certain applied voltages. For
instance, through our specific choice of parameters’ value,
the anomalous Andreev is well separated from the standard
Andreev and spin-flipped normal reflections. Hence, at low
voltage differences across the junction, one can access a
regime where the anomalous Andreev reflection is the highly
dominated reflection simply by tuning the Fermi level. This
interesting regime can be determined through a conductance
experiment that shall be discussed later. Also, the results can be
understood by the band structure analysis presented above and
in Eq. (8). Another experimentally controllable parameter that
a graphene layer offers is the exertion of an external mechanical
tension into the graphene sheet. Our results have found that
strain can also change the Andreev and normal reflections the
same as what was seen for λ and μ. That is, the strain can render
the system to a regime where the anomalous Andreev reflection
dominates. We now proceed to discuss the generation of triplet
pairs and the properties of charge and spin conductances in a
junction of F-RSO-S.

B. Equal- and opposite-spin pairings

It is of fundamental importance to find an experimentally
feasible fashion to have control over the amplitude and
creation of the equal-spin triplets. Such a control would
help to unambiguously reveal the existence of such odd-
frequency superconducting correlations in a hybrid structure.
As discussed above, the RSO parameter λ is experimentally
controlable through a simple external electric field [31,33,34].
The graphene layers have also provided a unique opportunity
to tune the Fermi level of a condensed matter system through
applying a gate voltage. To further explore the relation between
the anomalous Andreev reflections and triplet correlations,
we calculate the opposite- and equal-spin pair correlations
denoted by f0 and f1 [49,55,56]. Following Ref. [49], the OSP
and ESP in the graphene system we consider can be expressed
by

f0(x,t) = 1

2

∑
β

ξ (t)[u↑
β,Kv

↓∗
β,K ′ + u

↑
β,K ′v

↓∗
β,K

−u
↓
β,Kv

↑∗
β,K ′ − u

↓
β,K ′v

↑∗
β,K ], (9)

-4

-2

0

2

4

-4

-2

0

2

4

-1 -0.5 0
0

2

4

-1 -0.5 0
-2

0

2

4

FIG. 4. Real and imaginary parts of OSP (f0) and ESP (f1) as a
function of position in the F region x � 0. The Fermi energy is set at
μ = 1.0�0,4.0�0, and 7.0�0 and the voltage difference is assumed
constant at eV = 0.5�0. The other parameters are the same as those
of Fig. 3, bottom row.

f1(x,t) = −1

2

∑
β

ξ (t)[u↑
β,Kv

↑∗
β,K ′ + u

↓
β,Kv

↓∗
β,K ′

+u
↑
β,K ′v

↑∗
β,K + u

↓
β,K ′v

↓∗
β,K ], (10)

where K and K ′ denote different valleys and β stands for A
and B sublattices [49]. Here

ξ (t) = cos(εt) − i sin(εt) tanh(ε/2T ), (11)

in which t is the relative time in the Heisenberg picture [49].
Figure 4 illustrates the real and imaginary parts of OSP (f0) and
ESP (f1) near the F-RSO interface in the ferromagnetic region
shown in Fig. 1, i.e., x � 0. The different curves correspond
to different Fermi levels equal to μ = 1.0�0,4.0�0,7.0�0.
We set the voltage difference across the junction fixed at
eV = 0.5�0 whereas other parameters are identical to those
of Fig. 3. When we set λ = 0, the ESP f1 vanishes and
only f0 remains nonzero. This is consistent with the known
findings in a uniform ferromagnet coupled to an s wave
superconductor where the only nonvanishing triplet pairing
is f0 [1,2,49,55,56]. A nonzero λ however results in a finite
nonvanishing ESP f1 in addition to the presence of f0. As seen
in Fig. 3, for λ �= 0, by calibrating μ one can highly suppress
the amplitude of OSP f0 while increasing f1. This finding is
consistent with those of Ref. [49] for a F-S-F contact with
noncollinear magnetization alignments. This is however in
stark opposition to a conventional metal counterpart where the
tunable chemical potential is absent [49,56–58]. We note that
the amplitude of anomalous Andreev reflection discussed in
Fig. 3 possesses identical aspects to the ESPs that demonstrates
a direct link of the equal-spin parings and the anomalous
Andreev reflected holes.

We also introduce two kinds of strain: strain applied along
the armchair direction (A strain) and zig-zag direction (Z
strain), i.e., y and x directions in Fig. 1, respectively. The
applied tension into the graphene lattice causes anisotropic
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FIG. 5. Real and imaginary parts of OSP (f0) and ESP (f1) as a
function of position in the F region x � 0 in the presence and absence
of A and Z strains at a voltage difference of eV = 0.5� across the
contact. The chemical potential is also set at μ = 5.0�0.

velocities in the x and y directions in each region i: vi
x,v

i
y

and also changes the coupling energy between carbon atoms
t0 ∼ 2.7 eV. To model the A and Z strain, we consider a
strain strength of order of ∼20%, which is equivalent to
s = 0.2 in our model (see Ref. [51]). In this amount of
stress s, the coupling energies change to t1 = t2 = 0.96t0
and t3 = 0.5t0 for the A strain, while t1 = t2 = 0.56t0 and

t3 = 1.1t0 for the Z strain [51]. Using these parameters, we
calculate the corresponding anisotropic velocities of Dirac
fermions in strained graphene lattice. Figure 5 exhibits the
real and imaginary parts of f0 and f1 pair correlations in
x � 0 region for a strain-free junction and in the presence of
A and Z strain. For simplicity in analysis, we set identical
strains in each region, the chemical potential is fixed at
μ = 5.0�0, exchange field h = 7.0�0, λ = 1.5�0, and a
voltage difference at eV = 0.5�0 across the junction. As
seen, the amplitudes of OSPs f0 and ESPs f1 are highly
influenced by the strain introduced. Interestingly, in the case of
Z strain, the amplitude of f0 rapidly oscillates and diminishes
while f1 becomes less oscillating and smoother. This behavior
is suggestive of an experimentally feasible fashion to have
control over the amplitude of both f0 and f1 so that one can
suppress f0 and simultaneously enhance f1 in the same system.
We have also investigated the backscattering amplitudes in
the presence of strain (not shown). As one can expect, in
the Z-strain mode, the anomalous Andreev reflection survives
while the conventional Andreev reflection is vanishingly small
that reaffirms the direct connection of f1 and the anomalous
equal-spin Andreev reflection.

C. Charge and spin conductances

An experimentally measurable quantity in such config-
uration is the junction conductance. Using the scattering
coefficients, one can generalize the theory of Blonder-
Tinkham-Klapwijk [59] (see also Ref. [60]) to calculate the
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FIG. 6. (a)-(a′) Normalized charge (G) and spin (Gs) conductances as a function of an applied voltage eV across the F-RSO-S junction for
different values of the RSO parameter λ = 0.0,1.0,2.0, and 3.0�0. Here G0 = G↑ + G↓ and we consider μ = �0,L = 0.2ξS , and h = 7.0�0.
(b)-(b′) The normalized charge and spin conductances for various values of the chemical potential μ = 1.0�0,4.0�0, and 7.0�0 where
λ = 1.5�0 and h = 7.0�0. (b)-(b′) The normalized charge and spin conductances for A, Z strain, and in the absence of strain at μ = 5.0�0,
h = 7.0�0, and λ = 1.5�0.
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charge conductance via

G =
∫

dq
∑

σ,σ ′=↑,↓
Gσ

(
1 − |rσ

N |2 + |rσ ′
A |2), (12)

and the spin-polarized conductance:

Gs =
∫

dq
∑

σ,σ ′=↑,↓
Gσ

(
1 − |rσ

N |2 + |rσ ′
N |2 − |rσ ′

A |2 + |rσ
A|2),

(13)
where Gσ = 2�e|ε + μ + σh| and the junction width is
assumed wide enough so that one can replace

∑
n → ∫

dq.
The behavior of normalized spin and charge conductances are
shown in Fig. 6. We have normalized the conductances by
G0 = G↑ + G↓. The presence of exchange energy h in the F
region results in an imbalance between particles with different
spin directions and causes polarized currents at eV � �0

(black curve λ = 0). In the presence of RSO coupling λ �= 0,
however, due to the possibility of spin mixing in this region, the
spin-polarized conductance can be also nonzero in the subgap
region eV � �0. The exchange energy and length of RSO
region is kept fixed at h = 7.0�0 and L = 0.2ξS , respectively.
Panels (a) and (a′) illustrate the role of RSO in the charge and
spin conductances. As seen, by increasing λ, the spin subgap
conductance drastically enhances particularly at zero voltage
bias, while the associated charge conductance decreases. The
enhancement of spin subgap conductance traces back to
the generation of equal-spin triplet correlations (see Fig. 4,
corresponding triplet correlations). Figure 6 also shows the
effect of chemical potential in panels (b) and (b′). While the
chemical potential can reduce the charge subgap conductance,
the spin subgap conductance remains about the same at low
voltages for the chosen set of parameters. The changes in the
spin-polarized conductance is more pronounced at larger volt-
ages. The influence of A and Z strain is shown in (c) and (c′).
We see that in the Z-strain mode the spin subgap conductance
is almost largest, while the corresponding charge conductance
is less than A-strain mode. The conductance behaviors are
consistent with the associated backscattering probabilities and
superconducting triplet correlations presented in the previous
subsections.

IV. CONCLUSION

In conclusion, motivated by recent experiments
[30,31,33,34], we have theoretically studied backscattering
probabilities, triplet superconducting correlations, and
charge/spin conductance in a ferromagnet-Rashba spin-orbit-
superconductor graphene-based junction. Our findings offer
an experimentally feasible platform for creating tunable super-
conducting equal-spin triplet correlations. The odd-frequency
triplet correlations are formed near the F-RSO interface
through an anomalous equal-spin Andreev backscattering.
Considering the band structure of system, the anomalous
reflection is allowed due to a band splitting in the presence of
Rashba spin-orbit coupling in the RSO region. We show that
the amplitude of equal-spin pair correlations can be enhanced
by varying the Fermi level in nonsuperconducting region,
exertion of strain into the graphene layer, and controlling
the strength of RSO through an external electric field while
the amplitude of opposite-spin pair correlations suppressed

simultaneously. The anomalous equal-spin Andreev reflection
also causes a nonzero spin-polarized subgap conductance.
These phenomena can be revealed in a conductance
spectroscopy experiment. More importantly, the signatures
of the equal-spin pairings on the experimentally observable
quantities discussed here can supply suitable insights into
the proximity-induced Rashba spin-orbit couplings recently
achieved in experiments [30,31,33,34].
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APPENDIX

The wave functions associated with the dispersion relation
in the F region are

ψ
F,±
e,↑ (x) = (

02,1,±e±iαe
↑ ,04)T

e±ik
F,e
x,↑x,

ψ
F,±
e,↓ (x) = (

1,±e±iαe
↓ ,02,04)T

e±ik
F,e
x,↓x,

(A1)
ψ

F,±
h,↑ (x) = (

04,1,∓e±iαh
↑ ,02)T

e±ik
F,h
x,↑x,

ψ
F,±
h,↓ (x) = (

04,02,1,∓e±iαh
↓
)T

e±ik
F,h
x,↓x,

where 0n represents a 1 × n matrix with only zero entries and
T is a transpose operator. We assume that the junction width
W is enough large so that the y component of the wave vector
ky is a conserved quantity upon the scattering processes and,
therefore, we factored out the corresponding multiplication,
i.e., exp(ikyy). The α

↑(↓)
e,(h) variables are the propagation angles

in the presence of strain and are given by

α
e(h)
↑,(↓) = arctan

(
vF

y qn

vF
x k

F,e(h)
x,↑(↓)

)
. (A2)

The e(h) superscript indicates electron (hole) -like parameters
and ↑ (↓) subscript denotes the spin orientation. The x

component of wave vectors are not conserved during the
scattering processes and can be expressed by

k
F,e
x,↑ = (

�vF
x

)−1
(ε + μF + h) cos αe

↑,

k
F,e
x,↓ = (

�vF
x

)−1
(ε + μF − h) cos αe

↓,

k
F,h
x,↑ = (

�vF
x

)−1
(ε − μF − h) cos αh

↑,

k
F,h
x,↓ = (

�vF
x

)−1
(ε − μF + h) cos αh

↓. (A3)

We denote ki
y ≡ qn that can vary in interval −∞ � qn � +∞.

The x component of the wave vector, however, becomes
imaginary for larger values of qn than a critical value qc.
The wave functions for qn > qc are decaying functions and,
therefore, depending on the junction geometry, are not able to
contribute to the transport process. The critical values can be
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expressed as follows:

qc
e,↑ = (

�vF
y

)−1|ε + μF + h|,
qc

e,↓ = (
�vF

y

)−1|ε + μF − h|,
qc

h,↑ = (
�vF

y

)−1|ε − μF − h|,
qc

h,↓ = (
�vF

y

)−1|ε − μF + h|. (A4)

In contrast to the intrinsic spin-orbit couplings, the energy
spectrum in the presence of RSO is gapless with a splitting of
magnitude 2λ between subbands in the RSO region. The wave
functions associated with the eigenvalues given in the text can
be expressed by

ψ
RSO,±
e,η=+1(x) = (∓if e

+e∓iθe
+ ,−i,1,±f e

+e±iθe
+ ,04)T

e±ik
RSO,e
x,+ x,

ψ
RSO,±
e,η=−1(x) = (±f e

−e∓iθe
− ,1,−i,∓if e

−e±iθe
− ,04)T

e±ik
RSO,e
x,− x,

ψ
RSO,±
h,η=+1(x) = (

04,∓if h
+e∓iθh

+ ,−i,1,±f h
+e±iθh

+
)T

e±ik
RSO,h
x,+ x,

ψ
RSO,±
h,η=−1(x) = (

04,±f h
−e∓iθh

− ,1,−i,∓if h
−e±iθh

−
)T

e±ik
RSO,h
x,− x.

(A5)

Here also the transverse component of wave vector is factored
out due to the conservation discussion made earlier. The x

component of the wave vector, however, is not conserved
during the scattering processes:

kRSO,e
x,η = (

vRSO
x

)−1
(μRSO + ε)f e

η cos θe
η ,

(A6)
kRSO,h
x,η = (

vRSO
x

)−1
(μRSO − ε)f e

η cos θh
η ,

and the definition of auxiliary parameters are

f e
η =

√
1 + 2ηλ(μRSO + ε)−1, θe

η = arctan

(
qnv

RSO
y

vRSO
x k

RSO,e
x,η

)
,

f h
η =

√
1 + 2ηλ(μRSO − ε)−1, θh

η = arctan

(
qnv

RSO
y

vRSO
x k

RSO,h
x,η

)
,

(A7)

where θe(h)
η are the electron and hole propagation angles in the

region with spin-orbit interaction. We note that if the transverse
component of wave vector goes beyond a critical value qc,
the same as what was discussed for the ferromagnet region, the
wave functions turn to evanescent modes. Here, however, since
the RSO region is sandwiched between F and S regions, the
evanescent modes contribute to the quantum transport process.
We thus take both the propagating and decaying modes into
account throughout our calculations.

In the superconductor region, U0 denotes the electrostatic
potential that is very large (U0 � 1) in actual experiments
compared to other system energy scales so that the step
function assumption made above for the pair potential can be
a good approximation in numerous realistic cases. The wave
functions in the superconducting region are given by

ψ
S,±
e,1 (x) = (e+iβ ,±e+iβ ,02,e−iφ,±e−iφ,02)Te±ikS,e

x x,

ψ
S,±
e,2 (x) = (02,e+iβ ,±e+iβ ,02,e−iφ,±e−iφ)Te±ikS,e

x x,

ψ
S,±
h,1 (x) = (e−iβ ,∓e−iβ ,02,e−iφ,∓e−iφ,02)Te±ikS,h

x x,

ψ
S,±
h,2 (x) = (02,e−iβ ,∓e−iβ ,02,e−iφ,∓e−iφ)Te±ikS,h

x x .

(A8)

The parameter β is responsible for the electron-hole conver-
sions at the interface RSO-S and depends on the supercon-
ducting gap:

β =
{+ arccos(ε/�0), ε � �0,

−i arccosh(ε/�0), ε � �0.
(A9)

Similar expressions to those found for the longitudinal com-
ponent of wave vector in the F and RSO region appear for the
S. In the F region, we assume that a right moving electron with
spin-up direction hits the interface of F-RSO with energy ε.
This particle can reflect back as (a) an electron with spin-up
direction (conventional normal reflection), (b) as a hole with
spin-down direction (conventional Andreev reflection), (c) as
an electron with spin-down direction (spin flipped normal
reflection), and (d) as a hole with spin-up direction (anomalous
Andreev reflection). Thus the total wave function in the F
region can be written as

�F(x) = (
02,1,e+iαe

↑ ,04)T
e+ik

F,e
x,↑x + r

↑
N

(
02,1,−e−iαe

↑ ,04)T

× e−ik
F,e
x,↑x + r

↓
N

(
1, − e−iαe

↓ ,02,04)T
e−ik

F,e
x,↓x

+ r
↑
A

(
04,1,e−iαh

↑ ,02)T
e−ik

F,h
x,↑x + r

↓
A

(
04,02,1,e−iαh

↓
)T

× e−ik
F,h
x,↓x, (A10)

where r
↑
N , r

↓
N , r

↓
A, and r

↑
A are the amplitudes of conventional,

anomalous normal reflections, conventional, and anomalous
Andreev reflections, respectively. When an electron hits the
F-RSO interface, it can enter into the RSO region through one
of its subbands and reflect back as an electron or hole upon
collision with the RSO-S interface. Each subband is a mixture
of spin-up and -down due to the presence of RSO coupling.
Hence, in the RSO region, 0 � x � L, the total wave function
is given by

�RSO(x) = a1
(−if e

+e−iθe
+ ,−i,1,f e

+eiθe
+ ,04

)T
eik

RSO,e
x,+ x + a2

(
if e

+eiθe
+ ,−i,1,−f e

+e−iθe
+ ,04

)T
e−ik

RSO,e
x,+ x

+ a3
(
f e

−e−iθe
− ,1,−i,−if e

−eiθe
− ,04

)T
eik

RSO,e
x,− x + a4

(−f e
−eiθe

− ,1,−i,if e
−e−iθe

− ,04
)T

e−ik
RSO,e
x,− x

+ a5
(
04,−if h

+e−iθh
+ ,−i,1,f h

+eiθh
+
)T

eik
RSO,h
x,+ x + a6

(
04,if h

+eiθh
+ ,−i,1,−f h

+e−iθh
+
)T

e−ik
RSO,h
x,+ x

+ a7
(
04,f h

−e−iθh
− ,1,−i,−if h

−eiθh
−
)T

eik
RSO,h
x,− x + a8

(
04,−f h

−eiθh
− ,1,−i,if h

−e−iθh
−
)T

e−ik
RSO,h
x,− x.

(A11)
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As seen, the total wave function in this region involves eight unknown coefficients a1,...,8 for spin-up and -down particles and
holes. Finally, the total wave function in the S region can be written as follows:

�S(x) = t1(eiβ,eiβ,02,e−iφ,e−iφ,02)eikS
x x + t2(02,eiβ,eiβ,02,e−iφ,e−iφ)eikS

x x

+ t3(e−iβ ,−e−iβ ,02,e−iφ,−e−iφ,02)e−ikS
x x + t4(02,e−iβ ,−e−iβ ,02,e−iφ,−e−iφ)e−ikS

x x . (A12)

Here, the transmission coefficients are denoted by t1,2,3,4.
The macroscopic phase of superconductivity φ plays no role
in the geometry considered and thus we set it zero. In the
above wave function, we assumed that the S region is in
a heavily doped regime, i.e., U0 � ε,�0. By matching the

wave functions at the interfaces, i.e., �F(x) = �RSO(x) at
x = 0 and �RSO(x) = �S(x) at x = L, we obtain the unknown
scattering coefficients. The resulting coefficients however are
very large and complicated expressions and we skip presenting
them.
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