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Motivated by a recent experiment [Nature (London) 531, 206 (2016)], we consider charging of a nanowire
which is proximitized by a superconductor and connected to a normal-state lead by a single-channel junction.
The charge Q of the nanowire is controlled by gate voltage eNg/C. A finite conductance of the contact allows
for quantum charge fluctuations, making the function Q(Ng) continuous. It depends on the relation between
the superconducting gap � and the effective charging energy E∗

C . The latter is determined by the junction
conductance in addition to the geometrical capacitance of the proximitized nanowire. We investigate Q(Ng)
at zero magnetic field B and at fields exceeding the critical value Bc corresponding to the topological phase
transition [Phys. Rev. Lett. 105, 077001 (2010); 105, 177002 (2010)]. Unlike the case of � = 0, the function
Q(Ng) is analytic even in the limit of negligible level spacing in the nanowire. At B = 0 and � > E∗

C , the
maxima of dQ/dNg are smeared by 2e fluctuations described by a single-channel “charge Kondo” physics,
whereas the B = 0, � < E∗

C case is described by a crossover between the Kondo and the mixed-valence regimes
of the Anderson impurity model. In the topological phase, Q(Ng) is an analytic function of the gate voltage with
e-periodic steps. In the weak-tunneling limit, dQ/dNg has peaks corresponding to Breit-Wigner resonances,
whereas in the strong-tunneling limit (i.e., small reflection amplitude r) these resonances are broadened, and
dQ/dNg − e ∝ r cos(2πNg).

DOI: 10.1103/PhysRevB.94.125407

I. INTRODUCTION

The effect of BCS pairing on the energy spectrum of a
system with a fixed number of particles was first considered in
the context of nuclear physics [1] in an attempt to explain the
oscillations in the excitation energy of a nucleus with the parity
of the nucleons’ number. Oscillations of the nuclear mass
captured by the phenomenological Weiszäcker mass formula
have the same origin [2]. A similar set of phenomena emerged
in condensed matter physics in the 1990s within the study of
the Coulomb blockade in small “islands” of superconducting
metals [3,4]. The charge Q of a “Coulomb island” connected to
a conducting lead by a low-conductance junction varies in steps
upon variation of a gate voltage Vg applied to the island via a
gate capacitor of capacitance Cg . In the case of a normal-state
island, the steps are of height e and e periodic as a function
of the induced charge eNg = CgVg . The introduction of the
s-wave superconductivity in the island changes the periodicity
to 2e. There is one step of height 2e within a period if the
superconducting gap � exceeds the charging energy EC . Upon
reducing �, each of the 2e steps splits in two e steps separated
by a distance [(EC − �)/EC]e; one returns to e periodicity
once the gap is fully suppressed (� = 0) [3].

The majority of experiments addressing electron number
parity phenomena in superconducting islands was performed
on devices made of a conventional superconductor (Al)
coupled to electrodes by junctions containing oxide barri-
ers [5–8]. Such barriers are not tunable and typically have
low transmission coefficients and large area (in units set by
the Fermi wavelength of a typical superconductor). Most of
the experiments were fit well with theories [9,10] considering
the limit of small normal-state conductance of a junction
G � Gq ≡ e2/h in which case quantum fluctuations of charge
are negligible.

Experiments with proximitized nanowires [11–19] have
opened a new aspect of the electron number parity phenomena.
In the new devices [20], the fairly large induced gap values
(comparable to those in superconducting aluminum) coexist
with a large Fermi wavelength, so a junction may carry a
single electronic mode (i.e., transverse area of the junction is
on the order of a Fermi wavelength), see Fig. 1. Moreover,
the junctions are gate controlled, and their conductance can
be tuned continuously so that the dimensionless conductance
g may change from g � 1 to values approaching the unitary
limit (g is conductance per spin per channel measured in units
of e2/h). That leads to a substantial role of the quantum charge
fluctuations. The quasiparticle gap �(B) can be suppressed by
an applied magnetic field and vanishes at the critical value of
B = Bc, signaling the emergence of a topologically nontrivial
state, carrying Majorana zero-energy modes [21–24]. These
zero-energy states may admit one electron. It makes the charge
staircase consist of equally spaced e steps, similar to the
normal-state Coulomb blockade, despite the presence of a
finite superconducting gap.

The goal of this paper is twofold. First, we elucidate
the manifestation of the Majorana states in the charging
effect by establishing the difference between the behav-
iors of a “Majorana-Coulomb island” and the normal-state
one. Second, we extend the theory of Coulomb block-
ade in superconducting islands to the case of single-
channel high-transmission junctions. Here we address both
cases of s-wave and p-wave superconductivity in the
island.

The paper is organized as follows. We begin with the
spinful model and consider in Sec. II the Coulomb blockade
of a proximitized nanowire in the weak- and strong-tunneling
limits. In Sec. III, we introduce a spinless model for a
proximitized nanowire (i.e., Majorana nanowire) and discuss
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FIG. 1. Schematic of the device. A one-dimensional semiconduc-
tor nanowire is proximitized in the region x > 0. The barrier at x = 0
can be electrostatically controlled. The charge of the proximitized
nanowire can be controlled by changing the gate voltage Vg applied
through the capacitor Cg .

the charging effect as a function of the junction conductance
g and the quasiparticle gap �P . Finally, we conclude with the
qualitative summary of our results in Sec. IV.

II. CHARGE DISCRETENESS EFFECT
IN THE TOPOLOGICALLY TRIVIAL STATE

(ZERO MAGNETIC FIELD)

A. Coulomb blockade in the weak-tunneling limit

In the weak-tunneling limit g � 1, it is convenient to use
the formalism of the tunneling Hamiltonian (hereafter � = 1),

H =
∑
k,σ

ξka
†
kσ akσ + t

∑
k,p,σ

(a†
kσ apσ + H.c.) + HBCS

+EC(Q/e − Ng)2. (1)

Here the first term describes the normal-state conductor, and
the second term is the Hamiltonian of the tunnel junction. The
tunneling constant can be related to the dimensionless conduc-
tance g = 4π2ν|t |2/δ, where 1/δ and ν are the average density
of levels in the proximitized nanowire and the density of states
in the normal lead per spin, respectively. The third term is
the particle-conserving form of the BCS Hamiltonian [25],
and the last term describes the charging effect EC = e2/2C� ,
where C� is the total capacitance of the proximitized wire
(together with its superconducting shell) to all other electrodes,
including the gate. The labels k and p enumerate orbital states
in the normal lead and in the proximitized wire, respectively,
and tunneling through a potential barrier preserves the Kramers
pair states labeled by σ . The charge Q(Ng) can be expressed
in terms of the ground-state average,

Q(Ng) = eNg + q(Ng) = eNg − e

2EC

〈
∂H

∂Ng

〉
, (2)

where q(Ng) is the so-called reduced charge.
In the case of a large BCS gap � > EC , the low-energy

subspace includes the particle-hole excitations of the normal-
state conductor and the two possibly degenerate charge
states of the wire. The degeneracy occurs at odd-integer
values of Ng = 2n + 1, and the involved charge states of the
proximitized wire are |2n〉 and |2(n + 1)〉. Tunneling removes
the degeneracy. To explore the resulting state, it is convenient to
reduce the problem to the low-energy subspace E � EC � �.
By performing a Schrieffer-Wolff transformation on the

Hamiltonian (1) at Ng = 2n + 1, one finds

H =
∑
k,σ

ξka
†
kσ akσ + tA




∑
k1,k2,σ

σa
†
k1σ

a
†
k2−σ |2n〉〈2n+ 2| + H.c.

+ r

2


∑
k1,k2,σ

a
†
k1σ

ak2σ (|2n〉〈2n| − |2n+ 2〉〈2n+ 2|), (3)

with 
 being the volume of the lead. The coefficients tA
and r correspond to Andreev and normal scatterings, respec-
tively. The amplitudes for these processes were evaluated in
Refs. [9,26],

|νtA| = 2ν|t |2
δ

1√
1 − x2

arctan

√
1 + x

1 − x
, (4)

|νr| = 2ν|t |2
δ

(
x

1 − x2
arctan

√
1 + x

1 − x
+ 3x

1 − 9x2

× arctan

√
1 − 3x

1 + 3x

)
, (5)

where x = EC/�. In Eq. (3) we omitted the insignificant
nonsingular correction ∝ t2 to the charging energy EC and a
nonsingular potential scattering term k1σ → k2σ of the same
order proportional to |2n〉〈2n| + |2n + 2〉〈2n + 2|.

The Andreev reflection term proportional to tA in Eq. (3) is
similar to the spin-flip term in the anisotropic Kondo model,
except that the role of the local spin is played by the charge
of the proximitized wire, projected onto the subspace of
states |2n〉 and |2n + 2〉. The “Ising component” in Eq. (3),
proportional to r , corresponds to normal scattering processes.
By performing a particle-hole transformation for one of the
spin components [i.e., ψ↓(x) → ψ

†
↓(x)], one can map the

Hamiltonian (3) to the conventional (spin) Kondo Hamiltonian.
Therefore, we will refer to the quantum-mechanics problem
defined by Eq. (3) as the charge Kondo problem [27–29]. The
corresponding renormalization-group (RG) equations for the
coupling constants tA and r are given by

dt̃A

dl
= 2t̃Ar̃, (6)

dr̃

dl
= 2t̃2

A, (7)

where l = ln(EC/D) with D being the running cutoff. Here the
tilde denotes rescaled constants, i.e., r̃ ≡ νr . In the limit EC �
�, the initial values for t̃A(0) ≡ νtA and r̃(0) ≡ νr correspond
to t̃A(0) � r̃(0), and the solution of the RG equations reads

r̃(l) = −κ cot(2κl − α), (8)

t̃A(l) = −κ csc(2κl − α), (9)

where κ =
√

t̃A(0)2 − r̃(0)2 and α = arctan ( κ
r̃(0) ).

The strong-coupling fixed point is reached when
max{r̃(l),t̃A(l)} ∼ 1 defining the charge Kondo energy scale,

TK ∼ EC exp

(
− π

4|νtA|
)

≡ EC exp

(
−π2

g

)
, (10)

where g � 1 is the dimensionless conductance in units
of e2/h.
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FIG. 2. Reduced charge of a superconducting nanowire as a
function of the dimensionless gate voltage Ng for � > EC . Smearing
of the charge steps is controlled by the Kondo temperature scale
TK (10).

The scale TK defines the smearing of the charge steps,
see Fig. 2. Since the low-energy behavior of the conventional
single-channel Kondo model is described by the Fermi liquid,
it yields an analytic dependence of magnetization on the
magnetic field [30]. Similarly, in the charge Kondo problem the
dependence of Q on Ng is analytic; the maximal differential
capacitance (corresponding to odd-integer values of Ng) is
dQ/dNg ∼ e exp(π2/g).

Next we consider a larger charging energy EC > �. At
g→0, the transition between “even-” and odd-charge plateaus
occurs at gate voltages,

N ∗
g = 2n + EC + �

2EC

, (11)

with n ∈ Z. At these points, the finite-order perturbation theory
in t for Q(Ng) is divergent. A summation of the most divergent
terms can be performed [10] in the limit of a large number
of channels in the junction Nch � 1. In the leading order in
1/Nch, one finds [10]

Q = (2n + 1)e − eθ (N ∗
g − Ng)f

(N ∗
g − Ng

δNg

)
, (12)

where f (x) = 1 − 1√
1+x

and δNg = ( g

8π
)2 �

EC
. The function

Q(Ng) defined by Eq. (12) is continuous but not analytic:
In the limit Nch → ∞ a quantum phase transition occurs
at Ng = N ∗

g . On the odd side of the transition Ng > N ∗
g , a

bound state for a single electron near the junction is formed
in the proximitized wire; this state is doubly degenerate in the
electron spin. The spin degeneracy is in fact a consequence
of the unphysical limit Nch → ∞. At a finite number of
channels, the residual tunneling between the localized state
and the continuum in the normal lead leads to an exchange
interaction between the bound electron and the Fermi sea of
the normal lead (this is similar to the effect of hybridization
in the Anderson impurity model). The exchange removes the
spin degeneracy as in the conventional Kondo effect. As a
result, the system exhibits a crossover rather than a transition at
Ng = N ∗

g , similar to the crossover between the Kondo and the
mixed-valence regimes of the Anderson impurity model [31].
We will demonstrate the absence of the phase transition in
the next section using the bosonization scheme, valid for a
single-channel case.

B. Coulomb blockade in the strong-tunneling limit

In the strong-tunneling limit corresponding to a small
reflection amplitude r at the junction (i.e., r � 1), it is more
convenient [29,32] to analyze the charging effect in terms of
bosonic variables [33],

ψR/L,σ = 1√
2πa

exp

(
− i√

2
[±φρ − θρ + σ (±φσ − θσ )]

)
,

(13)

with a being the ultraviolet cutoff length scale. The low-energy
excitations in a Coulomb island (i.e., a quantum dot with a
dense single-particle spectrum) connected to a bulk conductor
by a single-mode junction are described by an effective one-
dimensional model,

H = HW + HP + HC + HB, (14)

HW =
∑

λ=ρ,σ

v

2π

∫ L

−∞
dx[(∂xφλ)2 + (∂xθλ)2], (15)

HC = EC

(√
2

π
φρ(0) − Ng

)2

, (16)

HB = −Dr cos
√

2φρ(0) cos
√

2φσ (0). (17)

Here EC is the bare charging energy defined by the electrostatic
environment of the proximitized wire; HB represents normal
backscattering at the junction. To describe the proximity-
induced gap in the spectrum, we add the following term to
Eq. (14):

HP = − �

2πa

∫ L

0
dx cos

√
2θρ cos

√
2φσ . (18)

We implicitly assume that the quasiparticle gap in the source
of the superconducting proximity effect (e.g., aluminum) �Al

is large �Al � �,EC so that the corresponding excitations
are absent at energies below �Al. Therefore, the bandwidth
D ∼ v/a in the effective Hamiltonians (14) and (18) should
satisfy the condition D � �Al. The Hamiltonian HW + HP

is a bosonized version of a BCS model in one dimension; the
values of velocity v and gap � should be properly tuned to
reproduce the quasiparticle spectrum [34] of a proximitized
wire. Hereafter we will also assume that the proximitized
nanowire is long such that the corresponding level spacing
in that spectrum is negligible (v/L → 0). In the bosonic
representation, a quasiparticle can be viewed as a kink in the
spin field φσ which costs energy �.

We note from the outset that charge discreteness effects
vanish at r = 0, regardless of the presence of the pairing
term (18). Indeed, at r = 0 we may exclude the dependence
of the Hamiltonians (14)–(18) on Ng by performing a shift
transformation φρ(0) → φρ(0) + πNg/

√
2 since the corre-

sponding shift operator commutes with HP .
When r �= 0, the aforementioned transformation moves

the gate-voltage dependence from the charging energy HC

to the backscattering term HB of the Hamiltonian (14) without
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affecting other terms,

H = H0 + HB,

H0 =
∑

λ=ρ,σ

v

2π

∫ L

−∞
dx[(∂xφλ)2 + (∂xθλ)2]

− �

2πa

∫ L

0
dx cos

√
2θρ cos

√
2φσ + EC

(√
2

π
φρ(0)

)2

,

HB = −Dr cos(
√

2φρ(0) − πNg) cos
√

2φσ (0). (19)

At small |r|, we may investigate the gate-voltage-dependent
part of the ground-state energy δEGS(Ng) by developing a
perturbation theory in r . Expanding up to the second order in
r , one finds that δEGS(Ng) = δE

(1)
GS + δE

(2)
GS with

δE
(1)
GS = 〈HB〉H0

= −Dr〈cos
√

2φρ(0,τ ) cos
√

2φσ (0,τ )〉 cos(πNg),

(20)

δE
(2)
GS =

∫ β

0
dτ 〈HB (τ )HB(0)〉H0

= −D2r2 cos2(πNg)
∫ β

0
dτ 〈ei

√
2[φρ (0,τ )+φρ (0,0)]〉

×〈cos
√

2φσ (0,τ ) cos
√

2φσ (0,0)〉, (21)

with τ and β being the imaginary time and inverse temperature.
Henceforth we consider the zero-temperature limit β → ∞.
The main difference in Eqs. (20) and (21) with respect to
the normal Coulomb island case [29] is a finite value of
δE

(1)
GS(Ng), which, in fact, ensures the 2e periodicity of the

observable quantities. It emerges due to the presence of
the superconducting gap which suppresses the spin-mode
fluctuations.

To estimate the ground-state average 〈· · · 〉 entering
δE

(1)
GS(Ng), we divide the quantum fluctuations of the fields

φρ and φσ into three regions corresponding to energy intervals
(a) ε > max(�,EC), (b) max(�,EC) > ε > min(�,EC), and
(c) min(�,EC) > ε. In each of the regions we simplify the
Hamiltonian H0 to a quadratic form, neglecting HC and HP in
interval (a) and keeping their quadratic expansions at energies
below EC and �, respectively. This approximation allows us to
factorize the averages of cos

√
2φρ and cos

√
2φσ and estimate

〈cos
√

2φσ 〉 ∼ √
�/D, irrespective to the relation between �

and EC . The estimate of 〈cos
√

2φρ〉, however, depends on
which of the two scales is the largest one.

We consider first the case of � � EC . The presence of the
spectral gap resulting in pinning of the field θρ(x) at x > 0 by
the pairing energy Eq. (18) allows us to consider fluctuations of
the field φρ(x) only at x < 0. Using the continuity of the fields
and the free-field equation of motion for x < 0, one finds the
following boundary condition ∂xφρ(0−) = 0. The singled out
three energy intervals yield three factors in the average over
the charge-density mode 〈cos

√
2φρ〉 ∼ √

�/D · (EC/�) · 1.
Collecting all the factors, we arrive at

δEGS(Ng) ∼ −ECr cos(πNg) , (22)

where we neglected a smaller ∼ECr2 second order in the
r contribution (21). We may associate the energy scale in
Eq. (22) with the effective charging energy E∗

C = ECr , which
is in agreement with Ref. [35].

In the case of a smaller gap EC � �, the charge-density
fluctuations at x = 0 are pinned by the Coulomb energy HC

at energies ε ∼ EC , which are much higher than �. The
pinning by HC affects the three factors entering the average of
the charge-density fluctuations: 〈cos

√
2φρ〉 ∼ √

EC/D · 1 · 1,
resulting in

δE
(1)
GS(Ng) ∼ −

√
EC�r cos(πNg). (23)

In the evaluation of the second order in the r term, we may
follow Ref. [29] in noticing that the long-time asymptote of the
integrand of (21) yields a logarithmically large contribution.
In our case, the corresponding imaginary-time interval runs
from 1/EC to 1/�. Thus, the logarithmic divergence is cut off
by the superconducting gap �. As a result, we find

δE
(2)
GS(Ng) ∼ −ECr2 ln

EC

�
cos2(πNg). (24)

Thus, the charge of the nanowire Q(Ng), calculated us-
ing δEGS(Ng) = δE

(1)
GS + δE

(2)
GS, is a continuous and analytic

function of Ng . As long as � � ECr2, the second-order
contribution is relatively small for the entire range of gate
voltages.

Perturbation theory in r breaks down at � ∼ ECr2. Further-
more, in the limit � � ECr2 one expects a transition between
even- and odd-charge sectors, similar to the weak-tunneling
case as depicted in Fig. 3. As explained in Sec. II A, the
even-odd transition for Nch → ∞ is accompanied by the
nonanalytic behavior of the ground-state energy, see Eq. (12).
We now demonstrate, using a single-channel model, that
quantum fluctuations smear out these nonanalyticities and
ultimately destroy the quantum phase transition. As a result,
the function Q(Ng) remains analytic.

We now concentrate on the limit � � ECr2. The boundary
term HB in the Hamiltonian (14) tends to pin the field φσ (0)
at a value which depends on the gate voltage Ng . Indeed, due
to the presence of the charging energy we may replace HB

FIG. 3. Reduced charge of a superconducting nanowire as a
function of the dimensionless gate voltage Ng for EC > �. The left
transition point occurs at Ng = N ∗

g , see Eq. (11). The width of the

steps is δNg = ( g

8π
)2 �

EC
, see Eq. (12).
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in (14) by its average with respect to ϕρ(0),

HB → 〈HB〉
ϕρ

∼ −r
√

DEC cos(πNg) cos
√

2φσ (0). (25)

The value of φσ (0), which minimizes the energy (25), depends
on the sign of cos(πNg),

√
2φσ (0) = 2πk for |Ng − 2n| < 1/2, (26)

√
2φσ (0) = π (2k + 1) for |Ng − (2n + 1)| < 1/2. (27)

Here we implicitly assumed that
√

2φσ (L) is an even integer
and k,n ∈ Z. In the absence of superconducting pairing
(� = 0), the two configurations of the spin mode that differ
by the boundary conditions Eqs. (26) and (27) may have the
same energy since the field φσ (x) is free to fluctuate in the
region x ∈ [0,L]. However, with finite pairing � > 0, the field√

2φσ (x)/π is pinned to an even integer in the bulk. This is
compatible with the boundary condition in the even valley (26)
but not with the condition in the odd valley (27). As a result, for
the linear order in � the function δEGS(Ng) behaves differently
in the even-charge and odd-charge domains of Ng . In the
former, we may use the � = 0 result derived in Ref. [29].
However, if the gate voltage belongs to an odd-charge domain
|Ng − (2n + 1)| < 1/2, there is a

√
2π kink in the ground

state of the system. Such a kink corresponds as we already
mentioned to a quasiparticle in the proximitized nanowire
segment; it increases the ground-state energy by �. Thus, the
ground-state energy of the system in the corresponding limit
reads

δEGS(Ng) ∼ −r2EC ln

(
1

r2 cos2 πNg

)
cos2 πNg

at 1/2 − |Ng − 2n| � (�/ECr2)1/2, (28)

δEGS(Ng) ∼ −r2EC ln

(
1

r2 cos2 πNg

)
cos2 πNg + �

at 1/2 − |Ng − (2n + 1)| � (�/ECr2)1/2.

(29)

In the regions of Ng excluded from Eqs. (28) and (29),
perturbation theory in � breaks down. The dependence
δEGS(Ng) is expected to be continuous 2e periodic with
maxima shifted from half-integer points Ng = n + 1/2 into
the odd-charge domains by an amount of ∼(�/ECr2)1/2. In the
following, we are not interested in the detailed dependence of
δEGS(Ng) within the regions |Ng − 1/2 − n| � (�/ECr2)1/2.
Instead, we will concentrate on the analytic properties of that
dependence and show that the function δEGS(Ng) becomes
analytic at the even-odd charge transitions, in contrast to
Eq. (29).

To investigate the even-odd transition, we run the RG
procedure until D̃ ∼ � and formulate a low-energy prob-
lem in which the charge-density degrees of freedom are
already frozen and only the spin excitations with energy
ε � � are accounted for. During the RG flow the coef-
ficient of the backscattering term changes in a way that
depends on the initial values and the gate voltage and we
introduce a function �(Ng) to parametrize this dependence.
The corresponding imaginary-time action then takes the

FIG. 4. Inhomogeneous classical solution y(z) for an odd-charge
configuration as a function of detuning from the putative degeneracy
point η. Here solid (red), dot-dashed (black), and dashed (blue) lines
correspond to η = 10,1,0.1, respectively.

form

S = SW + SP + SB, (30)

SW = 1

2π

∫
dτ

∫ L

−∞

dx

v
[(∂τφσ )2 + v2(∂xφσ )2], (31)

SP = −�
D̃

v

∫
dτ

∫ L

0
dx cos

√
2φσ , (32)

SB = −�(Ng)
∫

dτ cos[
√

2φσ (0)]. (33)

To understand the putative transition, we expand �(Ng) ≈
�(N ∗

g ) + �̃(Ng − N ∗
g ) near the charge degeneracy point N ∗

g .
Based on Eq. (29), we estimate thatN ∗

g − 1/2 ∼ (�/ECr2)1/2

and �̃ ∼ √
EC�r . We take D̃ ∼ � for the bandwidth of

excitations of the field φσ (x).
We now introduce dimensionless variables x → zξ,

τ → τ̃ ξ/v with ξ ∼ v/� and rewrite the effective action (30)
as

S = 1

2π

∫
dτ̃

∫ L̃

−∞
dz

{
1

2
{[∂τ y(z,τ )]2 + [∂zy(z,τ )]2} − θ (z)

× [cos y(z,τ ) − 1] − 4�(Ng)

�
δ(z)[cos y(z,τ ) − 1]

}
,

(34)

with y(z) = √
2φσ (z). It is useful to first find a classical

solution for this model. The corresponding equation of motion
in the region 0 � z � L is given by

∂zzy(z) − sin y(z) = 0. (35)

The trivial solution for y(z) = 0 corresponds to an even-charge
state [see Eq. (26)] whereas the inhomogeneous solution (π
soliton) describes an odd-charge state, see Fig. 4. According to
Eq. (27), y(0) → ±π in the middle of an odd-charge plateau.
Close to the even-odd transition point, the inhomogeneous
solution can be approximately written as y(z) ≈ y0 exp(−z)
with y0 � 1. Using the above inhomogeneous solution, one
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can write the energy functional F[y0] in terms of the field at
the boundary y0,

F[y0] = 1

2π

(
−η

2
y2

0 + y4
0

32

)
, (36)

where η = 4[�(N ∗
g ) − �(Ng)]/� ∼

√
ECr2/�(Ng − N ∗

g )
is the detuning from the charge-degeneracy point N ∗

g . Thus,
for η < 0 (even charge) we find that yc = 0 minimizes
the energy functional whereas yc = ±√

8η for η > 0 (odd
charge). The two degenerate configurations correspond to the
opposite spin densities (i.e., a quasiparticle with spin up or
spin down). Thus, at the classical level, the even-odd charge
transition is reminiscent of the Landau mean-field theory of
second-order phase transitions. Our next step is to consider
quantum fluctuations which, as we show below, destroy the
quantum phase transition. Indeed, quantum fluctuations lead
to tunneling between the minima of the potential (36).

In order to investigate the nature of the quantum phase
transition, we study the following effective model:

Seff = 1

8π2

∫
dτ̃

∫
dτ̃ ′ [y0(τ̃ ) − y0(τ̃ ′)]2

(τ̃ − τ̃ ′)2

+ 1

4π

∫
dτ̃

(
1

2
[ẏ0(τ̃ )]2 − ηy2

0 (τ̃ ) + y4
0 (τ̃ )

16

)
. (37)

Here the first term originates from the bulk modes in the normal
part of the nanowire (i.e., for x < 0). We will refer to it as a
dissipative term [36]. Without dissipation, tunneling between
the two minima is described by an instanton configuration
corresponding to a kink (or antikink): y0(τ̃ = −∞) = −|yc|
and y0(τ̃ = ∞) = |yc|. The amplitude A for such a process,
which corresponds to a spin-flip electron backscattering and
conserves the charge on the island, can be evaluated using the
semiclassical approximation,

Ã ≡ A

�
∼ exp(−SWKB), (38)

where SWKB is the Wentzel-Kramers-Brillouin action corre-
sponding to a single kink (or an antikink). In the absence of
the dissipation, kinks and antikinks are noninteracting. The
dissipation introduces logarithmic interactions between kinks
and antikinks which renormalizes Ã. In the so-called kink
approximation y0(τ̃ ) = 2|yc|

∑
i εiδ(τ̃ − τ̃i) with εi = ±1 and

τi being the position of the kink. It is now straightforward
to derive RG equations for Ã and the strength of effective
interaction between kinks and antikinks α [37–39],

dÃ

dl
=

(
1 − α

2

)
Ã, (39)

dα

dl
= −αÃ2. (40)

Here the initial values are α(0) = 2y2
c /π

2 and Ã(0) given by
Eq. (38). Since the maximum value of yc is restricted by
y0 � π , the initial value is α(0) � 2. In this regime, given that
α(l) is decreasing under RG, the amplitude Ã is increasing
and there is no phase transition into a localized phase. In other
words, the system is on the delocalized side of the phase tran-
sition [37–39]. As a result, the dependence of the ground-state
energy near the even-odd degeneracy point is an analytic func-
tion of Ng . This conclusion can be also understood in terms of

the single-channel antiferromagnetic Kondo problem using the
mappings (1 − α/2) → Jz > 0 and Ã → J⊥. The latter has a
Fermi-liquid description, which corroborates our conclusion
regarding the analytic dependence of observable quantities
on Ng .

III. COULOMB BLOCKADE IN THE PRESENCE OF
MAJORANA STATES

In this section, we study charging effect in a proximitized
nanowire which is driven by a magnetic field into a topolog-
ically nontrivial state and is in contact with a normal lead.
The Coulomb blockade in such a system has been recently
studied experimentally [20]. Application of a sufficiently
strong magnetic-field B > Bc along the nanowire results in
a topological transition [21,22] with Majorana zero-energy
states emerging at the ends of the proximitized nanowire.

In the absence of charging energy, the presence of the
zero-energy states results in the degeneracy between the states
of the proximitized nanowire with even and odd numbers of
electrons. The finite charging energy results in an e-periodic
Coulomb blockade [40], which is qualitatively different from
the case of a conventional (e.g., s-wave) superconducting state
in the wire as well as from the Coulomb blockade in a normal
wire. Coupling of the proximitized wire to a normal lead
broadens the Majorana resonance and leads to a continuous
variation of the charge with the gate voltage, cf. Eq. (2). The
magnetic field breaks the spin symmetry and at large fields
will drive the system into a spinless regime. In the presence of
charging energy, the problem reduces to that of a nondegener-
ate localized state broadened by coupling to a Fermi sea.

A. Coulomb blockade in the weak-tunneling limit

In the case of small conductance g � 1, the zero-energy
state is broadened into a Breit-Wigner resonance of a width
g�/(8π ) [41]. The Friedel sum rule applied to the resonance
yields a broadened step in charge,

Q(Ng)

e
= 1

π
arctan

{
EC[Ng − (n + 1/2)]

g�P /(16π )

}
+ 1

2
. (41)

Here g�P /16π � EC with �P being the p-wave gap and
n ∈ Z corresponds to the nth step. The applicability condition
of (41) breaks down if the charging energy is small enough,
the reason being that it was derived under the assumption that
only two charge states are relevant. To go beyond this, it is
convenient to cast the problem in terms of bosonic variables
and use the framework of the RG technique.

The effective Hamiltonian for the system, written in bosonic
variables, is given by

H = HW + HC + HP + HB, (42)

HW = v

2π

∫ L

−∞
dx[(∂xθ )2 + (∂xφ)2], (43)

HC = Ec(N̂ − Ng)2 = EC

(
φ(0)

π
− Ng

)2

, (44)

HP = − �P

2πa

∫ L

0
dx cos(2θ ). (45)
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The notation here is as in Sec. II B, except there is only a single
species of bosons, and �P is the induced p-wave supercon-
ducting gap, which depends on the strength of coupling among
the nanowire and the s-wave superconductor, the spin-orbit
coupling α, and on the Zeeman splitting VZ = μBgBB [21,22]
(here μB and gB are the Bohr magneton and the g factor
in the nanowire, respectively). As in Sec. II B, we assume
here that the gap in the bulk superconductor �Al is large
�Al � �P ,EC and the effective Hamiltonian (42) is valid for
energies below �Al in which case the bulk superconducting
degrees of freedom are frozen out. As in the previous section,
we assume that the normal-state level spacing in the nanowire
is ∼v/L → 0.

In the weak-tunneling limit, a high barrier at x = 0 pins the
field φ(0) at φ(0) = πN (N ∈ Z). In this case, we may write
the backscattering term HB in (42) as

HB = Dt(D) cos[θ−(0) − θ+(0)], (46)

where the fields θ±(τ,x) are defined for x ∈ [−∞,0] and
x ∈ [0,L], respectively. The tunneling amplitude t0 = t(D0)
at the initial value of the bandwidth D = D0 must be tuned to
produce the observable value of the normal-state conductance
g in the absence of charging energy.

We are interested in extending (41) and deriving estimates
valid at EC,g�P � �P . Evaluation of the scaling dimension
of the operator HB of (46) shows that the tunneling constant t

is marginal for D > �P and does not flow until the bandwidth
reaches D ∼ �P . At a smaller bandwidth, the proximity-
induced term becomes large and gaps out bulk modes, i.e.,
θ+(τ,x) = πm with m ∈ Z. As a result, the scaling dimension
of the tunneling Hamiltonian,

HB = Dt(D) cos θ−(0) (47)

changes, and the RG flow at D < �P becomes

dt

dl
= t

2
. (48)

One can recognize the similarity of the effective bound-
ary term (47) with the Majorana coupling discussed in
Refs. [42,43]. Since in the absence of charging energy t is
relevant, it would flow at EC = 0 to strong coupling according
to t(D) = t0

√
�P /D, corresponding to the so-called Andreev

fix point. The scale Dc at which the boundary term reaches
strong coupling [i.e., t(Dc) ∼ 1] is

Dc = |t0|2�P ∼ g�P . (49)

On this scale, the field θ−(τ,0) becomes pinned and, thus,
the boundary conditions for the lead electrons at x = 0
crossover from a perfect normal reflection in the ultraviolet
[i.e., ψR(0) = ψL(0)] to the perfect Andreev reflection in the
infrared [i.e., ψR(0) = ψ

†
L(0)]. One can interpret the scale Dc

as the broadening scale � = g�P /(8π ) in the noninteracting
Majorana problem [41].

With finite charging energy EC �= 0, the physics at the
boundary depends on the comparison of Dc and EC .

If � ∼ Dc � EC , the flow of the coupling t(D) is
cut off by the charging energy. Therefore, away from
the charge-degeneracy points |Ng − (n + 1/2)| � g�P /EC ,
the amplitude t(D) does not reach strong coupling. Thus,
the dependence of the ground-state energy on the gate voltage

is not renormalized [apart from smearing of the singularities
at the charge-degeneracy points, see Eq. (41)] and is given by
the bare charging energy,

δEGS(Ng) = min
N∈Z

EC(N − Ng)2. (50)

In the other case � ∼ Dc � EC , the tunneling amplitude
does reach the strong-coupling limit in the entire range of
gate voltages. To proceed the renormalization for energies
below Dc in this situation, we switch from the tunneling
Hamiltonian (46) to the dual description by the Hamiltonian
for weak backscattering,

HB = −Dr cos 2φ(0). (51)

The two descriptions should match each other at roughly
D ∼ Dc with

r(Dc) ∼ t(Dc). (52)

Now, since θ−(τ,0) is pinned on low-energy scales, we
rewrite the boundary action for D � Dc in terms of the dual
fluctuating variable φ−(τ,0). After integrating out the x < 0
degrees of freedom, the effective boundary theory becomes

S = 1

2π

∫ Dc

0

dω

2π
|ω| |φ−(ω,0)|2

+EC

∫ T −1

Dc
−1

dτ

(
φ−(τ,0)

π
− Ng

)2

−Dr(D)
∫ T −1

Dc
−1

dτ cos 2φ−(τ,0). (53)

The boundary term proportional to r is dual to the one in
Eq. (47) and flows under RG according to

dr

dl
= −r. (54)

Thus the backscattering at the junction becomes irrelevant in
the RG sense for D > EC , in contrast to the normal island case
where it is marginal [29,32]. As shown below, this change in
the scaling dimension of r leads to additional suppression of
the charge oscillations with Ng .

To continue the RG procedure, we shift φ−(τ,0) →
φ−(τ,0) + πNg and run the RG until D ∼ EC to find the
following boundary action:

S = 1

2π

∫ EC

0

dω

2π
|ω| |φ−(ω,0)|2 − ECr(EC)

×
∫ T −1

EC
−1

dτ cos[2φ−(τ,0) + 2πNg]

+ EC

π2

∫ T −1

EC
−1

dτ [φ−(τ,0)]2, (55)

where the coupling is r(EC) ∼ (EC/Dc)r(Dc) ∼ EC/(g�P );
we used Eqs. (49) and (52) here. The charging energy term
in Eq. (55) pins the field at the boundary φ−(0) = 0. Upon
substituting that value in the second term of action (55) and
expressing r(EC) in terms of the bare parameters, we read off
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FIG. 5. Schematic of a reduced charge of a spinless proximitized
nanowire as a function of the dimensionless gate voltageNg . The solid
red and dashed blue lines correspond to weak- and strong-tunneling
regimes, respectively.

the gate-voltage dependence of the ground-state energy,

δEGS(Ng) = −E∗
C cos(2πNg), E∗

C ∼ E2
C

g�P

. (56)

The crossover between the limits of (50) and (56) occurs
at EC ∼ g�P . The dependence of a reduced charge of a
proximitized nanowire on the gate voltage in weak- and
strong-tunneling regimes is shown in Fig. 5.

B. Coulomb blockade in the strong-tunneling limit

We now study the high-conductance limit and show that
effective charging energy will be even further suppressed
by quantum charge fluctuations. We concentrate first on
the limit �P � EC in which superconductivity significantly
modifies the charging effect. Assuming that the backscattering
is weak, we may use the Hamiltonian (51) to describe it. The
backscattering term (51) is marginal for D > �P and does
not flow until D ∼ �P . The boundary action at a smaller
bandwidth D � �P reads

S = 1

2π

∫ D

0

dω

2π
|ω| |φ−(ω,0)|2 + EC

π2

∫ T −1

D−1
dτ φ−(τ,0)2

−
∫ T −1

D−1
dτ Dr(D) cos z[2φ−(τ,0) + 2πNg]; (57)

the RG flow for the coupling r in the domain �P � D � EC

is given by

dr

dl
= −r. (58)

Following the analysis in the previous section, one finds that
gate-voltage-dependent part of the ground-state energy is given
by

δEGS(Ng) ∼ −r
E2

C

�P

cos(2πNg), r ∼
√

1 − g. (59)

Note that the only difference with respect to the weak-
tunneling limit [cf. Eq. (56)] is the appearance of the bare
reflection amplitude r � 1 rather than r(Dc) ∼ 1. Therefore,
the effective charging energy vanishes for r → 0.

Finally, we note that, when EC � �P , the effect of the
superconductivity is negligible; the effective charging energy

follows from Refs. [29,32]:

δEGS(Ng) ∼ −ECr cos(2πNg). (60)

The two equations (59) and (60) match at EC ∼ �P .

IV. CONCLUSIONS

In this paper, we have studied charging effects of a
proximitized nanowire in contact with a normal lead. We con-
sidered two different regimes which were recently investigated
experimentally [20]: (a) The spinless case, emerging when the
nanowire is driven into a topological superconducting state
(i.e., B > Bc with Bc being the critical field corresponding to
the topological phase transition [21–23]) and (b) the spinful
case (zero magnetic-field B = 0). In both these cases, we
calculate the charge of the proximitized nanowire Q as a
function of the dimensionless gate voltage Ng .

The main difference of the charge staircase for a Majorana-
Coulomb island as compared to a normal-state island is in the
step width. At the same small conductance g of the junction,
the step width is much larger in the former system, and it scales
as ∝g [see Eq. (41)] as opposed to ∝exp (− π2

2
√

g
) in the normal-

state case [29,44]. Further differences come with an increase
in the junction conductance. In either system, the steps are pro-
gressively washed out with increasing g and vanish as g → 1.
However, for a Majorana-Coulomb island the steps degrade
with the increase in g faster than for a normal-state island: In
the case of large p-wave gap �P � EC , the crossover from
charge steps to a weak harmonic modulation of charge occurs
at g ∼ EC/�P � 1 (56), whereas such a crossover requires
g ∼ 1 in the normal-state case [29].

In the spinful case, the charge staircase for a single-channel
junction was investigated in great detail for the case of a
normal-state Coulomb island [45]. It turns out that the function
Q(Ng) is nonanalytic at half-integer values ofNg for any value
of g in the normal case. The nonanalyticity at the charge-
degeneracy points stems from the equivalence of the Coulomb
blockade problem to a version of a symmetric two-channel
Kondo problem: Two electron spin states in the former problem
map on the two channels in the latter one. However, much less
was known about the shape of the steps in the case of the
superconducting island, even for the s-wave superconductor.
The case of � > EC, g � 1 for an s-wave superconducting
island was considered in Ref. [26]. It was shown there that the
2e-charge-degeneracy points occurring at odd-integer values
of Ng are described by a single-channel “charge-Kondo”
model, thus Q(Ng) is analytic across the charge-degeneracy
point. In this paper, we demonstrated that the analyticity
of Q(Ng) is preserved for any values of conductance g,
regardless of the ratio �/EC . In particular, we showed that
the sharp charge-e steps which occur at g → 0 and � < EC

are broadened and are described by an analytic function of Ng .
Considering the case of a large conductance, we found

how the charge staircase is smeared out with g → 1, see
Eqs. (22), (23), (28), and (29). We also identified the analog
of the even-odd transitions earlier known to occur in the
case of g → 0 if � < EC . The corresponding condition at
high-conductance g involves a charging energy which is
renormalized by quantum fluctuations to E∗

C ∼ EC(1 − g). We
have shown that the even-odd transition is actually a crossover
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as a function ofNg , see the discussion after Eq. (37), and found
the crossover width, see Eqs. (28) and (29).

Thus, the present theory of Coulomb blockade in proximi-
tized wires spans the limits of low and high junction conduc-
tances and is applicable for s- and p-wave superconductors. It
may open ways to detect Majorana states in high-precision
charge measurements and is relevant for the electrostatic
manipulation of such states in the topological quantum
computing proposals based on nanowire networks [46].
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