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Longitudinal spin relaxation of donor-bound electrons in direct band-gap semiconductors
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We measure the donor-bound electron longitudinal spin-relaxation time (T1) as a function of magnetic field
(B) in three high-purity direct band-gap semiconductors: GaAs, InP, and CdTe, observing a maximum T1 of 1.4,
0.4, and 1.2 ms, respectively. In GaAs and InP at low magnetic field, up to ∼2 T, the spin-relaxation mechanism
is strongly density and temperature dependent and is attributed to the random precession of the electron spin in
hyperfine fields caused by the lattice nuclear spins. In all three semiconductors at high magnetic field, we observe
a power-law dependence T1 ∝ B−ν with 3 � ν � 4. Our theory predicts that the direct spin-phonon interaction is
important in all three materials in this regime in contrast to quantum dot structures. In addition, the “admixture”
mechanism caused by Dresselhaus spin-orbit coupling combined with single-phonon processes has a comparable
contribution in GaAs. We find excellent agreement between high-field theory and experiment for GaAs and CdTe
with no free parameters, however a significant discrepancy exists for InP.
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I. INTRODUCTION

In the last decade, the prospects for spin-based quantum
information have spurred renewed interest in the fundamental
mechanisms for spin relaxation in semiconductors [1–4].
Shallow impurities in direct band-gap materials are promising
candidates for quantum applications relying on spin-photon
interfaces [5–7], as these systems boast high optical homo-
geneity [8], strong spin-photon coupling, and the potential in
II-VI materials [9] to enhance spin coherence times with iso-
tope purification [10,11]. While electron spin relaxation is now
relatively well understood in III-V semiconductor quantum
dots both theoretically and experimentally [4,12–17], it is still
an open question whether the same processes dominate in the
similar direct band-gap donor system. In contrast to quantum
dots, in which the size, shape, composition, and strain field for
each dot are to a large extent unknown, the physical properties
relevant to spin relaxation for the homogeneous donor system
have been measured. This enables quantitative comparison of
spin-relaxation rates between theory and experiment which
should help predict which donor systems are most promising
for future applications.

Here we measure the longitudinal spin-flip time T1, the
fundamental limit for the storage time for quantum infor-
mation, in three semiconductors: GaAs, InP, and CdTe. All
three are direct band-gap materials with similar band structure
allowing for the optical pumping of the donor-bound electron
spins under resonant exciton excitation. We show that at low
magnetic fields, T1 is proportional to B2 with a proportionality
constant highly dependent on temperature and donor density.
At high magnetic fields, we find that T1 is proportional to B−ν ,
with the power ν in the range 3 � ν � 4. The competition of
these two dependencies leads to a maximum of T1 in GaAs
and InP at relatively high magnetic field: (1.4 ± 0.1) ms at

4 T for GaAs and (0.40 ± 0.01) ms at 1.9 T for InP. Due to
technical issues, we are unable to observe this maximum for
CdTe; however, the highest T1 measured is (1.23 ± 0.07) ms
at 1.1 T with T1 expected to rapidly increase at lower fields.

The low magnetic-field T1 behavior for GaAs and InP is
consistent with a spin-relaxation mechanism controlled by the
hyperfine coupling of the electron spin with static fluctuations
of the host-lattice nuclear spins. In this situation, spin pre-
cession is randomized due to the finite electron correlation
time at each donor site [18,19]. Although the mechanism
for the extremely short correlation time τc (τc,GaAs � 25 ns,
τc,InP � 40 ns) is not completely clear, our measurement is
consistent with prior works [19,20]. Our results show that the
nuclear-spin environment, known to be the dominant factor in
spin dephasing [2,12], plays an important role in longitudinal
relaxation even at low doping densities (∼1014 cm−3) and
moderate magnetic fields (up to several Tesla).

On the high-field side, the similar magnetic-field depen-
dence observed in all three semiconductors is suggestive
of a universal mechanism. We theoretically investigate the
dominant spin-relaxation mechanisms and find that two
mechanisms, (i) the direct spin-phonon interaction and (ii)
the admixture mechanism caused by Dresselhaus spin-orbit
coupling combined with the piezoelectric electron-phonon
interaction, can account for the magnitude of the observed
relaxation in GaAs and CdTe. The strength of the direct
spin-phonon interaction is surprising because it was found
to be negligible compared to the admixture mechanism in
the similar quantum dot system [4]. The relative weakness
of the admixture mechanism is related to the symmetry of
the system. This is most clearly seen in the limit of small
magnetic fields where the donor-bound electron confinement
potential is spherically symmetric. The Dresselhaus spin-orbit
interaction, which couples the spin-up and spin-down states in
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TABLE I. Sample parameters. Ne = ND − NA is the electron
density, � is the sample thickness. Metal organic vapor phase epitaxy
and molecular beam epitaxy are abbreviated by MOCVD and MBE,
respectively. The InP epilayer is grown directly on an InP substrate.
The GaAs epilayer is grown on 4 μm of Al0.3Ga0.7As on a GaAs
substrate. Further details on sample growth are given in the references.

Sample Ne(cm−3) � (μm) Growth method

InP-1 [21] 5.6×1013 5.1 MOCVD
InP-2 [21] 2.3×1014 7.4 MOCVD
InP-3 [21] 1.8×1015 4.2 MOCVD
GaAs-1 [22] 3×1013 15 MBE
GaAs-2 5×1013 10 MBE
CdTe-1 [23] 1×1014 >1000 Bridgman
CdTe-2 [24] >1014 >1000 Bridgman

the admixture mechanism, results in a weak coupling between
the ground orbital state with states of high angular momentum.
In contrast, quantum dots exhibit strong axial confinement,
resulting in a relatively strong coupling to the nearest excited
state. At high field, the external magnetic field partially reduces
the symmetry of the donor confinement potential, enhancing
the admixture mechanism. However, the coupling is still
typically much weaker than it is in quantum dots. We find,
however, that both the direct spin-phonon interaction and the
admixture mechanism are too weak to account for the observed
relaxation in InP.

The paper is organized as follows: Sec. II presents the
studied samples and experimental technique to measure T1,
the experimental results are summarized in Sec. III. Section IV
presents the theory and comparison with experiment. The
paper is summarized by a short conclusion in Sec. V.
Appendixes include additional experimental and theoretical
details.

II. SAMPLES AND EXPERIMENTAL TECHNIQUE

We study two GaAs, three InP, and two CdTe n-doped
samples with the parameters given in Table I. Spin relaxation
is measured optically in the Voigt geometry (photon wave
vector k ⊥ B) with the magnetic field aligned parallel to the
sample surface. Magnetophotoluminescene spectra exhibiting
optically resolved Zeeman transitions for all three semicon-
ductors are shown in Appendix A. � transitions suitable for
optically pumping the electron spin are found by resonantly
exciting one of the Zeeman sublevels of the neutral donor (D0)
to the lowest neutral donor-bound exciton (D0 X) transition and
observing the corresponding Raman transition. The optically
excited and collected transitions for InP (GaAs, CdTe) are
labeled in the energy diagram and photoluminescence spectra
in Figs. 1(a) and 1(b) [Appendix B, Figs. 9(a), 9(b), 9(e),
and 9(f)].

To measure the spin-relaxation time in the magnetic field,
we optically deplete one of the Zeeman spin sublevels and
monitor the recovery of its thermal population in the course
of spin relaxation. At high magnetic fields, the optically
resolved spin Raman transitions enable frequency-selective
optical pumping of the donor electron state. At low fields, while
the transitions cannot be spectrally resolved, optical pumping
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FIG. 1. (a) Energy level diagram for the InP donor system.
(b) Photoluminescence spectrum of InP. Excitation at 1.549 eV with
50 μW power, for the two above-band-gap excitation spectra (red
and blue). σ (π ) denote linear collection polarization perpendicular
(parallel) to the magnetic field. Resonant excitation spectrum (black)
uses excitation at 1.417 eV with 100 μW π -polarized light, with σ -
polarized light collected. (c) Pulse sequence for optical pumping. The
Ti:sapphire laser is pulsed on and off, repetitively, on the π transition,
while PL from the σ transition is detected. The time between pulses
significantly exceeds T1. (d) Optical pumping trace for InP with laser
power 10 μW. The inset sketches the population transfer process
during optical pumping. The amplitude of the exponential curve
is proportional to the population in ↑. (e) Pulse sequence for T1

measurement. The detector gate-on time is 2 μs and the laser pulse
length is 50 μs. (f) T1 measurement for InP with laser power 10 μW.
The data are fit with an exponential plus a background yielding the
time constant T1 = (0.23 ± 0.1) ms. Error bars denote the standard
deviation of the recovery signal in each time bin over the many
repetitions of the pulse sequence. The corresponding representative
data for GaAs and CdTe are given in Appendix B. All experiments
used ∼30 μm laser spot size.

is still obtained by utilizing the optical polarization selection
rules. Optical pumping is confirmed by monitoring the time
dependence of the collected transition intensity during optical
excitation after the system has reached thermal equilibrium.
A typical high-field optical pumping pulse sequence and
photoluminescence trace are depicted in Figs. 1(c) and 1(d).
The decrease in photoluminescence intensity is only observed
with resonant spin excitation. Two-laser experiments in GaAs
have also confirmed that this decrease is due to spin pumping
and not, for example, due to photoinduced ionization [25].
A clear optical pumping signal cannot be observed in the
highest purity InP sample InP-1. The cause is attributed to
surface depletion effects discussed further in Appendix C. For
the remainder of the paper we will restrict ourselves to the
remaining six samples, where reliable signals are detected.

Spin-relaxation measurements are performed by varying
the recovery time between optical pumping pulses which are
produced by an acousto-optic modulator (AOM) from the
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FIG. 2. T1 as a function of Zeeman splitting for the six different
samples at 1.5 K. The absolute values of the electron g factors used
to convert from B to the Zeeman splitting for GaAs, InP, and CdTe
are 0.44, 1.3, and 1.65, respectively. Sample descriptions are given in
Table I. The black dashed lines in the high energy (low energy) side
denote a B−3 (B2) dependence for reference. They are offset from
the experimental data for clarity. The green dashed line denotes the
thermal energy kBT for reference.

output of a narrow-band continuous-wave Ti:sapphire laser.
The AOM extinction ratio re was measured to be >104

giving an upper bound of the maximum measurable T1 of
reτop, in which τop is the characteristic time scale of optical
pumping. Given the several microsecond τop [Fig. 1(d)], we
have the ability to measure T1 exceeding 10 ms. The “Raman”
photoluminescence is collected during the first part of the
optical pumping pulse, see Fig. 1(e). As the recovery time
increases, we observe an increase in the collected signal as
the system returns to thermal equilibrium. At each magnetic
field, the recovery is fitted to a weighted exponential with
time constant T1 [26], as shown in Fig. 1(e). Measurements
are performed for fields up to 7.0 T. Reduced visibility of the
optical pumping signal places a technical limit on the minimum
magnetic field measurement for each sample.

III. EXPERIMENTAL RESULTS

The longitudinal spin-relaxation times T1 as a function of
the electron Zeeman splitting �E = |gμB| for InP, GaAs, and
CdTe are shown in Fig. 2. Here g is the effective electron g fac-
tor and μ is the Bohr magneton. The data show several notable
features. First, all samples approach a T1 ∼ B−ν dependence,
with 3 � ν � 4, at high magnetic fields. The proportionality
constant depends on the semiconductor sample. A B−3

dependence, included in Fig. 2, fits all curves well, however
we note that higher-field data would be desirable for GaAs
because the small electron g factor prevents us from accessing
the high-Zeeman-splitting limit, where |gμB| � kBT . Also,
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FIG. 3. (a) T1 as a function of the Zeeman splitting for InP-2
at 1.5 K. The arrows show the magnetic field values at which the
temperature dependence study was performed. (b)–(d) Temperature
dependence of T1 at (b) B = 0.48 T, (c) 1.9 T, and (d) 5.7 T. The
dotted line denotes |gμB|/kB .

a B−4 power law is reasonable for CdTe, as the magnetic field
dependence becomes steeper in CdTe with decreasing field, see
also Fig. 4. The high-field T1 process appears to be independent
of donor concentration. Even the T1 curve for the high-density
InP-2 sample approaches the InP-1 curve at the highest
fields. At low fields, T1 in InP and GaAs approaches a B2

dependence with a donor-concentration-dependent prefactor.
This is extremely pronounced for the InP samples in which the
donor-bound electron density Ne, the difference between the
donor and acceptor densities in the sample ND − NA, differs
by a factor of 4. The effect is also present in GaAs in which Ne

differs by a factor of 1.7. Finally, the maximum T1 observed
in all three materials is similar: T1 = 1.4, 0.4, and 1.2 ms for
GaAs, InP, and CdTe, respectively.

Measurements of the temperature T effect on T1 are
also performed. In InP-2, the sample in which T1 can be
obtained for the largest range of Zeeman energies, T1(T )
was measured at 0.5 T (low-field regime), 1.9 T (peak T1),
and 5.7 T (high-field regime) with the results depicted in
Fig. 3. In the low-field regime, an extremely steep inverse
dependence of T1 on temperature is observed indicative of a
strong phonon-assisted process. In the high-field regime, the
relaxation time is almost independent of temperature at the
lowest temperatures in our experiments, and drops with an
increase in T . This high-field behavior is consistent with a
model in which T1 is inversely dependent on the phonon factor
Fph = 2Nph + 1, in which Nph = [exp(|gμB|/kBT ) − 1]−1 is
the phonon occupation number. A comparison of magnetic-
field-dependent measurements at 1.5 and 5 K for CdTe-1 also
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FIG. 4. T1 as a function of Zeeman splitting for CdTe-1 at T =
1.5 K and T = 5 K. The red and blue lines are mutually fitted by an
empirical formula T1 = bB4/Fph, where b = 2000 μs/T4. The red
and blue dashed lines denote the energy at 1.5 and 5 K.

support a high-field single-phonon mechanism. The ratio of
the two curves in Fig. 4 is given by Fph(5 K)/Fph(1.5 K).

IV. THEORY

Here we consider the mechanisms resulting in spin re-
laxation of donor-bound electrons. We start with the limit
of relatively low magnetic fields, where spin relaxation is
controlled by the hyperfine coupling of the electron and nuclear
spins. Next, we turn to the regime of high enough magnetic
fields where the nuclei-induced spin relaxation is unimportant
and the spin-flip processes caused by the joint effects of the
electron-phonon and the spin-orbit interactions play the major
role.

A. Low-field spin relaxation

At low temperatures and low donor densities, the electrons
in bulk semiconductors are localized. At low and moderate
magnetic fields, the electron spin relaxation is controlled by
the hyperfine interaction with the host lattice nuclei [18,27].
The spin dynamics of the electron in the ensemble of donors
obey the set of kinetic equations [28,29]

dSi

dt
+ Si × �i = Qi , (1)

where Si is the electron spin at the site i, and �i = �i,nucl +
�B is the electron spin precession frequency caused by the
hyperfine interaction with nuclear spins �i,nucl and by the
Larmor precession in the external field �B . The collision
integral Qi describes the variations of the spins due to the
electron hopping between sites, processes of ionization and re-
combination, exchange diffusion, etc. [18,30]. The schematic
illustration of the spin dynamics of localized electrons is
presented in Fig. 5(a). Here we employ the simplest model
of the collision integral by introducing a single correlation
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(b) (c) High-field spin relaxation
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FIG. 5. Schematic of spin-relaxation mechanisms. (a) At low
magnetic fields, spin relaxation is dominated by the interaction of
the electron spin with lattice nuclear spins. (b) and (c) Relevant for
the high-field spin-relaxation mechanism. (b) Energy level structure
for unperturbed donor-bound electron in magnetic field, described
by zero-field quantum numbers. (c) Dresselhaus spin-orbit coupling
mixes states with opposite spin and different angular momentum
components. In the admixture mechanism, phonons cause relaxation
between the two eigenstates via the components with like spin.
The direct spin-phonon interaction causes spin relaxation via the
components with opposite spin.

time τc, disregarding the spread of the transition probabilities
[18,28]. We assume that the nuclear fluctuations are frozen on
the time scale of τc and that the Zeeman splitting in the external
field is negligible as compared with the thermal energy. Hence,
we obtain a simple analytical formula for the relaxation time
of the spin component parallel to the magnetic field B ‖ z [28]:

T1,hf = τcA
1 − A , (2)

where

A =
〈

1 + 	2
i,zτ

2
c

1 + 	2
i τ

2
c

〉
, (3)

and the angular brackets denote the averaging over the
distribution of random nuclear fields.

Equation (2) is valid for an arbitrary relationship between
the spin precession frequency and τc. In the experimentally
relevant range of magnetic field, 	B = |gμB|/� exceeds
by far the spin precession frequency in the field of nuclear
fluctuations and the inverse correlation time. It follows then
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from Eqs. (2) and (3) that

T1,hf = 3τc	
2
B

2
〈
	2

nucl

〉 ∝ τcB
2, (4)

where 〈	2
nucl〉 is the mean square fluctuation of the nuclear field

averaged over the ensemble of donors. This expression shows
the B2 power law which is observed in experiment, Fig. 2.

This increase in spin-relaxation time with increasing
field is related to the suppression of the relaxation by the
magnetic field: At 	B � τ−1

c ,〈	2
nucl〉1/2, the electron spin

precesses around the total field �B + �i,nucl during the
correlation time. Its precession axis is almost parallel to
�B and its orientation changes by a small random angle
∼	i,nucl/	B when the electron hops between the localization
sites. Such a random process results in the spin-relaxation rate
∼τ−1

c (	i,nucl/	B)2 ∝ 1/(τcB
2) in agreement with Eq. (4). For

known mechanisms of electron correlation time at a donor,
such as electron hopping and the exchange diffusion, see
Ref. [30] for review, an exponential sensitivity to the donor
density (and, in the former case, to the temperature) is expected
[30,31]. Correspondingly, for these mechanisms T1 should be
strongly affected by these parameters. Such trends are clearly
seen in the experiment, Figs. 2 and 3(b).

The developed model enables quantitative comparison with
the experiment. To that end, we evaluate the mean square of the
donor-bound electron spin precession frequency in the nuclear
field as [32]〈

	2
nucl

〉 = V0

8π (a∗
B)3�2

∑
α

(
Ahf

α

)2
Iα(Iα + 1), (5)

where a∗
B= ε�

2/(m∗e2) is the donor Bohr radius, V0 = a3
0

is the unit lattice volume, Iα is the spin of the αth nucleus
in a unit cell, and Aα is the hyperfine interaction constant.
Taking for GaAs A69Ga = 38.2 μeV,A71Ga = 48.5 μeV, and
A75As = 46 μeV [33] we obtain

√
〈	2

nucl〉 = 0.47×108 s−1.
Fitting the experimental data with Eq. (4), we determine a
correlation time τc ≈ 25 ns for the GaAs-2 sample. Such
a value of the correlation time is consistent with previous
studies of GaAs samples with similar donor densities [19,20].
A somewhat longer τc of ∼40 ns is determined for the InP-2
sample, where the hyperfine interaction is dominated by 115

In isotopes with IIn = 9/2. The estimate for AIn comes from
Ref. [34] where the Overhauser effect for InSb was measured.
The literature reports a spread of AIn: 47 μeV [35], 56 μeV
[36], and 84 μeV [33]. Here we use the middle value of
AIn = 56 μeV, which yields

√
〈	2

nucl〉 = 1.6×109 s−1.
Although the experimental sensitivity of T1 to temperature

and carrier density are consistent with the known mechanisms
contributing to the donor electron correlation time, the magni-
tude of τc is orders of magnitude shorter than these mechanisms
predict for the low donor densities used in this study. Our
result is consistent with prior works [19,20] and suggests
additional, unknown mechanisms may be at play, such as an
inhomogeneous donor distribution resulting in the formation
of clusters with a relatively high donor density, and short τc.

According to Eq. (4), the electron spin-relaxation time
associated with the hyperfine interaction strongly increases
with an increase in field. Hence, at sufficiently strong magnetic
fields this mechanism becomes inefficient as compared with

mechanisms caused by the combination of the electron-phonon
and spin-orbit interactions described below. By contrast, T1

due to these processes decreases with an increase in B.

B. High-field spin relaxation

While the spin-orbit interaction alone is not sufficient to
cause a spin-flip of a localized charge carrier, a combination
of the electron-phonon interaction and spin-orbit coupling
serves as a main source of localized electron spin relaxation
at high magnetic fields [37–39]. Phonons can also modulate
the hyperfine coupling of the electron and the lattice-nuclei
spins giving rise to T1 ∝ B−3 dependence [37]. Similar to the
quantum dot case, this effect is negligible for donor-bound
electrons. Two-phonon processes [38] are also very weak for
the range of temperatures and fields studied here.

An exhaustive theoretical investigation of the spin-flip
mechanisms has been performed for the related GaAs quantum
dot system [4,40,41]. In GaAs quantum dots, all reported
spin-orbit related mechanisms exhibit a T1 ∝ B−ν dependence
with ν � 5. For bulk GaAs-like semiconductors, such a study
has not been performed before to the best of our knowledge.
The orbitals for the donor-bound electron differ from those for
quantum dots, leading to the use of a different approximation
for the Dresselhaus spin-orbit Hamiltonian and different
selection rules.

Experimentally we observe that the high-field spin relax-
ation is consistent with a single phonon process. This limits us
to mechanisms that combine Dresselhaus spin-orbit coupling
and spin-conserving phonon-induced relaxation, and direct
spin-phonon mechanisms. In this section we present the de-
tailed calculation for the high-field T1 due to both mechanisms
and compare our theoretical results to the experimental data.

1. Admixture mechanism caused by Dresselhaus
spin-orbit coupling

We are first interested in the spin relaxation between
the Zeeman sublevels of the donor-bound electron ground
state mediated by spin-orbit and electron-phonon coupling
(admixture mechanism). This is the dominant relaxation
mechanism for III-V quantum dots [4,40] and naively may
also be expected to play the dominant role in the similar donor
system. For this mechanism, the spin-orbit interaction modifies
the ground-state Zeeman sublevels by the admixture of the
excited sublevels with the opposite spin component. Hence,
the spin-independent electron-phonon coupling causes spin
relaxation through the components of the states with the same
spin, as depicted in Figs. 5(b) and 5(c).

The interaction Hamiltonian for the admixture mechanism
is

Hadm = Uph + Hso, (6)

where Uph is the spin-conserving electron-phonon interaction
Hamiltonian and Hso is the spin-orbit Hamiltonian. In the high-
field limit, the Zeeman splitting can be comparable or even
exceed the thermal energy. In such a case, the transition rates
from the Zeeman sublevel ↓ to ↑, �↑↓, and back, �↓↑, differ.
The observed longitudinal spin-relaxation time satisfies

T1 = (�↑↓ + �↓↑)−1.
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The individual rates are found using Fermi’s golden rule, e.g.,

�↓↑ = 2π

�

∑
q,α

|M↓↑|2δ(�qsα − |gμB|), (7)

where q is the phonon wave vector, sα is the speed of
sound in phonon branch α, and α = t,l for the transverse
and longitudinal modes, respectively. Hereafter we assume for
convenience that the spin-up state has higher energy than the
spin-down one, hence, gμB > 0, as illustrated in Fig. 5, so
that the rate in Eq. (7) corresponds to the phonon emission
process. Electron spin relaxation occurs via a second order
process due to the quantum interference of Uph and Hso in the
Hamiltonian (6), see Ref. [4] for details,

M↓↑,adm = −
∑

e

[ 〈1s, ↓ |Uph|e, ↓〉〈e, ↓ |Hso|1s, ↑〉
Ee − E1s + gμB

+ 〈1s, ↓ |Hso|e, ↑〉〈e, ↑ |Uph|1s, ↑〉
Ee − E1s − gμB

]
, (8)

where |1s〉 is the ground orbital state of the donor-bound
electron, |e〉 denotes the excited orbital states, and Ee,E1s

are the energies of the corresponding orbitals.
Due to the small localization energy of the donor-bound

electron (�10 meV), the electron wave function in a magnetic
field is well described with effective mass theory using the
hydrogenic Hamiltonian

H0 = �
2

2m∗

(
k − e

�
A
)2

− 1

4πε0

e2

εr
+ 1

2
gμσ · B, (9)

where m∗ is the electron effective mass, e is the electron
charge, A is the vector potential of the magnetic field B,r is the
position vector, r = |r|,k = −i∂/∂r is the wave vector, ε is the
relative dielectric constant of the material, and σ is the vector
composed of the Pauli matrices. In the presence of the magnetic
field, the Hamiltonian, Eq. (9), possesses an axial symmetry
and its eigenstates are characterized by four quantum numbers:
principal quantum number ν, angular momentum z-projection
m, z-parity πz, and spin z-projection ms . To establish a link
with the hydrogenlike series of donor-bound electron states at
B = 0, we will label the orbitals by their zero-field quantum
numbers nlm, where n is the principal quantum number and l

is the angular momentum quantum number, when appropriate.
The energy of a phonon involved in the spin-flip transition

is the Zeeman splitting between the spin sublevels. Therefore,
the phonon wave vector qα = gμB/(�sα) → 0 as B → 0.
Thus, at moderate magnetic fields in piezoelectric crystals
such as GaAs, InP, and CdTe studied here, we found that the
piezoelectric electron-phonon interaction with U

(pz)
ph ∝ q−1/2

dominates over the deformation potential interaction, where
U

(dp)
ph ∝ q1/2 [50], see Appendix E. The piezoelectric electron-

phonon interaction reads

U
(pz)
ph =

√
�

2ρωq,α

ei(qr−ωq,α t)(eAq,α)b†q,α + c.c., (10)

where

Aq,α = h14

∑
ijk

βijkξiξj ê
(q,α)
k , (11)

ρ is the mass density of the material, ωq,α is the phonon
frequency, b

†
q,α is the creation operator for a phonon, ξ = q/q

is the unit vector along the phonon wave vector, ê is the phonon
polarization vector, the only nonzero components of βijk are
those with different subscripts, βxyz = · · · = βzyx = 1, and h14

is the piezoelectric constant [50].
Since all the samples studied here are bulk semiconductors

characterized by the Td point symmetry group, the only
relevant spin-orbit coupling comes from the cubic-in-the-
electron-wave-vector Dresselhaus spin-orbit term Hso. It arises
from the lack of inversion symmetry in zinc-blende crystals
and has the form

Hso = γ
∑

i

σiki

(
k2
i+1 − k2

i+2

)
, (12)

where γ is the Dresselhaus spin-orbit coupling constant and
the subscript i cycles through x,y,z.

Depending on the relation between the magnetic length
lb = √

�/|eB| and the effective Bohr radius a∗
B , various

regimes of the spin-flip can be realized. At sufficiently weak
magnetic fields, where lb � a∗

B , the magnetic field does not
affect the hydrogenlike states of the donor-bound electron.
In this case, the Dresselhaus spin-orbit interaction admixes
nf -shell states with principal quantum numbers n = 4,5, . . .

and orbital momentum l = 3 to the 1s-shell state. It is worth
noting that, by contrast to the bulk case studied here, for axially
symmetric quantum dots the admixture is already possible for
the first excited states [4]. With the long wavelength approx-
imation (LWA) for the phonons, where |gμB|a∗

B/(�sα) � 1,
we obtain the longitudinal spin-relaxation time

T
(low)

1,adm ∝ B−9F−1
ph , (13)

see Appendix E for details. Hence, at low temperatures,
T1 is inversely proportional to B9, while for kBT � gμB,

T1 ∝ B−8. We do not observe this regime in experiments
due to the dominating low-field nuclear-electron hyperfine
mechanism.

In the opposite limit, where lb � a∗
B and, moreover,

�ωc � E∗
Ry, where ωc = |eB/m∗| is the cyclotron frequency

and E∗
Ry = m∗e4/[2(4πεε0)2

�
2] is the donor-bound-electron

binding energy, the magnetic field shrinks the wave functions
of the ground and excited states of the donor-bound electron.
This situation is similar to the case of an electron localized in
the (xy) plane by a parabolic potential, like in the quantum
dot system studied in Ref. [4]. Here the excited states with
|m| = 1 (in addition to those with |m| = 3) are admixed and,
in the LWA, we obtain for the spin-flip time

T
(high)

1,adm ∝ B−3F−1
ph , (14)

see Appendix E. This high-field limit is not realized for
the studied samples and magnetic fields accessible in our
experiments. Moreover, in this limit, the LWA in our system
is no longer valid.

Therefore, we have performed the full numerical evaluation
of the spin-relaxation time according to Eqs. (7) and (8)
using the numerical solutions to Eq. (9) [51] and the material
parameters from Table II. Additional details on the numerical
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TABLE II. Material parameters relevant to the donor-bound
electron spin relaxation in GaAs, InP, and CdTe. g is the effective
electron g factor, m∗ is the electron effective mass (m0 is the
free electron mass), h14 is the piezoelectric constant, γ is the
Dresselhaus spin-orbit coupling constant, ρ is the mass-density, sl

is the longitudinal sound velocity, st is the transverse sound velocity,
ε is the relative permittivity of the material, v0 characterizes the
strength of the direct spin-phonon coupling interaction, and D is the
deformation potential interaction constant.

GaAs InP CdTe

g −0.44 1.3 −1.67
m∗ 0.067m0 0.08 m0 0.106m0 [42]
h14 (V/m) 14.5×108 [43] 7.4×108 [44] 3.94×108 [42]

γ (eV Å
3
) 23.7 [45] 10.1 [45] 11.74 [42]

ρ (kg/m3) 5.32×103 [46] 4.81×103 [46] 4.85×103 [42]
sl (m/s) 4.73×103 [46] 4.58×103 [46] 3.08×103 [42]
st (m/s) 3.35×103 [46] 3.08×103 [46] 1.85×103 [42]
ε 12.56 12.5 [46] ∼10.3 [47]
v0 (m/s) 8×105 [48] 4×105 [48] unknown
D (eV) −5.55 [49] −4.4 [49] −5.45 [49]

calculation can be found in Appendix D. These results, which
include 18 excited state orbitals, are given by the black curves
in Fig. 6. We numerically find that the first excited state which
evolves from 2p− makes the dominant contribution to the
spin-relaxation rate, as shown by the dashed green curves in
Fig. 6.

This numerical result, together with the analysis of the wave
functions in Appendix E, motivates using Gaussian shapes of
the ground and excited state wave functions, Eqs. (E9), to
obtain an analytic solution for further insight into the inter-
mediate field behavior. The magnetic field induced shrinking
is taken into account by assuming different characteristic
lengths lz,1s = a∗

B and lρ,1s = [1/(a∗
B)2 + 1/(2l2

b)]−1/2 for the
motion along and perpendicular to the field. After some
transformations, we obtain (see Appendix E for details)

1

T1,adm
= 256χ10

35(1 + χ2)12

γ 2e4h2
14|gμ|3B5

πρ�6

×
(

1

�E
− 1

�E + �ωc

)2(
fl

s5
l

+ 4ft

3s5
t

)
Fph. (15)

Here �E = E2p− − E1s is the energy difference between the
hydrogenlike ground 1s and excited 2p− state. The factors
fα = exp {−(χgμBlρ)2/[(1 + χ2)�2s2

α]} take into account
that the phonon wavelength can be comparable with the
donor-bound electron state size. These factors are particularly
sensitive to the wave function shape. Finally, the parameter
χ is a parameter of the wave functions which characterizes
the ratio of the effective radii for the excited and the ground
states, see Eqs. (E9). By comparing the trial wave function to
the numerical 2p wave function, we find reasonable choices
for χ of 1.5, 1.7 and 2.2 for GaAs, InP, and CdTe over the
experimental range of magnetic field, as shown in Fig. 12. The
magnitude of T1,adm calculated according to Eq. (15) is quite
sensitive to the choice of χ .

A comparison between the experimental, numerical, and
analytic results for T1 is shown in Fig. 6. We stress that these
calculations contain no fitting parameters. Qualitatively we
observe similar behavior between the analytic and numerical
calculations. At sufficiently strong magnetic fields, we find
the LWA fails for InP and CdTe due to their relatively large
electron g factors as compared with GaAs. This effect is taken
into account by factors fl and ft in Eq. (15). It softens the
exponent in B dependence giving approximately 3 � ν � 4 in
the accessible field range. Further increase in B results in a
minimum in T1(B). It is noteworthy that at such magnetic
fields, the deformation potential interaction may become
important, see [52] and Appendix E for details; moreover,
in such fields the result could be quite sensitive to the shape of
the wave functions. Hence, for sufficiently high fields, Eq. (15)
provides only an indication of the trend.

We find that the numerically calculated values of T1 for
InP and CdTe are orders of magnitude longer than the ex-
perimentally observed spin-relaxation times in these samples,
which indicates the importance of other spin-flip mechanisms
in the materials, see below. By contrast, in GaAs the calculated
magnitude of T1 is quite close to the experimental values,
demonstrating that the admixture mechanism is significant in
this material.

2. Direct spin-phonon interaction

Although the direct spin-phonon interaction was not found
to be a dominant relaxation mechanism for electrons in
semiconductor quantum dots [4], we demonstrate here that
it contributes significantly to donor-bound electron spin relax-
ation. To some extent, this is because the role of the admixture
mechanism is diminished due to the cubic-in-the-wave-vector
spin-orbit splitting in the bulk material, as compared with
k-linear terms used for quantum dot systems [4]. The direct
spin-phonon interaction Hamiltonian is [48]

Udir = �v0

2
[σx(uxyky − uxzkz)

+ σy(uyzkz − uyxkx) + σz(uzxkx − uzyky)], (16)

Here uij = uji is the deformation tensor, and, as above,
k = −i∇ − (e/�)A. The coupling constant v0 has the dimen-
sion of velocity. It has been determined by experiment for
GaAs and InP but is unknown for CdTe (see Table II). For
numerical evaluation for CdTe, we use a spread of values,
8 × 105 < vCdTe

0 < 3 × 106 m/s with the lower (upper) bound
corresponding to vGaAs

0 (vInSb
0 ) [48].

The relaxation rates �↑↓ are calculated using Eq. (7)
with the first-order matrix element M↑↓ = 〈1s, ↑ |Udir|1s, ↓〉,
as depicted in Fig. 5(c). We use an approximate ex-
ponential wave function with a characteristic length
l = [(a∗

B)−2 + 1/(2l2
b )]−1/2 to obtain analytic expressions for

�↑↓ and, correspondingly, for the associated longitudinal
spin-relaxation time T1,dir. The choice of the wave function is
motivated by the fact that only the 1s orbital state is involved,
which is not significantly perturbed at the experimentally
accessible magnetic fields. Moreover, the precise symmetry
of the wave function for the direct phonon mechanism is not
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FIG. 6. Theoretical results for spin-relaxation time T1 via the admixture mechanism, using both analytic and numerical wave functions.
Pink and gray dots show the experimental data. For GaAs (a), the theory matches the data reasonably well with no fit parameters. For InP
(b) and CdTe (c), the calculated values are multiplied by the factor specified in the figure for ease of comparison. T = 1.5 K. We note that
the numerically calculated T1 which includes only the 2p states is slightly shorter than the full numerical solution. This is due to destructive
interference between the orbital states in Eq. (8).

critical. The evaluation of Eq. (7) yields (see Appendix F)

1

T1,dir
= (ev0l

2)2|gμ|5|B|7
560πρ�6

Fph

×
(

1

s7
l

1(
1 + Q2

l

)6 + 4

3s7
t

1(
1 + Q2

t

)6
)

, (17)

where Qα = |gμB|l/(2�sα). Equation (17) demonstrates that
the spin-flip time is proportional to B−7 at weak magnetic
fields. An increase in the field results in a softening of
the B-field dependence due to decrease of the efficiency
of the electron-phonon interaction (breakdown of the LWA)
described by the factors (1 + Q2

α)−6. In addition to the analytic
approximation, we performed the full calculation using the
numerically obtained ground-state donor wave function. The
very good agreement between the analytic and numerical
calculations, seen in Fig. 7, can be attributed to the minor
effect of the magnetic field on the ground-orbital-state wave
functions at the experimental fields.

A comparison between the theoretical calculations with
no fit parameters and the experimental data is also provided
in Fig. 7. For GaAs we find that the magnitude of the direct-
phonon mechanism is approximately the same as the admixture
mechanism. Also included in Fig. 7(a) is the sum of these two
mechanisms. Accounting for both mechanisms results in a
difference between the theory and the data of approximately a
factor of 2, which can be easily attributed to the uncertainties
in the system parameters in Table II.

For InP and CdTe, the direct spin-phonon mechanism is
found to be significantly stronger than the admixture mecha-
nism. For CdTe, the agreement between theory and experiment
is extremely good if the direct spin-phonon interaction strength
in CdTe is similar to that of InSb. This may be reasonable
given the similar valence band spin-orbit splitting in the two
materials, 0.8 eV in InSb [53] and 0.9 eV in CdTe [54–56].
Here an independent measurement of v0, like those performed
in Ref. [48] for GaAs and InP, or its independent first-principles
calculation, is needed to corroborate our result.
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FIG. 7. Theoretical results for the spin-relaxation time T1 via the direct spin-phonon mechanism for GaAs (a), InP (b), and CdTe (c). Pink
and gray dots show the experimental data. T = 1.5 K. The two dashed lines and two solid lines in (c) represent the analytic and numerical
calculation results of T1 using v0 = 8×105 m/s (upper curves) and v0 = 3×106 m/s (lower curves).
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There is still a significant discrepancy between theory and
experiment for InP, where the experimental spin-relaxation
time is 15 to 30 times shorter than the predicted value from
the direct spin-phonon coupling. Its origin is not clear and
further studies, both experimental and theoretical, are needed
to resolve this discrepancy.

V. CONCLUSION

In this work we measure the longitudinal spin-relaxation
time as a function of magnetic field for electrons bound to
donors in three different high-purity direct band-gap semicon-
ductors. We observe the crossover between low-field spin re-
laxation resulting from a hyperfine coupling of the electron and
lattice nuclear spins and high-field single-phonon-mediated
spin relaxation. From a fundamental perspective, the existence
of both regimes is expected. However, the comparison of the
data with the developed theory in terms of the magnitude of
the relaxation raises new questions. Low-field measurements
indicate a tens of nanoseconds electron spin correlation time
of so far unknown origin. High-field measurements strongly
suggest the admixture mechanism is important in GaAs, while
the direct spin-phonon interaction is important in both CdTe
and GaAs. However for InP, the discrepancy between theory
and experiment calls for further investigation.

In the context of possible applications, the high-field B−ν

dependence of T1, combined with the density and temperature
dependent low-field B2 behavior, has practical implications.
If the crossover point can be pushed to lower fields, extremely
long spin-relaxation times may be possible. This could be
realized with lower impurity density, lower temperature, larger
binding energies, and a nuclear-spin-free matrix. In support of
this, we note that no crossover is observed in CdTe even when
kBT > |gμB|. This may reflect the role of the higher donor
binding energy and/or the reduced nuclear-spin environment
in CdTe. In this context, isotope purification, which is known
to significantly affect spin dephasing, may also significantly
increase the maximum achievable T1 for electrons bound to
shallow donors.
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APPENDIX A: MAGNETOPHOTOLUMINESCENCE
SPECTRA FOR GAAS, INP, AND CDTE

Representative magnetophotoluminescence spectra for
GaAs-2, InP-2, and CdTe-2 are shown in Fig. 8. In all
three samples we can observe the free exciton (labeled X),
donor-bound exciton D0X → D0,1s transition (labeled D0 X),
ionized donor-bound exciton transition D+X → D+ (labeled
D+X), and acceptor-bound exciton A0X → A0,1s transition
(labeled A0 X). Also observed in GaAs and InP are the
D0X two-electron satellite (TES) transitions which correspond
to the D0X → D0,nlm transition, where n,l,m specify the
quantum numbers of the excited D0 orbital at B = 0. For
GaAs and InP, the fine structure of the D0X spectra is well
resolved due to the hole spin and spin-orbit interaction as well
as the nearby D0X excited orbital states. In the CdTe samples,
which are bulk crystals, this structure is unresolved, limiting
our ability to optically pump the system to electron Zeeman
splittings greater than 0.1 meV.

APPENDIX B: GAAS AND CDTE T1 MEASUREMENTS

Representative energy diagrams, spectra, optical pumping
traces, and T1 recovery traces for CdTe and GaAs are shown
in Fig. 9. For GaAs and InP, the lower energy Zeeman pair
transition was used for optical pumping. Although this results
in a weaker signal due to the lower thermal population in the
higher electron spin level, the lower energy transition is clearly
resolved from all other D0X transitions enabling efficient
optical pumping. For CdTe, there is significant inhomogeneous
optical broadening of the D0X lines. This can be observed by
comparing the nonresonant and resonant excitation spectral
linewidths in Fig. 9(b). Optical pumping visibility is thus
significantly smaller in this sample relative to GaAs and InP.
Empirically we find the best signal-to-noise is obtained by
pumping the high-energy Zeeman pair transition due to the
significantly larger thermal population in the lower energy spin
state. Due to the large g factor in CdTe, the thermal population
in the high energy state at 7 T and 1.5 K is only 0.6%.

APPENDIX C: SURFACE DEPLETION EFFECTS

In the GaAs and InP samples, a microsecond-scale time-
dependent increase in luminescence was observed in all band
edge PL after the start of an optical excitation pulse. The
magnitude of this effect varied significantly between samples
and depended on both the wavelength and intensity of the
optical excitation. The effect was greater in InP than in GaAs
and was greater in lower doped samples. It did not significantly
depend on emission wavelength. Free exciton, D+X, D0X, and
A0X transitions all behaved similarly.

Figure 10(a) depicts a representative example of this effect
in sample InP-2. In two experiments at 0 T and 1.6 K, the D0X
emission is detected during an excitation pulse. In the first
experiment, the sample is excited with a 5 μW excitation pulse
resonant with the D0X transition. During the application of this
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FIG. 8. Magnetophotoluminescence spectra in the Voigt geom-
etry. (a) GaAs-2. The oscillations in photoluminescence intensity
with field are attributed to oscillations in magnetoabsorption due
to the diamagnetic exciton effect [57], T = 2 K, excitation and
collection are performed in linear polarizations oriented at ±45◦

with respect to the magnetic field direction, 1 mW excitation
power at 810 nm. (b) InP-2, T = 2.3 K,σ -polarization excitation,
all polarizations collected, 40 μW above band-gap excitation power.
(c) CdTe-2. T = 1.6 K. π -polarization excitation, σ -polarization
collection, 20 μW above band-gap excitation power.

pulse a small increase in optical emission at the beginning of
the pulse can be observed on the microsecond time scale (blue
trace). This effect decreases with increasing field and increases
with excitation power intensity. In the second experiment, we
use a 5 μW excitation pulse with energy greater than the
band gap. A significant emission increase is observed. Using
a pulse sequence similar to the T1 sequence [Fig. 1(e)], we
find the sample relaxes to its initial state on the time scale of
50 μs. For all T1 measurements reported in the main text, the
resonant excitation power is always kept low enough so that
this emission enhancement effect is negligible.

Due to this effect, we are unable to obtain a T1 measurement
for donors in InP-1, the InP sample with the lowest donor con-
centration. Example optical pumping curves for this sample are
shown in Fig. 10(b) at 4 T and 1.6 K. The blue trace shows data
corresponding to the standard optical pumping pulse sequence
depicted in Fig. 1(c). The visibility is poor and in addition to
the small optical pumping feature, we see an increase in the
PL intensity after the initial optical pumping phase. For InP-1,
this “brightening” effect is observed at all reasonable powers
(i.e., powers for which we can obtain enough signal to reliably
obtain a T1 measurement) and the decay of this signal is the
dominant contribution in T1 pulse sequence measurements.

Additionally, we performed a two-pulse experiment where
a 50 μs pulse with energy above the band gap is applied to the
sample until 5 μs before the the optical pumping pulse begins.
The effect of the prepulse is dramatic (Fig. 10): the larger
visibility can be attributed to the prepulse depolarizing bound
electron spins. However we also note that the intensity in the
optically pumped steady state, near the end of the pulse, is flat
and significantly larger in the prepulse case. This indicates that
in terms of emission intensity, the sample has reached steady
state during the application of the prepulse. We attribute the
brightening effect to the elimination of near-surface fields in
the GaAs and InP samples under optical illumination [58]. The
photogenerated carriers neutralize the surface states, resulting
in an effective increase in the neutral region thickness and
therefore the increase of photoluminescence intensity. There
is evidence that very small fields, on the order of V/cm, can
substantially quench fluorescence [59]. We do not observe this
effect in CdTe, which is a true bulk sample rather than a few-
micron-thick film, thus the surface field has a negligible effect.

APPENDIX D: NUMERICAL SOLUTION OF
DONOR-BOUND ELECTRON IN MAGNETIC FIELD

The numerical solution of the hydrogen atom in a magnetic
field is a nontrivial problem [60]. Of particular difficulty is
the transition from the low-field to high-field regime, where
the solutions cannot be conveniently expanded in hydrogen
or Landau orbitals [61]. We have used a readily available
finite element solver to find the energies and wave functions
of hydrogen in a magnetic field of arbitrary strength [51].
These solutions can be mapped onto the donor-bound electron
problem by replacing the electron mass, Bohr radius, g

factor, and other parameters by their effective values for
the donor-bound electron. The magnetic field is measured
by a dimensionless quantity β = B/B0, where the reference
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FIG. 9. (a) Energy level diagram for donor system in CdTe. (b) Photoluminescence spectrum of CdTe at B = 3.5 T,T = 1.5 K. Excitation
at 1.653 eV with 50 μW for the two above band spectra (red and blue). Excitation at 1.593 with 50 μW for resonant spectrum (black), as shown
by the red arrow. (c) Optical pumping trace for CdTe at 3.5 T, 1.5 K. Power 50 μW. Laser pulse lasts 100 μs. (d) T1 measurement for CdTe
at 3.5 T, 1.5 K. Power 50 μW. T1 = (12.0 ± 0.2) μs. (e) Energy level diagram for donor system in GaAs. (f) Photoluminescence spectrum of
GaAs at 7 T, 1.5 K. Excitation at 1.530 eV with 18 μW for the two above band spectra (red and blue). Excitation at 1.517 with 10 μW for
resonant spectrum (black), as shown by the red arrow. (g) Optical pumping trace for GaAs at 7 T, 1.5 K. Power 10 μW. Laser pulse lasts 50 μs.
(d) T1 measurement for GaAs at 7 T, 1.5 K. Power 10 μW. T1 = (313 ± 5) μs. All data are taken with an excitation spot size ∼30 μm.

magnetic field B0 = 2�/[|e|(a∗
B)2] is found by considering

when the Larmor radius
√

2�/|eB| is equal to the donor Bohr
radius. For GaAs, InP, and CdTe, B0 is, 13.4, 19.3, and 49.8 T,
respectively. In our experiment, the maximum applied field is 7
T, implying that the 1s wave function is a good approximation
for the ground state. However, we note that for higher energy
orbitals n, the magnetic field at which magnetic effects begin
to dominate Coulomb ones occurs at B0/n3 [51]. Thus, higher
energy orbitals are significantly perturbed even at small β. The
energy difference between the excited states and the ground
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FIG. 10. Time-resolved photoluminescence during optical pulse.
(a) Collection of D0X emission during resonant D0X excitation
(blue curve) and above-band-gap excitation (red curve). A significant
increase in emission intensity is observed for above-band-gap
excitation. (b) Optical pumping traces for InP-1 at 4 T. Blue curve:
Standard optical pumping experiment. Red curve: Prior to the optical
pumping pulse, a 50 μs long above-band-gap prepulse is applied. The
end of the prepulse is 5 μs before the start of the optical pumping
pulse.

state are shown in Fig. 11. The energy is scaled by the effective
binding energy E∗

Ry, which is 5.8, 7.0, and 13.6 meV for GaAs,
InP, and CdTe, respectively.

APPENDIX E: THEORY OF SPIN RELAXATION
VIA THE ADMIXTURE MECHANISM

In this Appendix we calculate the spin-relaxation rate
due to the admixture mechanism in several different ways.
First we provide general simplifications that are common
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FIG. 11. Energies of excited state orbitals vs dimensionless
magnetic field β from numerical simulation of hydrogen atom in
magnetic field. The plot shows the energy difference of 18 excited
states from the ground state with the same spin projection. States
are labeled by their zero-field quantum numbers. Also plotted is the
Zeeman splitting energy |g|μB in units of effective Rydberg, the
maximum β of the plot being the maximum experimental β obtained
for each material. The Zeeman energy can be ignored compared to
the orbital energy.
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to all calculations. We then evaluate the expression for T1

numerically at all fields and analytically at low and moderate
fields.

1. General expression for the admixture spin-relaxation rate

It is convenient to represent the spin-relaxation rate, Eq. (7),
in a simplified form. First, we investigate which excited states
may contribute to spin relaxation by symmetry.

The Dresselhaus spin-orbit interaction Hamiltonian (12)
is cubic in the electron wave vector. It can be conveniently
decomposed in the spherical angular harmonics Ym

l (θk,φk),
where the subscripts l = 0,1,2, . . . ,m = −l, − l + 1, . . . ,l −
1,l, and θk,φk are the polar and azimuthal angles of the wave
vector k in the spherical coordinate system with z being the
polar axis. Corresponding summands in Eq. (12) take the form

kx

(
k2
y − k2

z

)
k3

= √
π

(
Y 3

3 − Y−3
3√

35
+ Y 1

3 − Y−1
3√

21

)
, (E1a)

ky

(
k2
z − k2

x

)
k3

= √
π

(
Y 3

3 + Y−3
3

i
√

35
− Y 1

3 + Y−1
3

i
√

21

)
, (E1b)

kz

(
k2
x − k2

y

)
k3

= 2

√
2π

105

(
Y 2

3 + Y−2
3

)
. (E1c)

Here the arguments of the spherical harmonics are omitted for
brevity. In our frame of axes where B ‖ z, the eigenstates of the
donor-bound electron in the magnetic field are characterized
by the angular momentum component m onto the z axis. Note
that the term σzkz(k2

x − k2
y) in Eq. (12) does not play a role

in the spin-flip process. Hence, the intermediate states for the
admixture mechanism, in agreement with the first two lines of
Eq. (E1), are those with m = ±1,m = ±3. In relatively weak
fields where the magnetic field does not perturb the ground
and excited stated wave functions, the donor-bound electron
has spherical symmetry and Eq. (E1) imposes a strict selection
rule for the excited states: only l = 3 (and m = ±1,m = ±3)
can cause spin relaxation.

As such, in the sum over excited states in Eq. (8), we only
need to include m = ±1 and m = ±3 states. We also note that
due to the azimuthal symmetry,

〈ν,πz,m|kx

(
k2
y − k2

z

)|1s〉 = e−im π
2 〈ν,πz,m|ky

(
k2
x − k2

z

)|1s〉,
it is sufficient to calculate the contribution due to the
σxkx(k2

y − k2
z ) term in the Dresselhaus Hamiltonian. By com-

bining positive and negative m terms and simplifying, we find

|M↑↓|2 = 2γ 2
�

ρωq,α

|eAq,α|2
∣∣∣∣∣
∑

m = 1, − 3
ν = 1,2, . . .

πz = 1

〈1s|eiqr|ν,πz,m〉

×〈ν,πz,m|kx

(
k2
y − k2

z

)|1s〉Gν;m

∣∣∣∣∣
2

, (E2)

where

Gν;m = (�Eν,πz,m − gμB)−1 − (�Eν,πz,−m + gμB)−1,

and πz = 1 by symmetry. By integrating over phonon modes,
we find the general expression

1

T1
= Fph

γ 2

2π2�2ρ

∑
α

∑
m=1,−3

|gμB|
s3
α

∫
d	q |eAq,α|2

×
∣∣∣∣∣
∑

ν

[〈1s|eiqr|ν,πz,m〉]q=qα
〈ν,πz,m|

× kx

(
k2
y − k2

z

)|1s〉Gν;m

∣∣∣∣∣
2

, (E3)

where the phonon matrix element is evaluated at a wave
vector q magnitude corresponding to the Zeeman energy
q = qα ≡ |gμB|/�sα . In the following sections we will
evaluate Eq. (E3) using numerically calculated functions and
an analytic approximation for the hydrogenic wave functions
in a magnetic field.

2. Numerical calculation of admixture spin-relaxation rate

For the two matrix elements in Eq. (E3), the integrals
over the azimuthal angle of the position vector r can be
performed analytically. This greatly speeds the evaluation
time and improves the accuracy of the numerical calculation.
The wave functions are written in cylindrical coordinates
as 〈r|ν,πz,m〉 = �ν,πz,m(ρ,z)eimφ , where ρ is the radial
coordinate, z the axial coordinate, and φ the azimuthal angle.
By transforming the differential operators into cylindrical
coordinates and integrating over φ, we find

〈ν,πz, ± 1|kx

(
k2
y − k2

z

)|1s〉

= −π

4

∫
ρdρdz�ν,πz,±1

[
1

ρ2
∂ρ− 1

ρ
∂2
ρ−∂3

ρ+4∂ρ∂
2
z

]
�1s ,

〈ν,πz, ± 3|kx

(
k2
y − k2

z

)|1s〉

= −π

4

∫
ρ dρ dz �ν,πz,±3

[
3

ρ2
∂ρ − 3

ρ
∂2
ρ + ∂3

ρ

]
�1s , (E4)

and that the matrix element is zero for any other excited state
magnetic quantum number, as it must be by symmetry.

Similarly, for the matrix element 〈ν,πz,m|eiqr|1s〉, we note
that aligning the φ = 0 plane along q results in multiplying the
integrand by a phase exp (−imφq), where φq is the azimuthal
angle of the phonon wave vector q. The φ integral can then
be performed analytically with the help of a Bessel function
identity. Using a few additional simplifications involving the
z parity of the wave functions, the matrix element becomes

〈ν,πz,m|eiqr|1s〉 = 4π e−imφq

∫ ∞

0
ρ dρ

∫ ∞

0
dz�ν,πz,m�1s

× cos(z q cos θq)Jm(ρ q sin θq), (E5)

where θq is the polar angle of the wave vector q, and Jm is the
mth Bessel function of the first kind.

Lastly, we evaluate the integral over the phonon azimuthal
angle φq in Eq. (E3). We additionally note that m = ±1 states
cannot interfere with m = ±3 states due to the e−imφq factor
in Eq. (E5). We thus arrive at the expression for T1 via the
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admixture mechanism,

1

T1
= Fph

γ 2|gμB|
2π�2ρ

∫
sin θqdθq

∑
α

∑
m=1,−3

×
∣∣∣∣∣

∞∑
ν=1

[〈1s|eiqr|ν,πz,m〉]q=qα

φq=0

× 〈ν,πz,m|kx

(
k2
y − k2

z

)|1s〉
∣∣∣∣∣
2

Pα(θq), (E6)

where the phonon matrix element is evaluated at the wave
vector corresponding to the Zeeman energy and at φq = 0
[62]. The functions Pα(θq) describe the contributions of dif-
ferent phonon modes and different electron-phonon interaction
mechanisms. We take into account both the piezoelectric
interaction with longitudinal and transverse modes, Eq. (10),
as well as the deformation potential interaction. The latter is
described by the Hamiltonian [50,52]

U
(dp)
ph (r) =

√
�

2ρωqα

eiqrq(ξi êi)Db†qα + c.c., (E7)

where D is the deformation potential constant and involves
longitudinal phonons only. As a result, disregarding the
interference of piezo and deformation potential interactions,
we have

P1(θq) = 9e2h2
14

s3
l

cos2 θq sin4 θq,

P2(θq) = e2h2
14

8s3
t

(27 + 28 cos 2θq + 9 cos 4θq),

P3(θq) = 2(gμB)2D2

�2s5
l

.

(E8)

The simplified matrix elements Eqs. (E4) and (E5) are
calculated numerically using standard procedures. The scripts
have been made readily available [63].

3. Admixture mechanism in moderate magnetic fields

In the regime of moderate fields, when lb ∼ a∗
B , we take into

account the modification of the excited state wave functions by
the magnetic field. In this regime, admixture with the lowest
energy excited states (p-shell states) is allowed and we will
further take into account only these two states assuming a
Gaussian form of the wave functions:

ψ1s = 1

π3/4lρ
√

lz
exp

(
− x2 + y2

2(lρ,1s)2
− z2

2(lz,1s)2

)
,

ψ2p± = (x ± iy)

π3/4χ5/2l2
ρ

√
lz

exp

(
− x2 + y2

2(lρ,2p)2
− z2

2(lz,2p)2

)
.

(E9)

Furthermore, for simplicity, we will assume a proportionality
lρ,2p = χlρ,1s and lz,2p = χlz,1s for the analytic wave func-
tions. Here lρ,1s = [1/(a∗

B)2 + 1/(2l2
b )]−1/2 and lz,1s = a∗

B are
the wave function effective sizes in the (xy) plane and the z

direction, respectively. At zero field, lρ,1s is just the Bohr radius
and both lengths coincide. A nonzero magnetic field shrinks
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FIG. 12. The overlap integral between the Gaussian approxima-
tion for the wave function, Eq. (E9), and the numerical solution
was maximized as a function of β. The ratio of the radial and axial
Gaussian sizes is plotted as a function of B. Also shown are the
experimental limits of the “high-field” regime where T1 goes as B−ν

for the three different materials. Using these limits, reasonable choices
of χ are 1.5, 1.7, and 2.2 for GaAs, InP, and CdTe, respectively.

the wave function in the (xy) plane leading to anisotropy
of the 1s state with lρ,1s < lz,1s . In the limit of very strong
fields lρ,1s = √

2lb, in agreement with the free-electron wave
function in a magnetic field in the symmetric gauge. The exact
numerical wave functions (Appendix D) are used to determine
the value of χ for the analytic wave functions, Eq. (E9). To
determine the best value of χ , we numerically optimized the
overlap integral between the analytic wave functions, Eq. (E9),
and the numerical ones. The ratio of the wave function size
for the 2p−1 and 1s states are shown in Fig. 12. In the figure
we have also shown the limiting values of β for which the
experimental high-field dependence is observed. By averaging
over the ratio of lengths for ρ and z directions, we obtain a
best-choice χ of 1.5, 1.7, and 2.2 for GaAs, InP, and CdTe,
respectively.

To obtain the matrix element M↓↑ given by Eq. (8), we need
to calculate 〈2p±|∂x(∂2

y − ∂2
z )|1s〉 and 〈1s|eiqr|2p±〉. Utilizing

the Gaussian wave functions we assumed, Eq. (E9), the results
for the integrals are

〈2p±|∂x

(
∂2
y − ∂2

z

)|1s〉 =
√

2χ5/2

(1 + χ2)7/2l2
b lρ

, (E10a)

〈2p±|∂y

(
∂2
z − ∂2

x

)|1s〉 = ± i
√

2χ5/2

(1 + χ2)7/2l2
b lρ

, (E10b)

and

〈1s|eiqr|2p±〉 = i2
√

2

(
χ

1 + χ2

)5/2

(qx ± iqy)lρ

× exp

(
− χ2

2(1 + χ2)

[(
q2

x + q2
y

)
l2
ρ + q2

z l
2
z

])
.

(E11)
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Note that nonzero matrix elements in Eq. (E10) are propor-
tional to B, so that they vanish in the limit of low fields (this
regime is considered below in Appendix E 4). As the magnetic
fields in our experiments are not very strong, the change of the
characteristic length is small and we can neglect the difference
between lρ and lz in the exponential part of Eq. (E11) by
setting lz,1s = lρ,1s = l. In fact, the wave function size l is
important only when the long-wavelength approximation for
the electron-acoustic phonon interaction fails, in which case
the result may be quite sensitive to the overall shape of the
wave function, and, additionally, the deformation-potential
interaction may be important.

Substituting these into Eqs. (7) and (8), the relaxation rate
is

1

T1
= 32

π�ρ

χ10

(1 + χ2)12

γ 2(eh14)2

l4
b

(
1

�ER

− 1

�ER + �ωc

)2

×Fph

∑
α

q3
α

s2
α

exp

(
− χ2

1 + χ2
q2

αl2

)〈
sin2 θqa

2
q,α

〉
	
.

(E12)

The quantity �E = E2p− − E1s . Numerically we find that
�E = 3/4E∗

Ry is a good approximation across the entire
experimental range of fields (see Fig. 11).

For longitudinal phonons we have

〈
sin2 θqa

2
q,l

〉
	

= 8

35
, (E13)

while for transverse modes〈
sin2 θqa

2
q,t

〉
	

= 32

105
. (E14)

Substituting these integrals into the Eq. (E12), the final result
for the spin-relaxation rate is

1

T1
= 256χ10

35(1 + χ2)12

γ 2e4h2
14(gμ)3B5

πρ�6

×
(

1

�ER

− 1

�ER + �ωc

)2

Fph

×
[

1

s5
l

exp

(
−χ2q2

l l
2

1 + χ2

)
+ 4

3s5
t

exp

(
−χ2q2

t l
2

1 + χ2

)]
,

(E15)

in agreement with Eq. (15) of the main text.
We note that in the limit of very strong magnetic fields

where lb � a∗
B and �ωc � �ER one has to take into account

the modification of the separation between the ground and the
excited states by the magnetic field. As a rough estimate one
may replace �ER in Eq. (E15) by �ωc, in which case, within
the LWA, one has T1 ∝ B3. Our estimates show that this limit
is not fulfilled in any sample for the magnetic fields under
study.

Finally, we briefly analyze the deformation potential inter-
action in which case instead of Eq. (10) one has Eq. (E7).
It follows from Eq. (E7) that transition can be assisted by
the longitudinal acoustic phonons only. Making use of the
analytical form of the wave functions, Eq. (E9), and the matrix
elements of the Dresselhaus spin-orbit interaction, Eq. (E10),

as well as Eq. (E11) we obtain

1

T1
= 64χ10

3π�ρ(1 + χ2)12

(
gμB

�sl

)5
γ 2D2

s2
l l

4
b

Fph

×
(

1

�ER

− 1

�ER + �ωc

)2

exp

(
−χ2q2

l l
2

1 + χ2

)
. (E16)

The angular integrations over the phonon wave vectors has
been carried out, as before, neglecting the difference between
lρ,1s and lz,1s in the exponent and using the expression
〈(ξi êi)2(ξ 2

x + ξ 2
y )〉	 = 2/3. The analysis shows that the de-

formation potential contribution is much smaller than the
piezointeraction, Eq. (E15) for the relevant magnetic fields.
The contribution from the deformation potential interaction
is more important than the piezointeraction at high fields due
to its stronger B-field dependence. The crossover field for
GaAs is about 40 T, which is much larger than the magnetic
fields in this study. The crossover fields for InP and CdTe are
9.1 and 3.9 T. Although deformation potential interaction for
these two materials is comparable to the piezointeraction at
the fields achievable in our experiment, it is still much weaker
than the direct spin-phonon interaction.

4. Admixture mechanism in low magnetic fields

In the low-field limit we take the wave functions of the
ground 1s and excited (|e〉 = |nf,m〉, where f denotes f

orbitals) states in a hydrogenlike form:

ψ1s = 1√
πa3

e−r/a,

ψnf,m = Rn3(r)Ym
3 (θ,φ). (E17)

Here Rn3 are the radial functions of the f orbitals (l = 3).
To calculate the spin-flip rate we use the matrix element

M↓↑ given by Eq. (8). We note that in the absence of a magnetic
field the following relation for the matrix elements of Hso

holds:

〈1s ↑ |Hso|nf,m ↓〉 = −〈nf, − m ↑ |Hso|1s ↓〉. (E18)

Using this relation and keeping in mind that the energies of
m and −m states are the same at zero magnetic field the
second order matrix element, Eq. (8), vanishes as B → 0 [4].
At nonzero magnetic field M↓↑ becomes nonzero due to (i)
Zeeman splitting of spin sublevels and (ii) orbital splitting
of m = ±3 and m = ±1 states. Taking into account only
the Zeeman splitting we obtain the following expression for
the matrix element M↓↑ in the low-field limit (the effect
of the field-induced orbital splitting is briefly addressed at
the end of this Appendix):

M↓↑=2gμB
∑
n,m

〈1s, ↓ |Uph|nf,m, ↓〉〈nf,m, ↓ |Hso|1s, ↑〉
(Enf,m − E1s)2

.

(E19)

Here the wave functions and energies are taken at B = 0. The
sum over m in Eq. (E19) can be evaluated using the fact that
at B = 0 the energy spectrum is degenerate with respect to m
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and the following formula:

∑
m

〈1s, ↓ |eiqr|nf,m, ↓〉〈nf,m, ↓ |Hso|1s, ↑〉

= −4π
γ

a3
〈Rn3(r)�(r)〉r〈ψ1s(r)Rn3(r)j3(qr)〉rF (ξ ).

(E20)

Here � = (1 + 3a/r + 3a2/r2)ψ1s ,j3 is the spherical Bessel
function of the third order, F (ξ ) = ξx(ξ 2

y − ξ 2
z ) + iξy(ξ 2

z −
ξ 2
x ), and ξ = q/q. Angular brackets with the subscript r denote

integration over r , i.e., 〈f1(r)f2(r)〉r = ∫ r2f1f2dr . Equation
(E20) is obtained using the decomposition of eiqr over the
spherical harmonics, Eqs. (E1) and orthogonality of Ym

l with
respect to m.

The spin-flip rate calculated according to Eqs. (7) and (E19)
has a form:

1

T1
= 32π

1052

(γ eh14)2

ρ�8(E∗
Ry)4

S2(gμB)9
∑

α

1

s9
α

〈|F (ξ )|2a2
q,α

〉
	
, (E21)

where aq,α = Aq,α/h14,〈· · · 〉	 denotes an average over the
angles θq and φq of q, and

S =
∑
n�4

1

(1 − Enf /E∗
Ry)2

〈Rn3�〉r〈ψ1s r̄
3Rn3〉r (E22)

is the dimensionless sum over all excited states with dif-
ferent n (including the states of the continuous spectrum)
and r̄ = r/a∗

B . In the evaluation of Eq. (E21) we used the
long wavelength approximation for phonons by using the
asymptotic j3(qr) ≈ (qr)3/105 at qr � 1.

For longitudinal acoustic phonons ê(q,l) = ξ and hence

〈|F (ξ )|2a2
q,α

〉
	

= 96

5005
. (E23)

For transverse acoustic modes, the polarization vectors satisfy
〈ê(q,t)

i ê
(q,t)
j 〉 = (δij − ξiξj )/2. Considering that there are two

transverse modes, we obtain

⎛
⎝∑

i,j,k

βijkξiξj ê
(q,t)
k

⎞
⎠

2

= 4
(
ξ 2
x ξ 2

y + ξ 2
x ξ 2

z + ξ 2
y ξ 2

z − 9ξ 2
x ξ 2

y ξ 2
z

)

and

〈|F (ξ )|2a2
q,α

〉
	

= 2048

45045
. (E24)

Using these averages one finally obtains for the spin-relaxation
rate

1

T1
= ζ

(γ eh14)2

ρ�8(E∗
Ry)4

S2(gμB)9

[
1

s9
l

+
(

4

3

)3 1

s9
t

]
, (E25)

with ζ = 1024π/(1287×353) ≈ 0.000175.
Let us now turn to the evaluation of the S parameter. It

comprises the sum over the discrete spectrum (index n) and

the integral over the continuum spectrum (index η):

S =
+∞∑
n=4

1

(1 − 1/n2)2
〈Rn3�〉r〈ψ1s r̄

3Rn3〉r

+
∫ +∞

0

〈Rη3�〉r〈ψ1s r̄
3Rη3〉r

(1 + η2)2
dη. (E26)

Matrix elements entering Eq. (E26) are calculated analytically
using formulas (f,1) and (f,2) of Ref. [64]:

〈ψ1s r̄
3Rn3〉r = 96√

πn5

√
(n + 3)!

(n − 4)!

(1 − 1/n)n−5

(1 + 1/n)n+5
,

〈ψ1s r̄
3Rη3〉r = 96√

π

(
η

1 − e−2π/η

)1/2

×
√√√√ 3∏

s=1

(s2η2 + 1)
(1 − iη)−i/η−5

(1 + iη)−i/η+5
, (E27)

and

〈Rn3�〉r = 16

7!
√

πn5

√
(n + 3)!

(n − 4)!

×
∑

ν=4,5,6

cν

(ν − 1)!

(1 + 1/n)ν
2F1

(
4 − n,ν,8,

2

n + 1

)
,

〈Rη3�〉r = 16

7!
√

π

(
η

1 − e−2π/η

)1/2
√√√√ 3∏

s=1

(s2η2 + 1)

×
∑

ν=4,5,6

cν

(ν − 1)!

(1 + iη)ν
2F1

(
i

η
+ 4,ν,8,

2iη

1 + iη

)
.

(E28)

Here c4 = 3,c5 = 3,c6 = 1, and 2F1 is the ordinary hyperge-
ometric function. Using these matrix elements, a numerical
summation in Eq. (E26) is performed yielding S ≈ 0.487. To
analyze the contribution of the excited states we provide two
estimates for S: Slow < S < Sup. Here the lower limit (Slow) is
the first term in the sum with n = 4, and the upper limit (Sup)
is the sum over a complete set of functions {Rn3,Rη3} with a
fixed denominator equal to an energy distance between the 4f

and 1s state:

Slow = 256

225
〈R43�〉r〈ψ1s r̄

3R43〉r ≈ 0.006, (E29)

Sup = 256〈�r̄3ψ1s〉r
225

≈ 1.9. (E30)

Noteworthy, S exceeds Slow by more than two orders of
magnitude, demonstrating the importance of accounting for
all excited states of the spectrum. However, for highly excited
states the LWA breaks down which somehow reduces the
estimate of S. Moreover, for the experimental donor densities
the overlap of states with large n � 5 belonging to different
donors is not negligible. The account for such an overlap is
beyond the scope of the present paper.

Equation (E25) was derived assuming that the Zeeman
splitting dominates the orbital B-linear splitting of the excited
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states with opposite values of m. Such an approximation works
well in quantum dot systems where the dot anisotropy lifts the
degeneracy in m. For the donor-bound electron this is not the
case, since the problem (at B = 0) has a spherical symmetry.
In this situation, the splitting of the nf states with m and
−m is |m|�ωc � gμB. To estimate T1 in this case one should
replace (gμB)9 in Eq. (E25) by (gμB)7(�ωc)2 in agreement
with Eq. (13) in the main text.

APPENDIX F: SPIN RELAXATION VIA THE DIRECT
SPIN-PHONON MECHANISM

1. General expression for the direct spin-phonon
spin-relaxation rate

The direct spin-phonon interaction Hamiltonian [39,48,65]
is

Udir = �v0

2
[σx(uxyky − uxzkz) + σy(uyzkz − uxykx)], (F1)

where we ignore the σz term because it does not contribute to
spin relaxation, k = −i∇ − (e/�)A, and we use the symmetric
gauge A = (−By/2,Bx/2,0). The deformation tensor uij due
to phonon q,α is

u
q,α

ij =
√

�

2ρωq,α

ei(qr−ωq,α t)
i
(
ê

(q,α)
i qj + ê

(q,α)
j qi

)
2

b†q,α + c.c.,

(F2)

where eα is the polarization of phonon mode α:

el = q−1[qx,qy,qz],

et1 = (q2
x + q2

y

)−1/2
[qy, − qx,0],

et2 = q−1
(
q2

x + q2
y

)−1/2[
qxqz,qyqz, − (q2

x + q2
y

)]
.

(F3)

Subscripts t1 and t2 denote two degenerate transverse modes.
The relaxation rate �↓↑ is found from Eq. (8) using

M↓↑ = 〈1s, ↓ |Udir|1s, ↑〉. (F4)

According to the general principles of quantum mechan-
ics, the momentum operator and deformation tensor in
Eq. (F1) must be symmetrized, i.e., uij kl → {uij ,kl}, where
{a,b} = (ab + ba)/2 [4,66,67]. Due to this symmetrization
and the fact that the ground state is a localized state, all terms
with kz integrate to zero. Further simplifications yield

〈1s, ↓ |Udir|1s, ↑〉 = i
�v0

4

√
�

2ρωq,α

(
ê(q,α)
x qy + ê(q,α)

y qx

)
× [〈1s|{exp(iqr),ky}|1s〉
− i〈1s|{exp(iqr),kx}|1s〉],

〈1s|{exp(iqr),kx}|1s〉 = eB

2�
〈1s| exp(iqr)y|1s〉,

〈1s|{exp(iqr),ky}|1s〉 = −eB

2�
〈1s| exp(iqr)x|1s〉. (F5)

Substituting Eq. (F4) into Eq. (7) and taking the phonon
factor Fph into consideration, we obtain the general expression

for the spin-relaxation rate

1

T1
= Fph

v2
0e

2B2

29π2�ρ

∑
α

q3
α

s2
α

∫
d	q

∣∣(êq,α
x ξy + êq,α

y ξx

)
×〈1s| exp(iqαr)(x − iy)|1s〉∣∣2, (F6)

which can be evaluated either numerically or using an analytic
approximation.

2. Numerical calculation of direct
spin-phonon spin-relaxation rate

Similar to Appendix E 2, the azimuthal part of the integral
〈1s| exp(iqαr)(x − iy)|1s〉 can be calculated analytically to
simplify the numerical calculation. We introduce the notation
for this matrix element:

κα(θq) = eiφq 〈1s|eiqαr(x − iy)|1s〉,
and obtain

κα(θq) = 4π

∫ ∞

0
ρ2 dρ

∫ ∞

0
dz �2

1s(ρ,z)

× cos(z qα cos θq)J1(ρ qα sin θq). (F7)

The simplified expression for the spin-relaxation rate is

1

T1
= Fph

ν2
0e2B2

29π�ρ

∫ π

0
dθq sin3 θq

×
[

sin2 θq

q3
l

s2
l

|κl|2 + (1 + cos2 θq)
q3

t

s2
t

|κt |2
]
, (F8)

which can be calculated numerically using standard proce-
dures.

3. Analytic calculation of direct spin-phonon
spin-relaxation rate

To derive an analytical result we use trial wave functions
of a Gaussian or exponential form. First, we approximate the
ground state wave function by a Gaussian

ψ1s = 1

(
√

πl)3/2
e−r2/(2l2), (F9)

with l = [1/(a∗
B)2 + 1/(2l2

b )]−1/2. The matrix element can be
found analytically,

〈1s| exp(iqr)rj |1s〉 = 1
2 iqj l

2e−q2l2/4, (F10)

where j = x,y.
Using Eqs. (7) and (F4) we obtain the relaxation rate

assuming that the spin-up state has a higher energy as
compared with the spin-down one:

�↓↑ = (Nph + 1)v2
0

256πρ�
(eBl2)2

∑
α

(gμB)5

�5s7
α

Iαe−q2
αl2/2, (F11)

Iα = 〈(êq,α
x ξy + êq,α

y ξx

)2
ξ 2
x

〉
	
. (F12)
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The integrals over phonon angle for the longitudinal and both
transverse modes are Il = 4/35 and It = 16/105. Taking into
account the phonon factor Fph, the final result for the relaxation
rate by the direct spin-phonon process is

1

T1
= 1

2240π

(ev0l
2)2(gμ)5B7

ρ�6

×
(

e−q2
l l2/2

s7
l

+ 4e−q2
t l2/2

3s7
t

)
Fph. (F13)

Another possible choice of wave function for the donor-
bound electron is an exponential

ψ1s = 1√
πl3

e−r/ l . (F14)

For this wave function,

〈1s| exp(iqr)rj |1s〉 = i l2qj

(1 + q2l2/4)3
. (F15)

The relaxation rate using an exponential wave function
is the same as Eq. (F13) with exp (−q2

αl2/2) replaced by
4/(1 + q2

αl2/4)6, in agreement with Eq. (17) of the main text.
We note that in the presence of a magnetic field the form

of the donor-bound electron functions depends on the gauge,
which calls for special care in evaluating the matrix elements
in Eq. (F5). Particularly, Eqs. (F9) and (F14) are valid in the
symmetric gauge. For instance, in the Landau gauge, where
A = (0,Bx,0), Eqs. (F9) and (F14) acquire extra phase factors
exp [ieBxy/(2�)]. Taking these phase factors into account
one can readily check that Eqs. (F5) and, correspondingly,
Eqs. (F11), (F13), and (17) are gauge invariant.
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