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Light propagation in tunable exciton-polariton one-dimensional photonic crystals
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Simulations of propagation of light beams in specially designed multilayer semiconductor structures (one-
dimensional photonic crystals) with embedded quantum wells reveal characteristic optical properties of resonant
hyperbolic metamaterials. A strong dependence of the refraction angle and the optical beam spread on the exciton
radiative lifetime is revealed. We demonstrate the strong negative refraction of light and the control of the group
velocity of light by an external bias through its effect upon the exciton radiative properties.
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I. INTRODUCTION

Metamaterials are artificial composite structures that
demonstrate unusual optical properties not achievable in
natural materials [1,2]. Hyperbolic metamaterials (HMMs)
represent an important group of metamaterials characterized
by specific relations between components of dielectric permit-
tivity ε and magnetic susceptibility μ tensors [2]. Namely, the
diagonal components of either ε or μ tensors in HMMs have
opposite signs.

The presently studied HMMs are mostly based on
metal-dielectric composites, whereas the presence of
specially designed metallic elements, e.g., metallic spheres,
disks, rods, etc., provides the required properties of ε and
μ tensors [3–6]. The successful application of this approach
to the fabrication of HMMs has been demonstrated in the
microwave spectral range with use of metal wires and split
ring resonators [7,8]. The metal-dielectric HMMs have been
developed in the near-infrared and visible frequency bands;
see, e.g., [9–12]. One of the intriguing effects observed
in HMMs is negative refraction [4,8,13,14]. This effect is
very promising for the development of hyperlenses [9,15]
characterized by the spatial resolution beyond the diffraction
limit as well as in optical cloaking [16,17].

As noticed in [13], negative refraction materials can be
based not only on HMMs but on photonic crystal (PC)
structures as well. Although both HMMs and PCs are
complex structured materials, unlike the former, which can be
considered as a quasihomogeneous medium with the effective
constitutive parameters, the latter possesses the elementary
building blocks being of the same size order as the impinging
wavelength. Various optical effects in periodically stratified
media that are, in fact, one-dimensional PCs caused by
anomalous refraction have been observed in works of Russell
(see, e.g., Refs. [18–20]). It has been shown in Ref. [21] that
the hyperbolic dispersion of light modes can be achieved
in such structures with positive ε and μ tensors. Recent
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publications [22–24] provide further details on the design of
pure dielectric PC-based materials with hyperbolic dispersion.

Both in the metal-dielectric metamaterials and in the
PC-based materials the propagation of light is governed by
the structure parameters and composition, so that the external
control of light trajectories is hardly achievable. Meanwhile, it
is technologically important to provide a significant tunability
of the optical properties of the materials, e.g., using ultrashort
optical pulse pumping of free carriers [25], introducing
small perturbations in the near field of the photon modes or
temperature tuning of the refractive index [26]. To answer this
technological challenge one may try to embed in PCs objects
that willingly respond to the external impact and help modify
the optical properties of the whole system [27]. The role of such
tunable elements can be played, e.g., by ultracold two-level
atoms [28,29], quantum dots [30], diamond nitrogen-vacancy
centers [31], or Cooper-pair boxes.

Recently, specially designed planar multilayer semicon-
ductor structures demonstrating properties of resonant HMMs
(RHMMs) have been theoretically proposed. The model struc-
ture considered in [32] represents a modified semiconductor
Bragg mirror, containing periodically arranged quantum wells
(QWs). It was shown by modeling that such a structure should
demonstrate properties of HMMs in a spectral range where
the dispersion of its optical eigenmodes acquires a hyperbolic
character. Based on this similarity of eigenmode dispersion
properties, we refer to such a structure as a RHMM. This
structure may be also qualified as a PC because its period
is on the order of a half wavelength of light. We shall use
the term HMM because it was introduced in the previous
publication [32] and it correctly describes the phenomenology
of light propagation in the considered structures. The structure
proposed in Ref. [32] has a significant advantage over
traditional HMMs since it contains no metallic elements that
would absorb and scatter light leading to unavoidable losses. In
addition, it offers the possibility of tuning its optical properties
by applying external electric and magnetic fields that modify
the exciton radiative lifetime and, consequently, affect the
exciton-light coupling strength.

In this paper, we demonstrate how the proposed RHMM
allows tailoring of the wave packets and control of the effective
refractive index and the group velocity of light. We model
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FIG. 1. Schematic picture of RHMM, a spatially periodic array of
alternating dielectric layers of different widths and refractive indices,
with the layers of one type containing single QWs placed in their
centers.

propagation of light beams in such RHMMs and show the
negative refraction and the control of the trajectory of the
beams by external bias.

II. NEGATIVE EFFECTIVE MASS IN RHMM: THE LOW
ANGLE OF INCIDENCE LIMIT

We consider the structure schematically shown in Fig. 1
which was first proposed by some of the authors of this paper
in [32]. The structure represents a spatially periodic array of
alternating dielectric layers of different widths and refractive
indices, with the layers of one type containing single QWs
placed in their centers. We assume cylindric symmetry of the
system and introduce the in-QW-plane radial coordinate ρ.

To describe the optical dispersion properties of the struc-
ture, we use the transfer matrix technique following [33,34].
Namely, we introduce a vector � = (E(r,t),cB(r,t))T, where
E(r,t) and B(r,t) are the amplitudes of electric and magnetic
fields, a superscript (T) denotes transposition. Considering
propagation in the z direction that coincides with the structure
growth axis, it is possible to link the field amplitude of a light
wave entering the layer of width D with one of a light wave
leaving this layer by the following equation:

T̂ �|z=zi
= �|z=zi+D, (1)

where T̂ is the transfer matrix through the period of the
structure. Since each period D is formed by four successive
layers, namely, the first type half layer, the QW, the first
type half layer again, and the second type layer, the transfer
matrix T̂ is found as a product of the transfer matrices
through the corresponding layers in the reverse order, i.e.,
T̂ = T̂d2 T̂d1/2 T̂QWT̂d1/2 . The submatrices are given by

T̂dj
=

(
cos(kzjdj ) ik0

kzj
sin(kzjdj )

ikzj

k0
sin(kzjdj ) cos(kzjdj )

)
, (2a)

T̂QW =
(

1 0
2 kz1rQW

k0tQW
1

)
, (2b)

where k0 = ω/c and kz1,2 =
√

n2
1,2k

2
0 − k2

ρ , and kρ = (kx,ky)
is the in-plane wave-vector component; n1,2 are the refractive

FIG. 2. Dispersion of the photonic eigenmodes for the structure
(a) without and (b) with embedded QWs. (c) Equifrequency contours
in the reciprocal space showing the structure eigenmodes belonging
to the lowest dispersion band corresponding to the different values
of �0: �0 = 0 for the red (solid) curves, ��0 = 2 meV for the
green (dashed) curves, and ��0 = 10 meV for the blue (dash-dotted)
curves. Different thicknesses of the curves correspond to different
energies �ω (from the thickest to the thinnest): 2.94, 2.89, and
2.84 meV, respectively. (Table I contains the corresponding relative
QW permittivities εQW.) (d) Inverse exciton-polariton effective mass
tensor components in the structure. The red surface corresponds to
the effective mass in the z direction, m∗

z (z being the growth axis
of the structure), and the green surface corresponds to the in-plane
effective mass m∗

ρ . The parameters used in the calculation are given
in the text. The QW radiative decay rate for (d) is taken as ��0 =
2 meV.

indices of the first and second sublayers, respectively. In the
calculations we assume QWs to be infinitely thin. The coef-
ficients rQW and tQW = 1 + rQW are the amplitude reflection
and transmission coefficients of the QW. According to [34,35],
the former is given by

rQW = in1k0�0/kz1

ωX − ω − i(� + n1k0�0/kz1)
, (3)

where �0 and � determine the radiative and nonradiative decay
rates, respectively, and ωX is the QW exciton resonance fre-
quency. The relative QW permittivity in the growth direction
can be estimated with respect to the following expression:

εQW = ε1

(
1 + 2n1�0/kz1D

ωX − ω − i�

)
. (4)

The dispersion equation for the eigenmodes of an infinite
periodic structure is given by

cos(KD) = 1
2 Tr[T̂ ], (5)

where K is a normal to QW plane pseudo-wave-vector compo-
nent. Figures 2(a) and 2(b) demonstrate dispersions of the light
modes in a modified Bragg mirror structure without [Fig. 2(a)]
and with [Fig. 2(b)] embedded periodically arranged narrow
QWs characterized by the radiative decay rate ��0 = 2 meV.

125309-2



LIGHT PROPAGATION IN TUNABLE EXCITON- . . . PHYSICAL REVIEW B 94, 125309 (2016)

As a model structure we consider a GaN/Al0.3Ga0.7N Bragg
mirror with embedded thin In0.12Ga0.88N quantum wells. The
thicknesses of the layers and their refractive indices are taken
as d1 = 64.8 nm, n1 = 2.55, and d2 = 115.3 nm, n2 = 2.15;
the period of the lattice D = d1 + d2 is 180.1 nm. For the given
parameters the structure exhibits a second photonic band gap
centered to �ωB � 3 eV in a QW-free case, see. Fig. 2(a). The
QW exciton resonance energy �ωX is tuned close to the lower
boundary of the second photonic band gap, �ωX � 2.95 eV.
The QW nonradiative decay rate is taken as �� = 0.1 meV.
The radiative decay rate �0 is a tunable parameter that strongly
depends on the applied electric field. The tuning of �0 by the
external bias is addressed in the Appendix.

The presence of QWs leads to two principal changes in the
dispersion of the eigenmodes. The first one is the appearance
of four dispersion branches instead of the two characteristic
of a QW-free structure due to the vacuum field Rabi-splitting
originated from the QW exciton-photon coupling. The result-
ing eigenstates of the system are exciton polaritons.

The other change is the formation of the three-dimensional
polaritonic band gap [see Fig. 2(b)]. It is necessary to mention
that the presence of QWs pushes the lowest dispersion branch
(LB) to the lower energies, and the larger the value of
�0, the greater the shift. If a QW exciton is resonant with
an eigenmode of the photonic cavity structure, the exciton-
photon results in the appearance of new exciton-polariton
eigenmodes, in the strong coupling regime. In the limit of
weak coupling, exciton and photon modes would cross each
other. In contrast, the strong coupling manifests itself in the
anticrossing (avoided crossing) of the modes. The dispersion
of the structure eigenmodes is no more photonic or excitonic,
but polaritonic. The increase of the exciton-photon coupling
due to the increase of the exciton radiative decay rate results
in the growing energy level repulsion. The exciton radiative
decay rate is controlled by the applied electric field (see the
Appendix).

Figure 2(c) demonstrates equifrequency contours (EFCs)
in the (Kkρ) plane for a number of LB eigenenergies �ω for
different values of �0. It is clearly seen that with the increase
of �0 opposite branches of EFCs approach each other until the

TABLE I. Relative QW permittivity εQW in the growth direction.

��0 = 2 meV ��0 = 10 meV

�ω εQW εQW

2.84 eV 6.59372 + i 0.00008 6.95861 + i 0.00041
2.89 eV 6.66685 + i 0.00027 7.32424 + i 0.00137
2.94 eV 7.47172 + i 0.00969 11.34860 + i 0.04846

gap in the K direction closes and the gap in the kρ direction
opens. Table I gives values of the relative QW permittivity εQW

in the growth direction estimated with respect to Eq. (4) for
�0 and ω used in Fig. 2(c). The case �0 = 0 corresponds to
the absence of QWs in the structure, hence the permittivity of
GaN layers remains unmodulated and equal to ε1.

Hereafter, we consider only the LB and neglect three upper
polariton branches that are split in energy and do not affect te
propagation of light in the spectral range of our interest. Our
structure behaves like a HMM in the specific frequency range
in the vicinity of the LB saddle point (K,kρ = 0).

A. QW-free modified Bragg mirror

Let us first consider the QW-free structure assuming �0 =
0. Following Ref. [22], we can easily obtain the saddle-point
frequency ω0. To do this, we restrict ourselves to the limit
K,kρ � 1/D, i.e., we consider the system in the vicinity of
the center of the first Brillouin zone (BZ). We make the Taylor
expansion of Eq. (5) and obtain in the zeroth order

1 = cos(θ1) cos(θ2) − n2
1 + n2

2

2n1n2
sin(θ1) sin(θ2), (6)

where θ1,2 = ω0j n1,2d1,2/c. The subscript j numerates dis-
persion branches. For the QW-free structure j = 1,2. In the
general form the effective photonic mass tensor components
are given by m∗

j,α = �(∂2ωj/∂k2
α)

−1
with kα = K,kρ . Taking

the second derivative of both right and left parts of Eq. (5) over
the wave-vector components in the saddle point it is easy to
obtain analytical expressions for the effective photonic mass
tensor components:

m
ph
j,z

∣∣∣
K,kρ=0

= �

D2c

[
sin(θ2) cos(θ1)

(
d2n2 + d1

(
n2

1 + n2
2

)
2n2

)
+ sin(θ1) cos(θ2)

(
d1n1 + d2

(
n2

1 + n2
2

)
2n1

)]
, (7a)

m
ph
j,ρ

∣∣∣
K,kρ=0

= D2ω0j

c
m

ph
j,z

[
sin(θ2) cos(θ1)

(
d2

n2
+ d1

(
n2

1 + n2
2

)
2n2

1n2

)
+ sin(θ1) cos(θ2)

(
d1

n1
+ d2

(
n2

1 + n2
2

)
2n1n

2
2

)

− sin θ1 sin θ2
c
(
n2

1 − n2
2

)2

2n3
1n

3
2ω0j

]−1

, (7b)

where we take θ1,2 = θ1,2|ωj =ω0j
.

At kρ � 1/D a photonic band gap appears at the K

direction. Let us find a half-width of the band gap in the
structure without embedded QWs following the method
described in the Supplemental Material to Ref. [32]. We
introduce the parameter ζ = n1d1

n2d2
− 1 that characterizes the

relative optical path lengths in the structure layers. Generally
speaking, for a modified Bragg structure this parameter is close
to zero. The center of the photonic band gap is characterized
by a Bragg frequency that according to [36] is given by
ωB = 2πc/(n1d1 + n2d2). We introduce the parameter
δ = ω01/ωB − 1 that is also small in comparison with 1. We
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expand Eq. (6) up to the second order in ζ and δ. As a result,
we obtain the following expression for δ: δ = ± (n1−n2)ζ

2(n1+n2) .
Now it is easy to find a half-width of the band gap as
B = ωB |δ|.

In accordance with the foregoing, the eigenfrequency of the
lower photonic branch at K,kρ = 0 is given by

ω01 � ωB − B. (8)

B. Modified Bragg mirror with embedded QWs

When adding the QWs to the structure, a new term describing the exciton impact appears in the right-hand side of the Eq. (6):

irQW

tQW

{
cos(θ2) sin(θ1) +

[
n1

n2
cos2

(
θ1

2

)
− n2

n1
sin2

(
θ1

2

)]
sin(θ2)

}
. (9)

The expressions for the effective exciton-polariton masses in the vicinity of the saddle point can be obtained by the same
technique as described above in the form

m∗
j,z|K,kρ=0 = m

ph
j,z + i�1, (10a)

m∗
j,ρ |K,kρ=0 = D2ω

c
m∗

j,z(�2 − i�3)−1. (10b)

The parameters �1,2,3(ω0,�0) that characterize the QW exciton impact on the optical properties of the considered RHMM are
found in the form

�1 = �r
(0)
QW

cD2t
(0)
QW

(
i

cr
(0)
QW

�0t
(0)
QW

{
cos(θ2) sin(θ1) + sin(θ2)

[
n1

n2
cos2

(
θ1

2

)
− n2

n1
sin2

(
θ1

2

)]}

+
{
d1n1 cos(θ1) cos(θ2) − sin(θ1) sin(θ2)

(
d2n2 + d1

(
n2

1 + n2
2

)
2n2

)
+ d2n2

[
n1

n2
cos2

(
θ1

2

)
− n2

n1
sin2

(
θ1

2

)]
cos(θ2)

})
,

(11a)

�3 = c2r
(0)
QW

t
(0)
QW

{
sin(θ1) sin(θ2)

(
d2

n2
+ d1

(
n2

1 + n2
2

)
2n2n

2
1

)
− d1

n1
cos(θ1) cos(θ2) + c

n2
1ω0j

cos(θ2) sin(θ1)

+ c

n1n2ω0j

[
n2

1

n2
2

cos2

(
θ1

2

)
+ sin2

(
θ1

2

)(
1 − 2n2

2

n2
1

)]
sin(θ2) − d2

n1

[
n2

1

n2
2

cos2

(
θ1

2

)
− sin2

(
θ1

2

)]
cos(θ2)

}
, (11b)

the parameter �2 is the rectangular bracket in the right part of
Eq. (7b); r

(0)
QW ≡ rQW|K,kρ=0, t

(0)
QW ≡ tQW|K,kρ=0.

In the vicinity of the saddle point of LB, the effective mass
tensor components m∗

ρ, z ≡ m∗
1,ρ, z have opposite signs. This is

clearly seen in Fig. 2(d) where the dependencies of the inverse
in-plane (green surface) m∗

ρ and transverse (red surface) m∗
z

effective masses on the position in the first BZ are shown.
One can see that m∗

ρ > 0 while m∗
z < 0. It also should be

mentioned that for the considered model structure the absolute
value of m∗

z is at least one order of magnitude smaller than
m∗

ρ . For example, according to Eqs. (10), the ratio |m∗
ρ/m∗

z |
at the saddle point is about 20.1 for QW-free structure, 21.6
for the structure with embedded QWs with ��0 = 2 meV, and
grows to 30.7 for the structure with ��0 = 10 meV. Such a
big difference introduces a strong anisotropy to the optical
properties of the considered structure.

III. LIGHT SPEED MANIPULATION IN RHMM

First let us discuss the propagation of a femtosecond laser
pulse in the growth direction of the structure (z axis). We

consider the Gaussian pulse in the form

E(z,t) = E0 exp

[
− (t−t0)2

2t2
w

]
exp[−iωct] exp[−ikzz], (12)

centered on the frequency ωc; E0 determines the pulse
amplitude, tw is the half-width duration of the pulse.
Here we consider the wave packet whose spatial width
ρw exceeds the in-plane structure size, and we as-
sume the intensity of light to be uniformly distributed
in the QW plane in each layer. We consider the nor-
mal incidence geometry. In the numerical calculations we
take tw = 50 fs and t0 = 0.1 ps, �ωc = 0.95�ωX � 2.8 eV;
kρ = 0.

Figures 3(a) and 3(b) demonstrate light pulse propagation in
the structure calculated for different values of �0 . In Fig. 3(a)
we take �0 = 0, which corresponds to the QW-free Bragg
mirror. In Fig. 3(b) we consider the case of a Bragg mirror
with embedded QWs characterized by a high radiative decay
rate, ��0 = 10 meV. Propagation of light has been modeled
in the system starting with a vacuum layer of width 25D

on the left-hand side of the structure. In the middle part of
the system we have placed a RHMM of 200 layers of width
D each. The right-most part represents a 25D thick vacuum
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FIG. 3. Femtosecond laser pulse propagation in the multilayer
structure schematically shown in Fig. 1. The parameter ��0 is taken as
(a) 0 meV (which is equivalent to the absence of QWs in the structure)
and (b) 10 meV. Graphs (c) and (d) demonstrate the parametric
dependencies of the group velocity of light in the z direction vg, z,
(a) on �0 for a number of fixed values of the wave-packet central
frequency component ωc and (d) on ωc for different values of �0

with kρ = 0. Values of vg, z are given in units of the speed of light
in vacuum c. The vertical dashed lines correspond to �0 in (c) and
ωc in (d) from (a) and (b). Horizontal dashed lines indicate the group
velocities of the wave packet, with the considered values of �0.

layer again. It is clearly seen that vg, z significantly decreases
with the increase of �0. It is also confirmed by Figs. 3(c)
and 3(d) demonstrating the dependence of vg, z on �0 for the
fixed values of ωc and its dependence on ωc for several fixed
values of �0. Such a tendency can be qualitatively explained
as follows. Once the parameter �0 increases, the lowest branch
moves down in energy, see Figs. 2(a) and 2(b). Since in the
vicinity of K,kρ � 0 the dependence ω(K) for the lowest
branch is convex, to conserve energy the wave packet should

reduce its wave vector and group velocity vg, z, see EFCs
in Fig. 2(c). It is important to mention that this conclusion
is only correct in a specific frequency range, namely, for
ωc < ω0. The regular optical patterns in Figs. 3(a) and 3(b)
describe the interference of the propagating pulse and the
pulses reflected from vacuum-RHMM and RHMM-vacuum
interfaces.

IV. NEGATIVE REFRACTION RESPONSE OF RHMM

Let us now consider a different geometry of the experiment,
where a monochromatic spatially focalized light beam enters
the structure from its side and propagates in the ρz plane;
see the inset in Fig. 4. We consider the transmission of
light through the interface between vacuum and RHMM.
The medium on the left is a vacuum characterized by a
familiar linear dispersion ω = ckvac. The spatially modulated
structure of a Bragg mirror we now consider in the continuous
approximation as a homogeneous effective dielectric medium
characterized by the dispersion given by Eq. (5) and by the
tensorial effective mass of photons. This approximation is valid
if the typical spatial size of the light beam (beam width zw)
is much larger than period of the structure, zw � D, and at
sufficiently low incidence angles.

Now we consider the propagation of a monochromatic
Gaussian light beam of frequency ωc

E(z,ρ,t) = E0 exp

[
− (z − z0)2

2z2
w

]
e−i(K0z+kρρ)e−iωct , (13)

where zw is the beam spatial width. The beam propagates at
an oblique angle to the structure that is set by K0. In our
simulations we take z = 0, zw = 12D, and ωc = 0.95ωX. The
wave-vector component K0 is taken as K0D = 0.6. To model
the propagation of light in the ρz plane of the structure, we use
the transfer matrix technique adapted for the new geometry.
We check the accuracy of this numerical procedure in limiting
cases by analytical calculations realized in the effective
photonic mass approximation using the expressions (10) for
the effective mass tensor components in the vicinity of the
saddle point.

Figure 4 demonstrates the light beam propagation in the ρz

plane of the structure without [Fig. 4(a)] and with [Fig. 4(b)]
embedded QWs in the regime of a high radiative decay rate
��0 = 15 meV. We considered the model RHMM of 30D

width limited by vacuum on both sides.
One can see from Figs. 4(a) and 4(b) that the light beam

undergoes the negative refraction in the considered geometry.
Moreover, since the absolute value of the effective mass in the
z direction is one order of magnitude larger than the in-plane
mass, the negative refraction appears to be very strong.
Clearly, the advantage of polaritonic RHMM over dielectric
PC structures is in the suitability for the external control of the
refraction angle in a range of several degrees that is achieved
just by tuning the value of �0. This tuning can be done,
e.g., by application of the external bias (see the Appendix).
Figures 4(c) and 4(d) demonstrate the dependencies of the
refraction angle on �0 for the fixed values of ωc and on ωc

for the fixed values of �0. One can see that the absolute value
of the refraction angle decreases with the increase of �0. This
tendency is maintained as long as the frequency of the beam
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FIG. 4. Focalized light beam propagation in the ρz plane simu-
lated for different values of �0. The parameter ��0 is taken as 0 eV
for (a) and 15 meV for (b). Panels (c) and (d) show the dependencies
of the refraction angle on �0 for a number of fixed values of ωc and on
ωc for different values of �0 with K0 = 0.6D−1. The vertical dashed
line on (d) corresponds to the value of ωc taken from (a) and (b).
Horizontal lines indicate the refraction angles of the beams for the
considered values of �0.

ωc is less than ω0. If this condition is violated, some values
of kρ in the vicinity of the first BZ center become forbidden,
which affects the shape and angular dispersion of the beam.

We also note that the parameter �0 significantly af-
fects the spread of the optical beam. Comparing Figs. 4(a)
and 4(b), it can be concluded that the increase of �0 up
to a certain limit reduces the light beam blurring. This
is also correct only in the limit of ωc < ω0. Finally, we
want to mention that Figs. 4(a) and 4(b) also illustrate
qualitatively the influence of �0 on the transmission properties
of RHMMs. The variation of transmittivity affects interference

patterns in the vicinity of the surfaces of the considered
structure.

V. CONCLUSIONS

We have considered a planar RHMM based on a modified
Bragg mirror with embedded periodically arranged QWs. The
optical properties of this RHMM are tunable by changing the
radiative decay rate of embedded quantum wells. The latter
can be done by application of external electric and magnetic
fields due to their strong influence on the exciton oscillator
strength (see the Appendix). This enables one to controll the
group velocity and propagation direction of light as well as its
spatial distribution.
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APPENDIX: IMPACT OF THE EXTERNAL ELECTRIC
FIELD ON THE EXCITON RADIATIVE DECAY RATE

Here we discuss the mechanism of tuning �0 by the external
bias. It is known that the radiative exciton lifetime τrad in a
quantum well z direction is governed by the overlap of the
electron and hole wave functions ψe(z) and ψh(z) and the
exciton in-plane Bohr radius aB (Refs. [34,35]). In general, τrad

is larger, the smaller the overlap integral [
∫

ψe(z)ψh(z)dz]2.
The following expression links these parameters [35,37]:

�0 = 1

2τrad
= �0

[∫
ψe(z)ψh(z)dz

]2

, (A1)

where �0 = √
εBωLTk0a

3
B/(a2D

B )2 is the quantity of the appro-
priate dimension, εB is a background dielectric constant, ωLT

is the longitudinal-transverse splitting frequency, aB and a2D
B

are the exciton Bohr radii in the bulk and in QW, respectively.
The electron-hole overlap integral is strongly sensitive to the
applied electric field normal to the QW plane due to the
quantum confined Stark effect, see, e.g., Ref. [38]. Generally
speaking, both a2D

B and the overlap integral in (A1) depend
on the applied electric field; however, this dependence for the
former is negligibly weaker than for the latter and can be
ignored.

To estimate the overlap integral, one should solve
Schrödinger equations for both electron ψe(z) and hole ψh(z)
envelope functions associated with the eigenenergies Ee,h:[

− �
2

2m∗
i

∂2

∂z2
+ Vi(z) + qiFz

]
ψi(z) = Eiψi(z), (A2)

where i = e,h; m∗
i is the effective mass; Vi(z) is the potential

for the ith carrier that in the simplest case we take equal to zero
inside QW and to infinity outside. F is the stationary external
field applied in the growth direction, and qi determines the
charge of the ith carrier.

125309-6



LIGHT PROPAGATION IN TUNABLE EXCITON- . . . PHYSICAL REVIEW B 94, 125309 (2016)

FIG. 5. Squared electron-hole overlap integral in dependence on
the applied external electric field. The latter is given in logarithm
scale. The inserts demonstrate schematically the wave functions of
an electron (red solid curves) and a hole (green dashed curves) in QW
at specified values of F that are 10 kV/cm (for the upper insert) and
500 kV/cm (for the lower insert).

Next, we use the variational approach to retrieve electron
and hole wave functions. We take trial functions in the
form [39]

ψe(z) = Ae sin

(
πz

dQW

)
e
−αe

|z|
dQW , (A3a)

ψh(z) = Ah sin

(
π (dQW − z)

dQW

)
e
−αh

|dQW−z|
dQW , (A3b)

where Ae,h = Ae,h(αe,h) are normalization parameters deter-
mined from the orthonormality condition

∫ ∞
−∞ |ψe,h|2dz = 1.

αe,h are the only variational parameters that are found by
minimization of the carrier energy

Ei = 〈ψi |Hi |ψi〉 =
∫ ∞

−∞
ψ∗

i (z)Hiψi(z)dz, (A4)

where Hi represents the Hamiltonian corresponding to
Eq. (A2). For the estimations we take the carriers’ effective
masses m∗

e = 0.2m0 and m∗
h = 0.8m0 with m0 being the mass

of a free electron, and the QW width dQW = 10 nm. Figure 5
shows the squared electron-hole overlap integral as a function
of the applied electric field. It is clearly seen that for the
strong fields exceeding 1000 kV/cm the overlap integral is
sufficiently small. At the same time, for the fields less than

1 kV/cm it remains unchanged. These estimates define the
tunability range of the applied field that allows one to
manipulate �0.

It is necessary to mention that the theoretical curve
presented in Fig. 5 does not reflect the true dependence of
the estimated parameters on the external field. A number of
additional effects that have not been taken into account in the
simulations can modify the dependence quite considerably.
For example, the external field applied in the QW plane
direction leads to spatial separation in electrons and holes and
it also leads to change of the overlap integral, see Ref. [40].
Another possible effect is associated with the screening of
the electric field by the counteracting field generated by free
carriers. The partial cancellation of the internal field impact
with the increase the free carrier’s density have been discussed
in [41,42]. In contrast with thin (on the order of 1 nm width)
QWs, in the thicker (10 nm) GaN-based QWs, the carriers are
spatially separated due to internal electric fields. In the case of
small free carrier density a large electric field indeed induces
a large spatial separation between electrons and holes, leading
to a long recombination lifetime. The change of the radiative
lifetime as a result of the interplay between a built-in electric
field inside the quantum well and a small external electric
field is discussed in [43]. On the contrary, when the density of
carriers increases, this leads to the enhancement of the induced
electric field. The screening effects of the electric field due to
carriers become important. They lead to the increase of the
overlap integral and the decrease of the recombination lifetime
as a result. In this case, the maximum on the dependence in
Fig. 5 appears for large enough values of F . To take into
account the screening effect, an additional term qi�i(z)zψi(z)
should be included in Eq. (A2), where �i(z) depends on the
carrier densities |ψi |2, see Refs. [38,39].

Another important factor affecting the dependence of �0

on the external field is temperature. The temperature impact
on the recombination lifetime was considered in, e.g., [44,45].
The authors concluded from the photoluminescence intensity
measurements that the radiative lifetime linearly increases with
temperature, which also modifies the specified dependence.

Last but not least, although we did our calculations for
GaN-based QWs of 10 nm width, the initial choice of the QW
width allows us to pick up the reference value of �0 in a wide
range as well. To illustrate the remarkable dependence of the
radiative lifetime on QW width we refer to [45,46] where this
problem is the focus of attention.
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