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Boron nitride single layer belongs to the family of two-dimensional materials whose optical properties are
currently receiving considerable attention. Strong excitonic effects have already been observed in the bulk and
still stronger effects are predicted for single layers. We present here a detailed study of these properties by
combining ab initio calculations and a tight-binding Wannier analysis in both real and reciprocal space. Due to
the simplicity of the band structure with single valence (π ) and conduction (π∗) bands the tight-binding analysis
becomes quasiquantitative with only two adjustable parameters and provides tools for a detailed analysis of the
exciton properties. Strong deviations from the usual hydrogenic model are evidenced. The ground-state exciton is
not a genuine Frenkel exciton, but a very localized tightly bound one. The other ones are similar to those found in
transition-metal dichalcogenides and, although more localized, can be described within a Wannier-Mott scheme.
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I. INTRODUCTION

Two-dimensional (2D) materials are currently the ob-
ject of many investigations concerning their electronic and
optical properties. Graphene is the most known example
[1] but hexagonal boron nitride [2–9] and transition-metal
dichalcogenides (TMD) [10–14], as well as new materials
such as phosphorene, [15,16] silicene, germanene, etc. [17,18]
are receiving considerable attention. Unlike graphene, these
materials are semiconductors with new optical properties
that are absent in 3D semiconductors. Excitonic effects, in
particular, are more pronounced in two dimensions than in
three dimensions, with the exciton binding energies being
of the order of 0.1–1 eV or more. The spatial extension of
the excitons remains fairly large in general so that they are
frequently considered as Wannier-Mott excitons. However, it
has been quickly noticed that the usual hydrogenic model
does not apply in two dimensions because of the different
screening processes involved [19–27]. There is thus a need to
understand more precisely these excitonic effects. The case of
hexagonal boron nitride (hBN) is more specific still. Even in its
bulk hexagonal form, very strong excitonic effects have been
reported very early based on ab initio calculations [28]. The
theoretical interpretation of very strongly bound excitons (0.7
eV for the ground-state exciton in bulk hBN) was confirmed by
various experiments [2,3,5,6,8] and was refined in theoretical
calculations making use of symmetry arguments [29–31]. The
reason for the strong binding energy is the quasi-2D nature
of the hBN structure [28] consisting of weakly interacting
stackings of hexagonal layers. Furthermore, hBN has a very
large gap, >6 eV, leading to a rather weak dielectric screening,
so that all ingredients conspire to enhance these excitonic
effects. They have been studied recently, but the experiments
are difficult because of the necessity to work in the far UV
range.

The current interest in 2D materials and the development
of techniques to handle few-layer materials suggests to study
the properties of hBN as a function of the number of layers, as
has been done in the case of graphene and TMD. In the case of

TMD it has been shown that the nature of the gap—indirect or
direct—depends on the number of layers. What about hBN?
Preliminary experimental studies are already available [32],
but much remains to be done. First, a precise knowledge of the
single-layer (SL) properties is required.

We present a detailed theoretical study of the first excitonic
levels and characterize their energies and shapes by combining
ab initio calculations and a simple tight-binding model. The
ab initio approach is the usual one, based on a GW plus Bethe-
Salpeter approach. The tight-binding approach is close to the
approach put forward by Wannier long ago [33–36]. As it turns
out we have to take into account just one π valence band and
one π∗ conduction band. Furthermore, close to the gap, the
corresponding Bloch states are concentrated on the nitrogen
(N) and boron (B) atoms respectively, so that the π orbitals
can be considered as Wannier functions. It is then possible to
work out the Wannier equations in real space in a simple but
accurate way.

The paper is organized as follows: Sec. II is devoted to
the electronic structure of hBN-SL, which is calculated using
standard ab initio techniques and fitted to a simple tight-
binding model. Section III contains the main discussion of
the various excitons and of their symmetry, using in particular
imaging tools in real and reciprocal space. Finally, Sec. IV is
concerned with the calculation of optical matrix elements. This
is followed by a discussion (Sec. V) and several appendixes.

II. ELECTRONIC STRUCTURE OF hBN SINGLE LAYER

A. Band structure

We first specify a few notations. The structure of the hBN
single layer is shown in Fig. 1.

The band structure of the hBN single layer is shown in
Fig. 2. The density functional theory (DFT) calculations have
been made using the QUANTUM ESPRESSO code with the local
density approximation (LDA) for the exchange-correlation
functional [38]. The GW corrections were computed in the
G0W0 approximation, using the YAMBO code [39] with the
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FIG. 1. Left: Honeycomb structure with its two triangular sub-
lattices A and B occupied in hBN by nitrogen and boron atoms,
respectively. τ 1,τ 2,τ 3 are the vectors joining first neighbors between
the two sublattices. The vectors are opposite if the origin is taken on
a B atom. The unit cell contains one nitrogen and one boron atom.
Right: Brillouin zone.

plasmon-pole approximation for the frequency dependence of
the dielectric function. These corrections have been applied to
the last four valence bands and up to the first twenty conduction
ones (only the first two are shown in Fig. 2). The lattice
parameter has been fixed at the optimized lattice constant
a = 4.72 a.u. (2.50 Å). The computational details are the same
used for the subsequent Bethe-Salpeter calculation and are
found in Sec. III. The gap, equal to 7.25 eV, is direct between
the π and π∗ band at point K in the Brillouin zone, while the
bands are very flat along the KM lines. This is in agreement
with several previous calculations [40–45]. Notice however
that the G0W0 approximation is known to underestimate large
band gaps. In addition, after the GW corrections are made, the
bottom of the conduction band at the � point is lower than at
K . These are nearly free electron states [40] that are forming
around isolated layers of hBN—we checked that the energy
position of these states does not depend on the vacuum space
between repeated periodic images of the system. However, the
transition matrix elements from localized valence band states
into these states are very low, so, for all practical purposes, the

FIG. 2. DFT-LDA (red) and GW (blue) ab initio band structures
of a single hBN layer: in the MK region, the gap is direct at point K

between the flat π bands. The GW corrections were interpolated for
this figure with the WANNIER90 code. [37].

isolated sheet of hBN can be considered to be a direct band
gap material. This means that regardless of the nature of the
quasiparticle gap (direct or indirect), the optical gap is direct at
point K . The ab initio results confirm that the contributions to
all exciton states of interest in this work come from transitions
near K and away from � (see, for example, the reciprocal
space plots in Figs. 5 and 10).

As in the case of graphene, the two π bands can be
reproduced fairly well using a simple tight-binding model. Let
us denote as |n〉 the pz atomic state at site n. The corresponding
atomic orbital is φ(r − n) = 〈r|n〉. Then, we define the two
Bloch functions on the A and B sublattices:

|k A(B)〉 = 1√
N

∑
n∈A(B)

eik·n |n〉,

where N is the number of unit cells, i.e., half the number of
atoms. As usual, in most cases we just keep first-neighbor
hopping integrals −t,t > 0, and the nitrogen and boron atoms
are distinguished by their on-site matrix elements, equal to
−� on the A sites for the N atoms, and to � on the B sites for
the B atoms. The matrix elements of the Hamiltonian in the
Bloch basis are therefore written as:

〈kA|H |kA〉 = −�

〈kB|H |kB〉 = +�

〈kA|H |kB〉 = 〈kB|H |kA〉∗ = −t γ (k)

γ (k) =
∑

α=1,2,3

eik·τα . (1)

The energy eigenvalues E are then given by:

E = sEk; Ek =
√

�2 + t2|γ (k)|2; s = sgn (E),

and the eigenstates are

|k s〉 = CA
s |kA〉 + CB

s |kB〉.
Finally, up to a phase factor the coefficients CA

s and CB
s are

given by:

CA
s = 〈kA|ks〉 = −s

γ (k)

|γ (k)|

√
Ek − s�

2Ek

CB
s = 〈kB|ks〉 =

√
Ek + s�

2Ek
. (2)

Thus, the π electronic structure of hBN-SL can be charac-
terized by only two parameters, t and �. Their order of
magnitude is t � � � 3 eV but more precise values can be
obtained by fitting the valence and conduction bands Ek =
±

√
�2 + t2|γ (k)2| to those provided by ab initio calculations.

� is fixed so that the gap 2� is equal to the ab initio
one, � = 3.625 eV, and t is then obtained using standard
fitting procedures. Different values are obtained depending
on the energy range where the fit is optimized. A global fit,
disregarding the nearly free electron states, leads to t = 3.0 eV,
but here we are more interested to have a good fit along the
MK line, in which case we obtain t = 2.30 eV (similar to the
values for recent fitting of band structures in Ref. [42]).

The fit is better for the valence band than for the conduction
band (see Fig. 3). The fit can easily be improved by adding
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FIG. 3. Tight-binding fit to the ab initio bands including first-neighbor interactions (left) and first- and second-neighbor interactions (right).
Solid lines denote the region of the fit: the global fit is made for all π bands except the nearly free electron states, whereas the MK fits are
optimized for the local band structure along the MK lines.

further neighbor interactions. Neighbors on the same sublattice
contribute to diagonal matrix elements whereas neighbors on
different sublattices contribute to off-diagonal elements.

Before considering second-neighbor interactions explicitly,
let us see a simple way to deduce the band structure of hBN-SL
from that of graphene. Let H 0 be the Hamiltonian of graphene
with only t hopping integrals. The full Hamiltonian H of
hBN-SL is given by H = H 0 + �̂ where �̂ is the atomic
diagonal Hamiltonian with matrix elements equal to −� on
the A sublattice and to +� on the B sublattice. It is clear
that H 0�̂ + �̂H 0 = 0 so that H 2 = (H 0)2 + �2 where �2

is a simple constant (multiplied by the unit matrix). (H 0)2 on
the other hand is a Hamiltonian connecting sites entirely on
sublattice A or on sublattice B. On these triangular lattices
(H 0)2 connects the first neighbors with a hopping integral
equal to t2 but it has also diagonal on-site matrix elements
equal to 3t2. In the Bloch basis (H 0)2 is therefore diagonal:

(H 0)2 =
∑

k

|kA〉|t γ (k)|2〈kA| + |kB〉|t γ (k)|2〈kB|,

and the eigenvalues are indeed equal to �2 + t2|γ (k)|2.
Adding second-neighbor interactions −t2 in the hBN-

SL structure is then equivalent to introducing first-neighbor
interactions on the triangular sublattices, and the eigenvalues
are therefore given by:

Ek = −t2(|γ (k)|2 − 3) ±
√

�2 + t2|γ (k)|2.

Since both t and t2 are positive, second-neighbor interactions
induce an asymmetry between the valence and the conduction
band: The conduction band becomes flatter than the valence
band, in agreement with ab initio calculations (Fig. 3). The
best local fit along MK is provided by t = 2.30 eV, t2 =
0.096 eV. Actually, under the approximation that the valence
and conduction bands are pure N and B states, as shown below,
only the energy difference between these two bands enters the
tight-binding excitonic Hamiltonian derived in Sec. III, and the
second-nearest-neighbors hopping term does not contribute
to this difference. For this reason we limit our tight-binding
model for the excitons to first-nearest-neighbor hopping and
keep the simplest previous fit with � = 3.625 eV, t = 2.30 eV.

B. Wave functions, densities of states

Many electronic properties of hBN-SL only depend on the
electronic states close to the gap, i.e., in energy ranges where
t |γ (k)| is small compared to the gap 2�. This means that in
a first approximation, the coefficients |Ci

s |,i = A,B are equal
to one or zero. In other words close to the gap, the valence
states are concentrated on the N sites whereas the conduction
states are concentrated on the B sites, and the eigenvalues can
be approximated by:

Ek � ±
(

� + t2

2�
|γ (k)|2

)
.

To examine the validity of this approximation, we have
calculated the local densities of states nN(B)(E) on both N and
B sites. They are shown in Fig. 4. In our simple tight-binding
model, one can easily see that nB (−E) = nN (E). Furthermore,
nB(E) shows a step-function-like onset at E = +�, whereas
nN (E) has its onset at E = −�. As a result the states are

FIG. 4. Tight-binding local densities of states on N and B sites
calculated using the recursion method (t = 2.30 eV, � = 3.625 eV).
The boron (nitrogen) density of states is discontinuous at the upper
(lower) band edge E = � (−�).
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indeed quasipure B states in a fairly broad energy range above
�, and of course they are quasipure N states below −�.

To summarize we can assume that the Wannier functions
associated with the valence band and the conduction band can
be identified, to lowest order, with the atomic π functions
centered on the corresponding sites of their triangular lattices.
The effective Hamiltonians Hv for the π band and Hc for the
π∗ band are then given by:

Hv = −
∑

n

|nA〉 (� + 3tv) 〈nA| −
∑
n,m

′ |nA〉tv〈mA| (3)

Hc =
∑

n

|nB〉 (� + 3tc) 〈nB| +
∑
n,m

′ |nB〉tc〈mB|, (4)

where the primes indicate sums over nearest neighbors on the
triangular lattices, and tv = tc = t2/2�.

III. EXCITONS IN hBN SINGLE LAYER

Ab initio excitonic calculations are based on the Bethe-
Salpeter formalism, [36,46,47] which in practice leads to an
effective Schrödinger or Wannier equation for electron-hole
pairs1:

(Ekc − Ekv)�kvc +
∑
k′v′c′

〈kvc|Keh|k′v′c′〉�k′v′c′ = E �kvc,

where Ekc and Ekv are the conduction and valence band
energy, respectively, Keh is the electron-hole interaction kernel
and �kvc is the electron-hole wave function in k space. In this
paper, we only consider vertical excitations where the electron
and the hole have the same wave vector k, i.e., we consider
excitons with vanishing wave vector Q of their center of mass.
The �kvc are the coefficients in the expansion of the excitonic
state |�〉 in terms of electron-hole excitations:

|�〉 =
∑

k

�kvc a
†
ckavk|∅〉,

where the vacuum state |∅〉 is the state where, at zero
temperature, all valence states are full and all conduction states
are empty. Only singlet states are considered here so that spin
indices are omitted.

The Bethe-Salpeter equation has been solved using the
YAMBO code [39]. A Coulomb cutoff of the screened potential
in the vertical direction has been used in order to avoid long-
range interaction between repeated copies of the monolayer
[48]. In this way, we find that both the GW corrections and the
first excitonic peaks are already converged (with about 0.01 eV
accuracy) with an interlayer separation of 40 atomic units.
The same level of convergence was achieved by sampling the
two-dimensional Brillouin zone with a 24 × 24 × 1 k-point
grid. The additional parameters for many-body perturbation
theory (MBPT) calculations as implemented in YAMBO were
converged with the same level of accuracy. We also carried
out calculations with a 36 × 36 × 1 k-point grid in order to
show the higher-energy excitonic wave functions in real space
without any overlap between repeated copies on the same

1Standard treatments of excitons can be found, for example, in
Refs. [34,35], and [36].

monolayer. We verified furthermore that choosing an interlayer
separation of 80 a.u. does not modify the results.

A. Ground-state exciton

As an introduction, we present ab initio results concerning
the ground-state exciton level. Its binding energy measured
with respect to the bottom of the conduction band is huge:
1.9 eV. In Fig. 5 we show an image of the excitonic
wave function �(rh,re), where the hole (at rh) is localized
just above a nitrogen atom. The plot represents the total
probability |�(rh,re)|2, i.e., the probability to find the electron
at position re if the hole is located at rh. Since this exciton is
doubly degenerate, we sum the total probability over the two

FIG. 5. Top: Total probability density |�(rh,re)|2 of the ground-
state degenerate exciton states. The hole is located 0.37 Å above the
nitrogen atom in the center (black circle) and re is at the same altitude.
Bottom: Corresponding Fourier intensity

∑
vc |�kcv|2. All intensities

are summed over the two degenerate components.
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degenerate states in order to preserve the trigonal symmetry
of the crystal lattice [30]. As expected, the electron density is
centered on the boron atoms, with a high probability—about
30%—on the first-nearest neighbors. Although not in the
genuine Frenkel limit, the exciton is well localized in real
space. The shape of this exciton is actually quite similar to that
found for the 3D hBN crystal, which is not surprising since
in the latter case the exciton was already found to be well
confined in a single layer although with a lower binding energy
[28–30,41]. We also show the wave function in reciprocal
space. Here we plot the (summed) weight

∑
vc |�kvc|2 of the

electron-hole pairs of wave vector k that constitute the bound
exciton. The distribution is peaked around the high-symmetry
point K but extends along the KM boundaries of the Brillouin
zone.

B. Wannier tight-binding model

We use now the result derived in Sec. II that the valence
and conduction states are pure A (N atoms) and B (B atoms)
states, respectively. This approximation is fully justified when
looking at the ab initio results of the previous section. Then
we can write:

a
†
kcakv|∅〉 � a

†
kBakA|∅〉 � 1

N

∑
n,m

a
†
mBanA eik·(m−n)|∅〉.

The sum over the electron and hole positions can be de-
composed into a sum over the hole position n and over the
electron-hole distance R, which is then a vector joining a site
on the A (hole) sublattice to a B (electron) sublattice site. For
simplicity we use “bra” and “ket” notations:

|kvc〉 = a
†
kcakv|∅〉 = 1√

N

∑
R

eik·R|Rvc〉 (5)

|Rvc〉 = 1√
N

∑
n

a
†
nA+R anA|∅〉. (6)

We see that |Rvc〉 is the linear superposition of exciton
amplitudes for pairs separated by R. This is nothing but the
Bloch wave function for excitons with a wave vector Q = 0.
We can then rewrite the Bethe-Salpeter-Wannier equation in
real space using the |Rvc〉 basis and the wave function coeffi-
cients �R = 〈Rvc|�〉 = 1√

N

∑
k eik·R �k. The kinetic energy

term (Ekc − Ekv)�kvc, diagonal in k space, becomes a tight-
binding-like term in R space equal to

∑
R′ hvc(R − R′)�R′

with hvc(R) = 1
N

∑
k eik·R (Eck − Evk). To be more precise

let Hvc be the Hamiltonian acting in the excitonic space. The
kinetic energy (or free single-particle) term is the difference
of the two Hamiltonians (3) and (4). We rewrite it here,
H 0

vc = Hc ⊗ 1 − 1 ⊗ Hv , to indicate that each term in the
right-hand side acts either on the electronic or on the hole
component of the electron-hole states. Dropping now the
v,c indices within the bras and kets, the matrix elements
〈R|Hvc|R′〉 of H 0

vc are equal to hvc(R − R′) and are therefore
equal to 2� + 3t2/� if R = R′, and to t2/� if R and R′ are
first neighbors on the triangular lattice.

The electron-hole interaction kernel, on the other hand,
contains a direct term and an exchange contribution. Let us
first consider the direct term, which is the most important

TABLE I. The five first excitons in the order fixed by the ab initio
calculations. Energies are in eV.

Exciton

1 (×2) 2 (×2) 3 4 5 (×2)

Ab initio −1.932 −1.076 −1.045 −0.980 −0.892
Ab initio −2.018 −1.095 −1.045 −1.358 −0.898
without exchange
Tight binding −1.932 −1.053 −0.999 −1.0944 −0.830
Symmetry E E A2 A1 E

one, as will be checked later (see Table I). The corresponding
integral can be expanded in real space and involves integrals
of type:

−
∫

d rd r ′ϕv(r − Rn)ϕv(r − Rp)

× e2

|r − r ′|ϕc(r ′ − Rm)ϕc(r ′ − Rq),

where the ϕv(c)(r) are (real) valence or conduction orbitals.
Usually the largest integral is the one where all indices are

identical, but here this on-site integral is forbidden since the
conduction and valence orbitals belong to different sublattices
(actually, this is not completely true as will be discussed below
in Sec. III C). The next most important integrals are those
where Rp = Rn and Rq = Rm in the previous integral, and
finally the (direct) Coulomb term

∑
k′〈kvc|Kd

eh|k′vc〉�k′vc

becomes
∑

R �=0 UR�R where:

UR = 〈R|Kd
eh|R〉 = −

∫
d rd r ′ϕ2

c (r)
e2

|r − r ′|ϕ
2
v (r ′ − R),

which means that UR acts as a local potential on site R. The
Coulomb potential should also be screened but here the UR

will just be considered as parameters to be fitted to ab initio
data.

We have therefore reduced our problem to a very simple
tight-binding problem for the relative motion of the electron
and of the hole. Since the motion is relative we can fix the
hole at the origin of the A sublattice. The R vectors lie on
the B sublattice: our problem becomes the problem of an
electron moving on the B sublattice in the presence of a hole
at the origin, which plays the part of an impurity, source of the
attractive potential UR. To summarize, when exchange effects
are neglected, we have to handle the standard tight-binding
equations:

E�R =
∑

R′
heh(R − R′)�R′ +

∑
R

UR�R,

which therefore depends only on tex = t2/� and on UR.

C. Discussion of the Wannier model

Although standard, the Wannier equations are difficult to
solve in many cases because several valence and conduction
bands are involved. As a consequence the Wannier functions
have no longer direct relationships with the atomic orbitals.
On the other hand, in the case of strong screening and small
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gaps, the potential does not perturb the single-particle Bloch
states too much and k · p expansions can be used, leading to
the familiar hydrogenic model where the underlying lattice can
finally be forgotten. This model is a posteriori justified when
the extension of the excitonic states is large compared to the
lattice parameter. As shown in Fig. 5 this is not the case here,
but the simplicity of the electronic structure of the boron nitride
single sheet will allow us to take lattice effects fully in account.

1. A very simple model

As shown above, we have to solve an impurity problem in a
simple tight-binding basis. In the case of localized potentials,
Green’s function or direct diagonalization techniques are
known to be very efficient. Actually, we just have to
adapt the methods used to study deep impurity centers in
semiconductors [49,50]. Although the Coulomb potential is
a long-range 1/R potential we expect that the energy of the
lowest bound state can reasonably be obtained using truncated
potentials in real space. Let us recall that the electron is
moving on a triangular lattice with first-neighbor hopping
integrals in the presence of an impurity located at the origin
taken at a lattice point of the hole sublattice, i.e., at the center
of a triangle of the B sublattice (see Fig. 6). We have therefore

FIG. 6. Top: The hole is at the origin (square) and the electron
is moving on a triangular sublattice. Bottom: Density of states
corresponding to the spectrum of the excitonic Hamiltonian without
Coulomb interactions, H 0

eh − 2�, so that the spectrum starts at E = 0.
The Van Hove singularity is at E = tex = 1.46 eV.

to diagonalize the following Hamiltonian:

Heh = H 0
eh + U

〈R|H 0
eh|R′〉 = 2� + 3t2/� if R = R′

= t2/� if R and R′ are first neighbors

= 0 otherwise

U =
∑

R

|R〉UR〈R|,

where the potential is to be fitted to ab initio data, and
where exchange terms are neglected. The spectrum of H 0

eh is
known since it is the spectrum of the triangular lattice with
(positive) first-neighbor hopping integrals (Fig. 6). The lowest
eigenvalue (taken as the origin in Fig. 6) is at 2�, which
corresponds to the energy gap in this model. In the presence
of a localized attractive potential, we expect that bound
excitonic states appear when the potential is strong enough.
This is indeed what happens. A brief analytical discussion is
presented in Appendix A. Here, we present results obtained
with a potential fitted up to the 28th neighboring shell to ab
initio data, and which is discussed below, in Sec. III D. We
have diagonalized our tight-binding Hamiltonian using a box
containing about 103 sites on the triangular lattice. Many
exciton states have been studied, but since our model becomes
inaccurate at higher energies, and when the extension of the
exciton increases, we only considered five states in detail. The
advantage of our procedure in real space is that we handle
real wave functions and so we can easily display the wave
function themselves. Furthermore in the case of degenerate
states it is easy to show components of definite symmetry.

2. Ground-state exciton and exciton symmetries

We show first in Fig. 7 the results concerning the ground-
state exciton, which is doubly degenerate. In the tight-
binding case, we show the two components, which are clearly
antisymmetric or symmetric with respect to the y axis. The
agreement with the ab initio result is very good. At this point
it is useful to comment on the symmetry of this state. Since
we have fixed the position of the hole, we can use the point
symmetry of the triangular lattice with respect to the origin
located at a center of a triangle. In principle the problem
is not purely a 2D one since the π orbitals extend in the z

direction and are odd with respect to a z → −z reflection.
Apart from this trivial symmetry, we have only to consider
the C3v symmetry with its threefold rotation axis and its
mirror planes σv . This group is known to have three different
representations. Beyond the identity one, A1, we have the
familiar two-dimensional representation E(x,y), and a second
representation of dimension 1, A2, characterized by an odd
character for the σv reflections. Our exciton clearly has the E

symmetry with two (chiral) components, which can be taken
to vary as x + iy or x − iy.

This exciton is very similar to the so-called A or B

excitons met in TMDs. In this case, the Wannier-Mott
approach in the k · p approximation is generally used, and
the symmetry of the excitons is frequently defined as fol-
lows: The exciton wave function is written in the form
�(rh,re) = φk0c(re)φk0h(rv)g(re − rh), where the φk0 are the
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FIG. 7. Results for the ground-state exciton. (a) Ab initio inten-
sity. (b) Tight-binding intensity, and (c) tight-binding amplitudes for
the two degenerate states, symmetric and antisymmetric, with respect
to the y axis. Blue and red colors in (c) correspond to opposite signs.

single-particle Bloch functions at point k0 corresponding to
the considered direct gap, and g(r), the envelope function,
is the solution of the hydrogeniclike excitonic equation for
the relative coordinate r = re − rh [51]. The full excitonic
symmetry is the symmetry of this product, but notations
generally use the symmetry of g(r). This decomposition makes
sense only if the k · p expansion around k0 is valid, which is
not necessarily the case here. In our case, the direct gap occurs
at points K and K ′. Neglecting intervalley coupling (which
may not be valid either), we see that k0 = K and the product
of Bloch functions φk0c(re)φk0h(rv) varies as ei K ·r , i.e., as one
E component of the representation of the C3 symmetry at
point K . Now, since the conduction and valence bands are
nondegenerate at point K , the ground-state envelope function
g(r) is isotropic and of symmetry s. This is why the A exciton
is denoted a 1s exciton. With similar arguments we obtain that
the exciton at K ′ has also s symmetry modulated by the Bloch
function proportional to e−i K ·r . So, in this description we
obtain two degenerate 1s excitons, but if they are considered
together they form a doubly degenerate exciton of symmetry E.
Both descriptions are equivalent in the case of large excitons,
which can be associated separately to points K and K ′ [14].
In our case, where the exciton is more localized in real space
(and consequently more delocalized in reciprocal space), using
directly the full point symmetry of the exciton is more accurate.

3. Other excitons

a. Analysis in real space. At higher energy, a group of six
states appears. All of them as well as the previous state have
similar energies within 0.1 eV. Actually, they do not appear
in the same order in ab initio and tight-binding calculations.
Their wave functions are however very similar. We follow here

FIG. 8. Results for the excitons Nos. 2–5. Left: ab initio intensity.
Right: tight-binding intensities and amplitudes. The hole is at the
center of the central triangle. Blue and red colors in these plots
correspond to opposite signs. Exciton No. 2 has two components as
the ground-state exciton. The tight-binding analysis shows clearly that
exciton No. 3 has the A2 symmetry with an antisymmetric behavior
with respect to the three σv mirrors. Notice in the ab initio image the
low intensity in the interior hexagon, i.e., on N sites. This is a signal
that the simple tight-binding model which forbids this possibility
begins to fail. But otherwise, the agreement is very good. Notice also
that, due to the A2 symmetry, the intensity strictly vanishes on the
first neighbors and more generally on the symmetry axis. Exciton No.
4 on the other hand as the full C3v symmetry typical of the identity
representation A1. The ab initio results show a significant intensity on
the central N site. Finally, exciton No. 5 has an E symmetry. Since the
amplitude images are fairly complex only the tight-binding intensity
is shown.

the order provided by the ab initio calculations. Both ab initio
and tight-binding approaches find first a similar exciton with
again a twofold degeneracy (exciton No. 2 in Fig. 8). It has
therefore also an E symmetry. The agreement between both
calculations is still fairly good. The two following ones are
nondegenerate. The TB method shows unambiguously that
the first one transforms according to the A2 representation
(exciton No. 3, Fig. 8) and the second one according to the
A1 one (exciton No. 4, Fig. 8). Finally, the two upper states
are degenerate and belong to the E symmetry (fifth exciton in
Table I). We summarize in Table I the energies and symmetries
of these excitons. The next excitons are found more than 0.2 eV
above this group in the ab initio calculations.

Although the overall agreement between ab initio and TB
calculations is fairly good, the behavior of the A1 exciton
seems particular. This is still more obvious if we compare ab
initio calculations performed with and without the exchange
contribution (Table I). Whereas the energy variation between
the two calculations for the other excitons is of a few percent,
the A1 exciton is strongly perturbed, its energy moving from
−0.98 eV to −1.358 eV when the (repulsive) exchange
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contribution is suppressed. This is quite unusual but can be
related to the fact that the A1 exciton is, by symmetry, the only
one where the electronic intensity at the origin is nonvanishing.
Actually, although we have neglected this possibility in our
simplified TB model, the ab initio calculations do show such
a nonvanishing intensity (Fig. 8). The point is that even if this
intensity is low, it introduces a perturbation proportional to
the on-site exchange term 2J0, which is very large. Actually,
the local Coulomb and exchange integrals U0 and J0 are
of the same order of magnitude since they both involve
similar π orbitals. They are of opposite signs however, which
explains why our TB scheme, which neglects on-site Coulomb
interactions, is not too bad even in this case.

b. 2s and 2p states: Analysis in reciprocal space. At this
point it is instructive to compare our results with those obtained
for dichalcogenides. In TMD the Wannier-Mott model is valid
provided appropriate anisotropic potentials are used. It is
convenient to analyze the excitons in each valley in terms
of s,p, . . . symmetries. The usual sequence is a 1s level, and
then a 2s level nearly degenerate with a 2p level. This 2p

level gives rise to four states because of the valley degeneracy.
A careful examination of the symmetry of the π and π∗
states close to the K points based on the so-called massive
Dirac model has shown that actually the degeneracy within
each valley is lifted, but time-reversal symmetry between K

and K ′ insures that the 2p states are split into two doubly
degenerate states. Furthermore, the 2s level is found to be
above the 2p levels [14,52–54]. In our case where lattice
effects and therefore intervalley effects are included a further
splitting occurs. As pointed out above, the full symmetry of
the exciton states is obtained from the product of the envelope
function (E symmetry for p states) and of the Bloch functions
at points K of symmetry E also. Now, the decomposition of the
E × E representation gives rise precisely to the observed one:
E × E = E + A1 + A2. In the s,p, . . . language, the p states
are first split into px ± ipy states whose chiralities are equal
or opposite to those of the Bloch functions at points K and K ′.
Hence, two states (one in each valley) have a vanishing global
chirality. Forming bonding and antibonding states between
these states leads to the A1 and A2 states. The two other ones
remain degenerate and form an E state. We expect the bonding
state A1 to be below A2, but, as argued before, the repulsive
exchange contribution neglected in this discussion pushes the
A1 upwards. This is described in Fig. 9.

at point K K + K'

+ exchange

2p+ E

-

1

22p

A

A
2px 2py

2s

FIG. 9. Schematic splitting scheme of the 2p levels. Depending
on the calculations, ab initio or TB, the level separations are of the
order of 0.1 eV or less. The 1s state is about 1 eV below.

FIG. 10. Ab initio and TB results for the intensities and wave
functions in reciprocal space for the excitons No. 1 to No. 5. First
column: Ab initio results. The first and last excitons show intensities
peaked at K and K ′, more concentrated for the last 2s state than for
the first 1s one, as expected. This is actually the way state No. 5 is
identified as 2s. The three other states (four, including degeneracy)
have similar shapes with significant trigonal warping effects. The TB
results are shown in the second column and are very similar. The
last two columns show the TB wave function with a modulus-phase
representation: a circle with an opacity proportional to the intensity
at this k point is placed on each point of a grid. The color of the
circle is related to the phase between −π and +π as indicated in the
color bar. Two plots are shown in case of degenerate states, which
have been filtered according to the chiral symmetries. It is clear that
the phases are equal to 0 and ±2π/3 at these points for the 1s and
2s states. The four other states have more rich structures with phases
rotating within each triangular spot located at the K points and, as
explained in the main text, are a signature of 2p states.

It remains to determine which E exciton belongs to this 2p

family. This might be exciton No. 2, as shown in the figure,
or exciton No. 5. It is not obvious to decide from the plots
of the wave functions in real space, but we show now that an
analysis in reciprocal space provides the answer. In the first
column of Fig. 10 are shown the intensities |�k|2 of the five
excitons considered previously. It is clear at once that excitons
Nos. 2, 3, and 4 belong to the same family and are therefore
the expected 2p excitons, which means that the relevant E

exciton is exciton No. 2 as depicted in Fig. 9. A consequence
is that exciton No. 5 is the 2s exciton. Furthermore, we check
that the 2s state, which is more spread out around the origin
in real space than the 1s state, is more concentrated on the K

points in reciprocal space.
Tight-binding calculations lead to quite similar results as

can be seen in the second column of Fig. 10. The advantage of
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the TB method is that we can easily obtain the wave functions
themselves. It is possible also to have a modulus-phase
representation by placing on each point of a grid a circle
with color related to the phase between −π and +π with
an opacity proportional to the intensity at this k point, which
is shown in the last columns of Fig. 10. The four 2p states
have more rich structures with phases rotating within each
triangular spot located at the K points. They can be explained
if we use the model recalled above where the symmetry of the
exciton states is governed by the product of the Bloch functions
and an envelope function so that the exciton wave function is
proportional to ei K1·rg(r), where K1 is one particular K vector
among the three equivalent ones. In the discrete tight-binding
model r is the sum of a vector of the triangular lattice and
of any first-neighbor vector τ . Assume now that g(r) is a
s envelope function and only depends on the modulus r of
r . Under a rotation of angle 2π/3, K 1 is transformed into
another equivalent vector, modulo a vector G of the reciprocal
lattice. The exciton state is therefore multiplied by a phase
factor equal to ei G·τ = ω or ω2, where ω = e2iπ/3 is the cubic
root of unity, depending on the initial orientation of the lattice
with respect to the origin. As mentioned previously, the wave
function transforms as the component E+ of positive chirality
of the representation E, and the wave function �k is given, up
to a constant by:

�k ∝
∫

d r e−i (K 1−k)·rg(r)n(r),

where n(r) is the site density, i.e., the sum of Dirac functions
on the triangular lattice sites, proportional to

∑
G eiG·(r−τ ).

For k close to K 1, k = K 1 + q, we can neglect the variation
of n(r), i.e., keep only the G = 0 term, and the integral over the
angle yields �k ∝ ∫

rdrJ0(qr)g(r), where J0(x) is the Bessel
function of zero order. If g(r) is peaked at some average value r̄

(remember that r̄ is at least equal to the minimum hole-electron
distance a/

√
3), �k ∝ J0(qr̄) and is therefore peaked at q = 0

and the intensity is maximum in a circle of radius ∼1/r̄ . If k is
close to another vector, say K2, then the integral is multiplied
by a factor e−iG·τ , where G = K2 − K1, i.e., by a factor ω2

or ω. Actually the functions in reciprocal space have the same
symmetry properties as in real space.

Assume now that g(r) has a p symmetry, so that g(r) =
g(r)e±iϕr , where ϕr is the angle between r and the x axis. Here
also, the integral over this angle can be performed explicitly, so
that �k ∝ ±J1(qr̄)e±iϕq , where J1(x) is the Bessel function
of order one, and ϕq is now the angle of q with the x axis.
We conclude that the phase rotates within each circle centered
on the K points. This is clearly as shown in Fig. 10. This
proves definitely that the states Nos. 2–4 are of symmetry
p. More precisely, consider first the nondegenerate exciton
No. 3 and No. 4. Exciton No. 4 does show the A1 symmetry
already evidenced in real space. Furthermore, one can notice
that the phases rotates in opposite directions around the K and
K ′ points, and that these rotations are counterbalanced by the
rotations between different points of the same family (K or
K ′), in full agreement with the arguments put forward above.
The same is true for exciton No. 3 except that the amplitudes
are odd with respect to the σv mirrors (phase shift of π ).
One can also notice the signature of the J1 Bessel functions:
The intensities vanish at the origin of the spots, disappear at

larger distances than in the case of s states, and are maximum
in between. Actually, warping effects along the �-M lines
transform the circles into triangles. The case of the degenerate
E state is more complex, since each component seems to mix
the behaviors of s and p states. Mixing between different E

states is allowed indeed (this is also the case for the 2s exciton).
It is clear however that the main features correspond to rotating
phases within circles, and one can check that here the rotations
within the circles and those between the circles are in the same
direction.

To summarize, although the first excitons considered here
are fairly localized, with important lattice effects, they can
be classified to some extent within a scheme borrowed from
the 2D atomic terminology (1s,2s,2p, . . . states) and which
has already been successfully applied to TMD. The genuine
symmetry of the exciton states is, however, more precisely
related to the representations of the triangular point group. We
have also seen that exchange effects are unusually strong for
fully invariant states.

D. Fit of the potential

In a first approach we have tested a screened Coulomb
potential, but it was quickly apparent that it was not possible
in this way to reproduce accurately more than the first exci-
ton. Meanwhile, several developments in the literature were
convincingly arguing that it is not possible in two dimensions
to use such a potential and that a genuine 2D electrostatic
potential [55] should be used instead [14,21,22,27,56–58]. We
have therefore used the Keldysh potential2:

V2D(r) = πe2

2r0

[
H0

(
r

r0

)
− Y0

(
r

r0

)]
,

where the only parameter is the screening length r0, directly
related to the 2D polarizability. Finally, since we are dealing
with relative binding energies, our model only depends on
two parameters, the excitonic hopping integral tex = t2/� and
r0. Of course, the Keldysh potential is still defined within a
continuous approach, which has no reason to apply exactly
here where lattice effects are important. In the best fit, the
hopping integral texc = t2/� is found equal to 1.50 eV, so that
t = 2.33 eV, which is completely consistent with our value
t = 2.30 eV deduced from ab initio band structures. Finally,
we find r0 = 10.0 Å. When r is much larger than r0 the
potential tends to an unscreened Coulomb potential. Below
r0 the potential is screened and becomes logarithmic. Since
the first electronic shell around the hole is at a first-neighbor
(B-N) distance, about 1.45 Å, we see in Fig. 11 that we are here
in the screened regime where the potential is slowly varying.
In Fig. 11 we show the effective distance-dependent dielectric
constant defined from V (r) = e2/ε(r)r . Notice also that the
distance between the two first excitons is completely different
from that predicted by the 2D hydrogenic model. This is due in
part to these screening effects, but also and more importantly
to lattice effects coupled with the specific electronic structure
of hBN, since such deviations have already been observed

2More precisely, we have used the simplified form proposed in
Ref. [21].

125303-9



THOMAS GALVANI et al. PHYSICAL REVIEW B 94, 125303 (2016)

0 2.5 5 7.5

-5

-2.5

V(r) (eV)

exciton 
levels

10

r (A)

1st shell

o

FIG. 11. Keldysh potential corresponding to the case of hBN-
SL; r0 = 10.0 Å and effective dielectric constant ε(r) defined from
V (r) = e2/ε(r)r .

with a fixed dielectric constant (see also Ref. [14]). The main
reason is probably that it is nearly forbidden for the hole and the
electron to be at the same position, which penalizes principally
the binding energy of the ground-state exciton.

We have neglected the exchange term here. Actually, its
short-range part contributes to the splitting between the spin
singlet and triplet states, the latter being dark in the absence of
spin-orbit coupling. This is a repulsive (positive effect) absent
in the triplet term whose level should therefore be below the
singlet one. Ab initio calculations predict a splitting about
90 meV for the 1s exciton [59]. In a first-order perturbation
calculation this splitting is equal to the average of Kx

eh in
the considered excitonic state. In the case of the ground-state
exciton, the excitonic wave function is concentrated on the
first-neighbor shell, so that this splitting is equal to a fraction
of Jτ . As expected then Jτ � 0.1 − 0.3 eV � Uτ . This is also
completely consistent with the variation shown in Table I of
the exciton energy when suppressing the exchange term. The
particular case of the A1 exciton, which is very dependent on
the intra-atomic values U0 and J0 of the Coulomb and exchange
potentials has been discussed above. A simple perturbation
method improving the TB model used here can be derived
to discuss this effect in more detail and is described in
Appendix C.

To summarize, the simple tight-binding model for the exci-
tons in hBN-SL is remarkably successful, even at a quantitative

level and the comparison with ab initio calculations shows
that the effective screened Coulomb potential to be used in a
continuous model is really a potential of the Keldysh type in
its strongly screened regime.

IV. OPTICAL MATRIX ELEMENTS

The optical absorption is related to transitions from the
ground state (energy E∅) to final states of energy Ei =
E∅ + �ω and to the corresponding matrix elements of the
perturbation induced by the electromagnetic field. Each
transition i is characterized by an oscillator strength fi =
2m|〈∅|v · ê|i〉|2/�ωi . Here ê is the (unit) vector of the light
polarization, and v is the velocity operator.

A. Matrix elements between single-particle states

In the absence of excitonic effets we have just to calculate
the matrix elements between valence and conduction Bloch
states with identical k vectors. It is not difficult to calculate
them in the general case [54,60,61], but here we just detail the
calculation for states close to the gap where we know that the
Bloch functions live on separate triangular sublattices. Then

〈kv|v|kc〉 = 1

N

∑
n,m

eik·(m−n)〈nA|v|mB〉.

There is no unique way of calculating the matrix elements of
v, depending on whether we express it using the momentum
operator [51] or the relation v = [r,H ]/i�. Both methods
are equivalent in an exact treatment but not when using an
incomplete basis as in our tight-binding basis. The second
method has the disadvantage to use the r operator, which is
not always well defined in periodic systems. This is not the
case in our model and the advantage is precisely to work in
real space, assuming that r|n〉 � n|n〉, and therefore:

〈nA|v|mB〉 = − 1

i�
(m − n)t, (7)

if m and n are first neighbors (on the honeycomb lattice), and
zero otherwise. Then

〈kv|v|kc〉 = 1

N

∑
n,m

eik·(m−n) it

�
(m − n)

= it

�

∑
α

eik·τα τα = it

�
∇kγ (k).

In the limit k → K , one finds ∇kγ (k) � − 3
2 ia(x̂ + i ŷ),

where a is here the nearest-neighbor distance, i.e., the lattice
parameter divided by

√
3 and x̂ and ŷ are the unit vectors

along the x axis and the y axis, respectively, so that finally:

〈Kv|v · ê|Kc〉| � v|ex + iey |; �v = 3at/2.

Notice that �/v2 is the effective mass m∗ of the conduction
and valence bands at point K . Using � � 3 eV and v � 1
km/s (as the Fermi velocity of graphene is precisely given by
3at/2�), we obtain m∗/m � 0.54.

At point K ′, ex + iey is replaced by ex − iey . The matrix
elements are maximum for circularly polarized light and, for
linearly polarized light, the matrix element is constant and
equal to v. The oscillator strength is equal to (m/m∗)(2�/�ω)
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when �ω is larger than the gap, i.e., about 2 close to the gap
(equal to 2�). The absorption, proportional to

∑
i fi/�ωi , is

therefore proportional to the density of states of the triangular
lattice divided by (�ω)2. Its shape is characterized by a
discontinuity at the edge and a Van Hove singularity at a
distance equal to texc above the edge, as shown in Fig. 6.

B. Matrix elements between excitonic states

In the presence of excitons we have now to calculate the
matrix element 〈∅|v · ê|�〉, where |�〉 is the exciton state.
From (6) and (7), we see that:

v|∅〉 = −t

i�

∑
n,m

′(m − n)a†
mBanA|∅〉 = it

�

√
N

∑
α

τ α|τ α〉,

so that:

〈∅|v · ê|�〉 = −it

�

√
N

∑
α

ê · τα〈τ α|�〉.

Defining the dipole d� associated with the exciton � through:

d� =
∑

α

τα〈τ α|�〉,

we see that |〈∅|v · ê|�〉| = (t
√

N/�)|ê · d�|. Thus, only the
local components of the exciton wave function contribute to
the optical matrix element. This is completely equivalent to
the statement that, within the usual hydrogenic model, only s

states contribute (Elliott theory, see Refs. [35,50]). Here we
have an equivalent selection rule: The dipole d� should not
vanish; in particular the wave function 〈R|�〉 should have
finite components on the first neighbors R = τα .

C. Application to the five first excitons of hBN-SL

Consider first the ground-state E exciton. It has two
components �+ and �−, which can be chosen as those
corresponding to circular polarizations, so that the components
are the cubic roots of unity, 〈τ α|�±〉 = C�e± 2iπ

3 (α−1), and
ê · d� = − 3

2a C�(ex ± iey), and finally |〈∅|v · ê|�〉|/√N =
C�v|ex + iey |. Here, C� is the amplitude of the exciton state
on the first neighbors, at most equal to 1/

√
3. In the case of

single-particle transitions the oscillator strength was of the
order of mv2/� for a transition close to the gap; hence, a
total oscillator strength of the order of N times this value. We
see here that the oscillator strength of the exciton is of the
same order of magnitude if C� is large, i.e., if the exciton
is strongly localized, which is the case here. Actually, from
ab initio calculations, the weight C2

� is found about one third
its maximum value 1/3. In other words 30% of the weight of
the ground state is concentrated on the first triangular shell. TB
calculations on the other hand find a weight of about 50%. The
oscillator strength of the other excitons are smaller. The second
exciton as well as the last one (No. 5) has the same symmetry
as the first one but their amplitude on the first neighbors is
weak. The two other ones studied above (Nos. 3–4) are dark
because their symmetry are characterized by representations
A1 and A2 different from the vectorial representation E, so
that d� = 0 and this is confirmed by the ab initio calculations.

Finally, the ground-state exciton takes almost all the oscillator
strength.

V. DISCUSSION

The excitons of hBN-SL have been characterized in detail.
The first one, of lowest energy, is particularly localized.
Is it a Frenkel or Wannier-Mott exciton? This discussion
is somewhat semantic. It is in some sense similar to the
longstanding debate between the Heitler-London (atomic)
approach and the Hund-Mulliken (molecular) approach to
single-particle properties. In practice, it turns out that in
solids the Hund-Mulliken band approach is more fruitful since
it can deal with many situations except when correlations
effects are very strong. Even then, specific approaches in the
Hubbard style can be used and compete with the methods
of quantum chemistry (interaction configuration approach). In
between, the tight-binding method has proven very efficient to
deal with electrons sharing itinerant properties (conductivity)
and localized ones (magnetism, chemical bonding). We are
certainly here in a similar situation. The localized excitons of
hBN-SL can be described within a TB-Wannier framework, but
cannot be described accurately within a k · p approach similar
to the nearly free electron approach of electronic properties.
They could simply be described as tightly bound excitons. We
have shown indeed that in the case of hBN-SL, which is a
genuine case study, the tight-binding approach can be very
accurate by fitting to ab initio data a few parameters.

On the experimental side optical properties of hBN-SL are
not available yet, but there are already some indications that
the expected main exciton is observed. In the case of bulk
hBN, stacking effects induce splittings of this exciton level
which are observed. Progress in the analysis of these stacking
effects is being made. Finally, dispersion effects as well as
exciton-phonon coupling remain to be studied.

Note added in proof. A recent paper presents a model for
excitons in dichalcogenides whose spirit is quite similar to our
tight-binding model [62].
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APPENDIX A: A VERY SIMPLE MODEL FOR THE
GROUND-STATE EXCITON

The ground-state exciton is so localized that its properties
do not depend too much on the long-range part of the potential.
It is useful, therefore, to examine the properties of a model
where the range of the potential is limited to the three first
neighbors of the central hole. We have then to diagonalize the
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following Hamiltonian:

Heh = H 0
eh + U〈

R|H 0
eh|R′〉 = 3texc if R = R′

= texc if R et R′ are first neighbors

= 0 otherwise,

U =
∑

R=1,2,3

|R〉u〈R|,

where the three sites surrounding the hole at the origin are
labeled 1,2,3.

1. Green’s functions

The resolvent or Green’s function corresponding to this
Hamiltonian is G(z) = (z − Heh)−1. G0(z) = (z − H 0

eh)−1 is
then the Green’s function of the triangular lattice. With the
chosen origin of energies, the spectrum of H 0

eh starts at E = 0
with a jump equal to π

√
3 texc. In the presence of the attractive

potential u we can have a bound state if the determinant
of the operator (1 − G0U ) within the space of dimension 3
generated by the three states |1〉,|2〉, and |3〉 vanishes. Let
now F0 and F1 be the diagonal and off-diagonal matrix
elements of G0, respectively F0 = 〈1|G0|1〉 = 〈2|G0|2〉 =
〈3|G0|3〉; F1 = 〈1|G0|2〉 = 〈2|G0|3〉 = 〈3|G0|1〉. We find a
double solution (F0 − F1) = 1/u and a simple solution (F0 +
2F1) = 1/u. Using standard methods one can determine the
behavior of F0 and F1 close to the origin. First, assuming a
constant density of states n(E) � 1/W , we find that:

F0 = 1

W
log

z

z − W
,

so that F0(E < 0) � 1
W

log(|E|/W ) when E is close to 0.
Similarly, F1 is found to behave as −F0/2. Then F0 −
F1 is negative and diverges logarithmically below E = 0 :
F0 − F1 � (3/2W ) log(|E|/W ) whereas F0 + 2F1 tends to a
constant. As a result the first equation has always a negative
solution Eexc for E, such that F0(E) − F1(E) = −1/|u|. With
the previous model for F0 and F1, we obtain, for small values
of |u|, |Eexc|/W =� exp(− 2W

3|u| ). If |u| is large, Eexc � u. The
corresponding eigenstates are, as expected, the chiral states
|φ+〉 ∝ |1〉 + ω|2〉 + ω2|3〉 and |φ±〉 ∝ |1〉 + ω2|2〉 + ω|3〉,
where ω is the cubic root of unity, ω = e2iπ/3. We recover
our exciton of symmetry E. The components of |�±〉 beyond
the (1, 2, 3) cluster can be obtained from the equation |φ±〉 =
G0U |φ±〉, i.e., 〈R|φ±〉 = ∑

R′=1,2,3〈R|G0|R′〉u〈R′|φ±〉.

2. Reciprocal space

We can also express |φ±〉 in reciprocal space:

�±
k = 〈k|φ±〉 = 1√

N

∑
R

e−ik·R〈R|φ±〉

� 1√
3N

γ (±K − k),

where we have limited the sum to the first neighbors and
taken into account that ei K .R = 1,ω,ω2 when R = 1,2,3
provided K is chosen along the x axis, as in Fig. 1. Thus,

FIG. 12. Tight-binding weight of the ground-state exciton in
reciprocal space.

up to a normalization constant the weight |�±
k |2 is equal to

|γ (k ∓ K )|2. Since |γ (k)|2 is maximum when k = 0, we see
that |�+

k |2 and |�−
k |2 are peaked at points K and K ′ = −K ,

respectively. As expected the sum is maximum on the boundary
of the Brillouin zone, as shown in Fig. 12.

APPENDIX B: EXCHANGE CONTRIBUTION

The exchange contribution involves integrals of type:

+
∫

d rd r ′ϕv(r − Rn)ϕv(r ′ − Rp)

× 2

|r − r ′|ϕc(r − Rm)ϕc(r ′ − Rq).

The largest integrals correspond to cases where the overlap
is minimum for the r and r ′ integrations. However, because
we have forbidden site coincidence for valence and conduction
orbitals, the best we can do is to consider first-neighbor overlap
between ϕv(r − Rn) and ϕc(r − Rm) and between ϕv(r ′ −
Rp) and ϕc(r ′ − Rq). Therefore, we only keep the terms Rm =
Rn + τ and Rq = Rp + τ ′, where τ and τ ′ are first neighbors
on the honeycomb lattice. The largest terms occur when n = p,
and the integral becomes a function J (τ ,τ ′ρ) of τ ,τ ′, and ρ

where ρ measures the separation between the pairs τ and τ ′ :
(see Fig. 13)

J (τ ,τ ′ρ) =
∫

d rd r ′ϕv(r)ϕc(r − τ )

× 2

|r − r ′|ϕv(r ′ − ρ)ϕc(r ′ − ρ − τ ′),

FIG. 13. Schematic representation of the geometry of the integral
J (τ ,τ ′ρ). Hole positions are shown as red squares and electron ones
as black circles.
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which induces in the tight-binding Hamiltonian an effective
overlap integral 〈τ |Kx |τ ′〉, which depends on the first neigh-
bors of the origin τ and τ ′:

〈τ |Kx
eh|τ ′〉 =

∑
ρ

J (τ ,τ ′ρ).

To lowest order, when τ = τ ′, this adds a local term Jτ to the
direct term on the first neighbors:

Jτ = J (τ ,τ ,ρ = 0)

=
∫

d rd r ′ϕv(r)ϕc(r − τ )
2

|r − r ′|ϕv(r ′)ϕc(r ′ − τ ).

On the other hand, when we sum all contributions corre-
sponding to all separations of the distant τ and τ ′ pairs we
obtain a sum of dipolar contributions which are known to be
singular here ( Q → 0 limit). In three dimensions this produces
the so-called longitudinal-transversal splitting [35,63]. In two
dimensions the singularity is weaker, with terms varying as
| Q| [14,64]. This will be discussed elsewhere.

APPENDIX C: AN IMPROVED WANNIER MODEL

The tight-binding model developed in the main text is
based on several approximations. To lowest order in t/�

the Wannier functions corresponding to the valence and
conduction bands are taken as the π orbitals on the nitrogen
and boron sites, respectively. Then the kinetic energy part of
the exciton Hamiltonian is approximated by its second-order
term in t/� and finally the Coulomb matrix elements UR

are calculated using atomic orbitals, i.e., Wannier function
of zero order. We will see that higher-order terms induce
corrections of order (t/2�)2 � 0.1. This is not negligible but
has been implicitly taken into account via our fitting procedure
for the interactions where R �= 0 on the triangular lattice.
Problems arise because, to higher order, other interactions
become allowed, in particular when R = 0. Let us then define
more accurate Wannier states |n±〉w from the exact eigenstates
|k±〉 defined in Eq. (2). We choose the phases such that these
Wannier states reduce to the atomic states when t → 0. Then,
to linear order in t/�:

|m+〉w = 1√
N

∑
k

e−i.k.m|k+〉

� |mB〉 − t

2�

∑
τ

|mB − τ 〉

|n−〉w = 1√
N

∑
k

e−i.k.n|k−〉

� |nA〉 + t

2�

∑
τ

|nA + τ 〉. (C1)

The sites nA(B) are on the A(B) sublattices and the sites
mB − τ (nA + τ ) are also on the A(B) sublattices. These
Wannier states remain centered on boron (B) and nitrogen (A)
sites, respectively, so that we can continue to use sublattice
labels A,B instead of band labels ±, but they spread on the
neighboring sites on the other sublattices. The excitonic kinetic
energy term calculated to second order in t/� has exactly the
form derived previously, but we are now able to calculate

the corrections to the Coulomb (direct) term. The Wannier
functions on neighbor sites overlap so that the Coulomb matrix
elements between electron and hole Wannier states labeled by
nA and mB involve not only the usual Coulomb integrals Unm

but also integrals involving sites nA + τ and mB − τ . More
precisely, let us define the Wannier electron-hole states |R〉w:

|R〉w = 1√
N

∑
n

w
†
nA+R wnA|∅〉,

where w
†
m is the creation operator in the Wannier state

|mB〉w ≡ |m+〉w, and wn is the destruction operator in the
Wannier state |nA〉w ≡ |n−〉w. R is as previously a vector
between the two sublattices. The matrix element of the direct
Coulomb kernel now becomes:

w〈R|Kd
eh|R′〉w � UR δR,R′ + t2

2�2

∑
τ ,τ ′

δR−τ ,R′−τ ′UR−τ .

We will keep only the corrective terms involving U0. Thus
these terms only correct the matrix elements between neigh-
bors of the origin:

w〈τ |Kd
eh|τ ′〉w � Uτ δτ ,τ ′ + t2

2�2
U0.

Actually, second-order terms in the Wannier function ex-
pansions also contribute, but they do not involve U0. This
perturbation expansion is the counterpart in real space of
the developments in reciprocal space (and within the k · p
approximation), performed in Refs. [14], [52], and [53].

Although U0 cannot be derived from the continuous
Keldysh potential, it should be significantly larger than its
value at the first-neighbor positions, about 3 eV (see Fig. 11),
and the perturbation is not negligible a priori. Let us estimate
to lowest order the correction δE to the energy of the excitonic
state |�〉:

δE � 〈�|δKd
eh|�〉 = t2

2�2
U0

∣∣∣∣∣
∑

τ

〈τ |�〉
∣∣∣∣∣
2

< 0.

The sum of the amplitude on the first shell,
∑

τ 〈τ |�〉 is
nonvanishing only for states of full symmetry A1. This is
the case of the exciton No. 4 discussed in the main text. As
discussed there, however, the exchange contribution has also
to be taken into account and the corrective term proportional
to 2J0 (the calculation is similar to that derived above for
the direct term) is here more important than the usual Jτ

(see Appendix B). Since 2J0 is a positive contribution at
least equal to |U0|, there is a compensation effect and the
global correction to our TB model should be slightly positive,
which is consistent with the results shown in Table I. On the
other hand this discussion shows that neglecting exchange
effects, which is common practice, is not valid here for hBN
when dealing with fully symmetric excitons. In this case the
singlet-triplet splitting is huge as can be seen in the same
table.
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