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We propose an ab initio framework to derive the dielectric and the second-order susceptibility tensors for
crystal surfaces. The single-surface response is extracted from a supercell scheme. We evaluate macroscopic
quantities, taking into account the local fields. The first- and second-order susceptibilities are evaluated within
time-dependent density functional theory, in the long-wavelength limit. We apply our formalism to the calculation
of the second-harmonic generation for clean and hydrogenated silicon surfaces. The agreement with measured
second-order susceptibility components is significantly better, illustrating the importance of local-field effects.
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I. INTRODUCTION

Second-harmonic generation (SHG) is a process where two
photons at a given energy are absorbed and one photon at
twice this energy is emitted. It is particularly suited for surface
studies due to its high sensitivity to the symmetries of the
system. Indeed, within the dipole approximation, the SHG
is zero for centrosymmetric materials and thus it can only
originate from symmetry-breaking regions. This makes SHG
an extremely versatile tool for studying surfaces [1,2], super-
lattices [3], and interfaces [4,5]. Nowadays, this technique is
used to characterize systems such as nanomaterials [6–12].
Furthermore, SHG is also interesting for the development of
optoelectronic devices [13–16].

From the theoretical point of view, the correct evaluation
of the second-order susceptibility is cumbersome, as it has
to include the many-body interactions between the electrons
of the system: the variation of the screening fields on the
microscopic scale, i.e., local-field effects (LFEs), as well as
the electron-hole interaction, i.e., excitonic effects. However,
recent progress has been achieved for bulk systems [17–23].

For surfaces, the theoretical description of optical properties
suffers from even more difficulties, linked to the need to
describe a semi-infinite system [24]. Since the surface keeps
two-dimensional in-plane periodicity, the use of a plane-wave
basis set in reciprocal space appears appropriate to study
these systems. Most of the numerical implementations used in
condensed matter rely on three-dimensional periodic boundary
conditions and the standard way to model a surface is to use a
slab of matter, embedded in a supercell with vacuum [24–28].

Concerning the optical linear properties, calculations in
the independent-particle approximation (IPA), i.e., neglecting
local field and excitonic effects, have been performed for
the in-plane components, giving satisfactory results when
compared to experimental results [25,29]. However, due to the
abrupt change in the electronic density at the surface, the local
fields (LFs) are expected to play a key role perpendicularly
to the surface plane. Their impact has been discussed for
years and analytic expressions for the surface response have
been presented, but their numerical evaluation has often been
restricted to simple cases [30–33]. Recently, we have proposed
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an ab initio framework, called “Selected-G,” allowing the
calculation of optical absorption spectra for surfaces, including
local fields for in-plane and out-of-plane components in a
supercell approach [24].

Additional difficulties appear for SHG when evaluated
within a supercell: the slab is composed of two surfaces and
the response of the two surfaces interferes in a destructive
way. This is not the case for the linear case, since constructive
interferences occur [34–36]. This has been solved within IPA,
using the so-called cut function, in order to extract the response
of only one-half of the slab [36–40].

Due to the difficulties in the calculation, LFEs on sur-
face second-harmonic generation have often been neglected
[34–41] or estimated using models fitted on experimental data
[42,43]. Understanding, by means of ab initio methods, how
local-field effects affect the second-harmonic generation at
crystal surfaces is the aim of this paper. The existing theory,
developed for bulk SHG [17], must be modified in order to
include the cut function in the macroscopic formalism.

This paper is organized as follows. In Sec. II, we present
the analytic derivation of the microscopic polarization up to
second order in terms of the total electric field. It allows us
to establish the expression of the electric displacement as
an explicit function of the spatial coordinate perpendicular
to the surface plane. From that expression, we define in
Sec. III the surface macroscopic dielectric tensor in the
optical limit and make the link with time-dependent density
functional theory (TDDFT). Following the same procedure,
the derivation for second-order macroscopic susceptibility is
presented in Sec. IV. In the last part, we apply our formalism to
calculate the surface second-harmonic generation of clean and
hydrogenated silicon surfaces: the dihydride Si(001)1 × 1:2H,
the monohydride Si(001)2 × 1:H, and the clean Si(001)2 × 1.

II. MICROSCOPIC POLARIZATION

We consider a dielectric material, perturbed by an external
field Eext. Following the paper of Del Sole and Fiorino [30],
we express the polarization as the response to a perturbing
field EP defined as

EP = Eext + Ei,T = E − Ei,L, (1)
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where E is the total microscopic field, and Ei,T and Ei,L are,
respectively, the transverse and the longitudinal components
of the field induced by the external perturbation.

Using the electric displacement vector D = E + 4πP and
taking into account the relation DL

G(q) = E
ext,L
G (q), one gets

E
i,L
G (q) = −4πP L

G (q), where PG(q) stands for P (q + G), with
q a vector in the first Brillouin zone (BZ) and G a vector of
the reciprocal lattice. The total electric field E = Ep + Ei,L

becomes

EG(q; ω) = Ep

G(q; ω) − 4π
q + G
|q + G|P

L
G (q; ω), (2)

and its macroscopic average corresponds to the G = 0 com-
ponent [44],

E0(q; ω) = Ep

0 (q; ω) − 4π
q
|q|P

L
0 (q; ω). (3)

The polarization will be first expanded to second order in
terms of the perturbing electric field: P = P(1) + P(2). As it
was shown in Ref. [30] that EP is a macroscopic quantity, the
polarizations are expressed as

P(1)
G (q; ω) = ↔

α̃
(1)
G0(q,q; ω)EP

0 (q; ω) (4)

and

P(2)
G (q; ω)

=
∑
q1q2

δq,q1+q2

∫
dω1dω2δ(ω − ω1 − ω2)

× ↔
α̃

(2)
G00(q,q1,q2; ω,ω1,ω2)EP

0 (q1; ω1)EP
0 (q2; ω2). (5)

The quantities
↔
α̃ (1) and

↔
α̃ (2) are, respectively, the linear and

second-order quasipolarizability, defined in terms of current
response functions, χjj and χjjj [17,30]. Inserting Eq. (3) in
Eq. (4), we get, for P(1),

P(1)
G (q; ω) = ↔

α̃
(1)
G0(q,q; ω)E0(q; ω)

+4π
↔
α̃

(1)
G0(q,q; ω)

q
|q|

q
|q|

× [
P(1)

0 (q; ω) + P(2)
0 (q; ω)

]
. (6)

This equation is solved in two steps, with the first one
consisting of setting G = 0 in the equation and then using
the result to get P(1)

G (q; ω) for any G vector. It gives, for
P(1)

0 (q; ω),

P(1)
0 (q; ω) = ↔

α̃
(1)
00 (q,q; ω)A(q; ω)E0(q; ω)

+4π
↔
α̃

(1)
00 (q,q; ω)A(q; ω)

q
|q|

q
|q|P(2)

0 (q; ω), (7)

with

↔
A(q; ω) = 1 + 4π

q
|q|

q
|q|

↔
α̃

(1)
00 (q,q; ω)

1 − 4πα̃
(1),LL

00 (q,q; ω)
. (8)

Inserting Eq. (7) into Eq. (6), we get

P(1)
G (q; ω) = ↔

α̃
(1)
G0(q,q; ω)

↔
A(q; ω)E0(q; ω)

+ 4π
↔
α̃

(1)
G0(q,q; ω)

↔
A(q; ω)

q
|q|

q
|q|P(2)

0 (q; ω).

(9)

The second-order polarization P(2) is obtained from Eq. (5),
while keeping only the first-order term in P L

0 in Eq. (3),

EP
0 (q; ω) = ↔

A(q; ω)E0(q; ω), (10)

which gives

P(2)
G (q; ω) =

∑
q1q2

δq,q1+q2

∫
dω1dω2δ(ω − ω1 − ω2)

× ↔
α̃

(2)
G00(q,q1,q2; ω,ω1,ω2)

↔
A(q1; ω1)

× E0(q1; ω1)
↔
A(q2; ω2)E0(q2; ω2). (11)

Coming back to the expression of the electric displacement
vector D, it appears that it can be expressed as a sum of the
first-order and second-order terms in the total electric field,

D(1)
G (q; ω) = EG(q; ω) + 4π

↔
α̃

(1)
G0(q,q; ω)

↔
A(q; ω)E0(q; ω)

(12)

and

D(2)
G (q; ω) = 4π

∑
q1q2

δq,q1+q2

∫
dω1dω2δ(ω − ω1 − ω2)

+
[

4π
↔
α̃

(1)
G0(q,q; ω)

↔
A(q; ω)

q
|q|

q
|q|

↔
α̃

(2)
000(q,q1,q2; ω,ω1,ω2)

↔
α̃

(2)
G00(q,q1,q2; ω,ω1,ω2)

]

× ↔
A(q1; ω1)

↔
A(q2; ω2)E0(q1; ω1)E0(q2; ω2). (13)

These formulas, general and valid for any periodic system, are the starting points for macroscopic average.
We now consider the case of a supercell, containing N atomic layers, corresponding to a thickness Lz and a vacuum region

of the same thickness, where z is the direction perpendicular to the surface. In order to average over a selected region of the
slab, we express the electric displacement in a mixed space, where the in-plane periodicity is treated in reciprocal space and the
out-of-plane direction is treated in real space.

The definitions of Fourier transforms can be found in Appendix A. Using Def. (A2), we obtain

DG|| (q||,z; ω) = 1

2Lz

∑
qzGz

ei(qz+Gz)zDG(q; ω). (14)
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With the expression of the total electric field, E0(q; ω) = ∫
dz′e−iqzz

′
E0(q||,z′; ω), the electric displacement vector in the

mixed space reads

D(1)
G|| (q||,z; ω) = EG|| (q||,z; ω) + 4π

2Lz

∑
qzGz

ei(qz+Gz)z
↔
α̃

(1)
G0(q,q; ω)

↔
A(q; ω)E0(q; ω)

=
∫

dz′
[

EG|| (q||,z′; ω)δ(z − z′) + 4π

2Lz

∑
qzGz

ei(qz+Gz)z
↔
α̃

(1)
G0(q,q; ω)Gz0

↔
A(q; ω)e−iqzz

′
E0(q||,z′; ω)

]
(15)

and

D(2)
G|| (q||,z; ω) = (4π )

2Lz

∫
dz′dz′′ ∑

q1q2

δq,q1+q2

∫
dω1dω2δ(ω − ω1 − ω2)

∑
qz,Gz

ei(qz+Gz)z

×
[

4π
↔
α̃

(1)
G0(q,q; ω)

↔
A(q; ω)

q
|q|

q
|q|

↔
α̃

(2)
G00(q,q1,q2; ω,ω1,ω2) + ↔

α̃
(2)
G00(q,q1,q2; ω,ω1,ω2)

]

×e−iq1zz
′
e−iq2zz

′′ ↔
A(q1; ω1)

↔
A(q2; ω2)E0(q1||,z

′; ω1)E0(q2||,z
′′; ω2). (16)

III. MACROSCOPIC DIELECTRIC TENSOR
OF CRYSTAL SURFACES

A. Surface average of ε

The in-plane averaged macroscopic dielectric tensor is
defined by D(1)

0 (q||,z; ω) = ∫
dz′ ε↔

m (q||,z,z′; ω)E0(q||,z′; ω).
With the expression of D(1) given in Eq. (15), for G|| = 0, one
gets

↔
εm(q||,z,z′; ω) =

↔
1 δ(z − z′) + 4π

2Lz

∑
qzGz

ei(qz+Gz)z
↔
α̃

(1)
Gz0

× (q,q; ω)
↔
A(q; ω)e−iqzz

′
. (17)

This quantity still contains the microscopic fluctuations
along the z direction [33]. In the following, m will be used
for in-plane macroscopic averaged quantities, while M will
refer to the three-dimensional (3D) macroscopic average.

We define the surface macroscopic quantities as the
macroscopic average over half of the cell. For the surface
macroscopic dielectric tensor, we get

↔
ε S

M (q; ω) = 1

Lz

∫ 0

−Lz

dzdz′ ↔
εm(q||,z,z′; ω)e−iqz(z−z′), (18)

which can be written as

↔
ε S

M (q; ω) = 1

Lz

∫ Lz

−Lz

dzdz′C(z)
↔
εm(q||,z,z′; ω)e−iqz(z−z′),

(19)

where C(z) is a cut function equal to 1 on one half of the
supercell and 0 on the other half, as previously introduced
(see, for instance, Refs. [36,41,45]) and illustrated in Fig. 1.
This shape for C(z) will be justified later in the paper.

This dielectric tensor, called here the surface dielectric
tensor, fully accounts for the surface-induced modification of
the bulk material: it contains the modification of the electronic
structure at the microscopic level, including possible surface
states, and at a macroscopic level, taking into account the
(surface) local-field effects.

Combining Eqs. (17) and (19), we obtain an expression for
the macroscopic surface dielectric tensor,

↔
ε S

M (q) =
↔
1 + 4π

Lz

∑
Gz

C̃(Gz)
↔
α̃

(1)
Gz0(q,q)

↔
A(q)

=
↔
1 + 4π

↔
α̃ (1)S(q)

↔
A(q), (20)

where
↔
α̃ (1)S is defined by the last part of the equation.

Replacing
↔
A by its definition [see Eq. (8)], one directly gets

↔
ε S

M (q) =
↔
1 + 4π

↔
α̃ (1)S(q)

×
[ ↔

1 + 4π
q
|q|

q
|q|

↔
α̃

(1)
00 (q,q)

1 − 4πα̃
(1)LL

00 (q,q)

]
. (21)

FIG. 1. Slab geometry and the C(z) function. The surface is
located at z = 0, and C(z) = 1 covers half of the matter (and half
of the vacuum) to define one single surface.
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This expression is very similar to the Del Sole and Fiorino
expression (see Eq. (25) of Ref. [30]), except that here we
have surface quantities. In Ref. [30], the authors also obtained
expressions for macroscopic surface quantities, but in terms of
inverse integral operators. It comes from the fact that they
describe the surface by a semi-infinite medium, implying
a continuous variable along the z-reciprocal direction. In
the present paper, we chose to describe the surface using a
supercell approach, which allows us to solve matrix equations.

We also remark that not all ingredients in the definition of
↔
ε S

M (q) are modified by the presence of the surface.

B. Optical limit for the surface macroscopic dielectric function

In the following, we focus our discussion on the optical
limit, which corresponds to the case of a perturbation with a
vanishing momentum. The key quantity is the longitudinal-
longitudinal (LL) part of the macroscopic dielectric function
ε

S,LL
M , which can be evaluated in the framework of TDDFT.

From Eq. (21), the LL part of the surface macroscopic
dielectric tensor reads

ε
S,LL
M (q̂; ω) = 1 + lim

q→0

4πα̃(1)S,LL(q,q; ω)

1 − 4πα̃
(1)LL

00 (q,q,ω)
, (22)

where q̂ is the unit vector along q. At this point, in order
to calculate α̃(1)S,LL, we come back to the definition of the

quasipolarizability
↔
α̃ (1) in terms of response functions [44]

↔
α̃ (1)(r,r′; ω) = − 1

ω2

[
χ

(1)
jj (r,r′; ω) −

↔
1 ρ(r)δ(r − r′)

]
, (23)

where χ
(1)
jj is the current-current response function and ρ is

the electronic density of the system. The surface-averaged
quasipolarizability is

↔
α̃ (1)S(q; ω) = 1

Lz

∫
dz1

∫
dz2e

−iqzz1C(z1)

× ↔
α̃00(q||,z1,z2; ω)eiqzz2 . (24)

Defining χ
(1)S
jj (q,q; ω) and ρS in the same way, we get

↔
α̃ (1)S(q; ω) = − 1

ω2

[
χ

(1)S
jj (q,q; ω) −

↔
1 〈ρS〉]. (25)

Inserting Eq. (25) into Eq. (22), we obtain the longitudinal
part of the surface macroscopic dielectric tensor in terms of
response functions,

ε
S,LL
M (q̂; ω) = 1 − lim

q→0

4π

ω2

q
|q|χ

(1)S
jj (q,q; ω) q

|q| − 〈ρS〉
1 + v0(q)χ (1)

00 (q,q; ω)
, (26)

where v0(q) = 4π/q2 is the macroscopic Coulomb potential
and 〈ρS〉 = 〈ρ(r)C(z)〉 = 〈ρ〉

2 . We used the link between
the longitudinal-longitudinal part of the quasipolarizability
and the density-density response function χ (1), as shown in
Ref. [30].

To replace the current-current response function χ
(1)S
jj in

Eq. (26) by the density-density response function χ (1)S , we
use charge conservation in the presence of a cut function,

which can be written as (see Appendix B)

ω2χ (1)S(k,k′; ω) = k · χ
(1)S
jj (k,k′; ω) · k′ − 〈ρS〉δ(k − k′).

(27)
Two restrictions are needed to derive Eq. (27): (i) the

cut function C(z) is a step function, located at the center of
the matter (see Fig. 1) and (ii) the slab has a mirror plane
perpendicular to the z axis. The consequences are that (i) the
slab must be symmetric, with two identical surfaces and (ii)
this formalism cannot be used to perform a layer-by-layer
analysis, except in the independent-particle approximation.

Note that this choice of the cut function is one of the most
used for surface linear [45–47] and second-harmonic genera-
tion [36–40] calculations, with an exception for Refs. [34,35],
where C(z) has been chosen as a smoothly varying function.

We finally get an expression for the LL part of the
surface dielectric tensor depending only on the density-density
response function of the system and its surface average,

ε
S,LL
M (q̂; ω) = 1 − lim

q→0
v0(q)

χ
(1)S
00 (q,q; ω)

1 + v0(q)χ (1)
00 (q,q; ω)

. (28)

This equation is the main result of this section, as the
longitudinal part of the surface dielectric tensor is now
expressed in terms of quantities that depend only on the
electronic density of the system, and can be evaluated in
the framework of TDDFT. To obtain this result, we have
introduced a quantity, χ (1)S , that will be evaluated explicitly in
the next section.

One remarks that if we choose C(z) to be 1 everywhere,
we recover the expression of the LL part of the dielectric
function used for bulk materials [48], showing the consistency
of our approach. We also note here that χ (1)S and χ

(1)S
jj are not

response functions, but correspond to the surface macroscopic
average of the response functions. Nevertheless, for the ease
of denomination, we will retain this name.

C. Calculation of ε
S,LL
M in TDDFT

The evaluation of Eq. (28) requires the calculation of the
two quantities χ (1)S(q,q; ω) and χ

(1)
00 (q,q; ω), in the optical

limit. While the latter can be computed easily in TDDFT [48],
the evaluation of χ (1)S(q,q; ω) is more cumbersome. Equation
(28) can be rewritten as

ε
S,LL
M (q̂; ω) = 1 − lim

q→0
v0(q)

× 1

Lz

∑
Gz

C̃(−Gz)χ
(1)
Gz0(q,q; ω)

1 + v0(q)χ (1)
00 (q,q; ω)

, (29)

where C̃ is the Fourier transform of the cut function C(z).
From now on, we assume the random-phase approxima-

tion (RPA). Within TDDFT, this approximation amounts to
neglecting the exchange correlation in the response, i.e.,
excitonic effects [49,50]. The response function of the fully
interacting system χ (1) is then related to the Kohn-Sham
response function χ

(1)
0 of the system through a Dyson-like

equation [48],

χ
(1)
GG′ = χ

(1)
0,GG′ +

∑
G1

χ
(1)
0,GG1

vG1χ
(1)
G1G′ , (30)
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where vG1 = 4π/|q + G1|2 corresponds to the Fourier trans-
form of the Coulomb potential. For brevity, we omitted the q
and frequency dependence.

It is convenient to introduce χ̄ , the response function to the
total macroscopic classical potential v0, defined by [51]

χ
(1)
GG′ = χ̄

(1)
GG′ + χ̄

(1)
G0v0χ

(1)
0G′ , (31)

which implies that

χ̄
(1)
GG′ = χ

(1)
0,GG′ +

∑
G1

χ
(1)
0,GG1

v̄G1 χ̄
(1)
G1G′ , (32)

where v̄G(q) = vG(q) if G �= 0, and 0 if G = 0.

From Eq. (31), we obtain directly that χ̄
(1)
G0 = χ

(1)
G0

1+v0χ
(1)
00

,

leading to

ε
S,LL
M (q̂; ω) = 1 − lim

q→0
v0(q)χ̄ (1)S

00 (q,q; ω). (33)

The analog of Eq. (33) has been previously derived for the
bulk dielectric function εLL

M (q̂; ω) (see Ref. [51]), but here we
show that it is also possible to use the χ̄ (1) function for the
surface dielectric tensor.

Applying surface macroscopic averaging to Eq. (32), we
obtain the definition of χ̄

(1)S
00 (q,q; ω) through the equation

χ̄
(1)S
00 (q,q; ω) = χ

(1)S
0,00 (q,q; ω) +

∑
G1 �=0

χ
(1)S
0,0G1

× (q,q; ω)vG1 (q)χ̄ (1)
G10(q,q; ω). (34)

The derivation and the expression of χ
(1)S
0 are given in

Appendix C. We solve the Dyson equation for χ̄ (1) [Eq. (32)]
and then use Eq. (34) to get χ̄

(1)S
00 (q,q; ω).

We emphasize that this result allows us to describe how
a surface affects the optical response of a material, with
the convenience and efficiency of a supercell calculation,
assuming that the slab is thick enough to correctly describe
the surface region.

IV. MACROSCOPIC SECOND-ORDER TENSOR
OF CRYSTAL SURFACES

We now turn to the evaluation of the macroscopic surface
second-order response function, giving access to second-
harmonic generation, following the approach used for the
surface dielectric tensor.

A. Surface average of χ (2)

The in-plane averaged macroscopic second-order suscepti-
bility tensor is defined by

D(2)
0 (q||,z; ω)

= 4π

∫
dω1dω2δ(ω − ω1 − ω2)

∫
dz1dz2

×
∑
q1q2

δq,(q1+q2)χ
(2)
m (q||,z,q1||,z1,q2||,z2; ω1,ω2)

× E0(q1||,z1; ω1)E0(q2||,z2; ω2), (35)

and using the expression of D(2) given in Eq. (16), for G|| = 0,
we obtain

χ (2)
m (q||,z,q1||,z1,q2||,z2; ω1,ω2)

= 1

2Lz

∑
qzGz

ei(qz+Gz)z
∑
qz1qz2

δqz,(qz1+qz2)

×
[4π

↔
α̃

(1)
G0(q,q; ω) q

|q|
q
|q|

1 − 4πα̃LL
00 (q,q; ω)

↔
α̃

(2)
000(q,q1,q2; ω1,ω2)

+ ↔
α̃

(2)
Gz00(q,q1,q2; ω1,ω2)

]
e−iqz1z1e−iqz2z2

↔
A

× (q1; ω1)
↔
A(q2; ω2). (36)

The surface macroscopic second-order response function is
defined as

χ
(2)S
M (q,q1,q2; ω1,ω2)

= 1

2L2
z

∫
dzdz1dz2e

−iqzzC(z)

×χ (2)
m (q||,z,q1||,z1,q2||,z2; ω1,ω2)eiqz1z1eiqz2z2 , (37)

where C(z) is the same cut function as the one introduced in
Sec. III. This quantity describes the second-order response of
a single surface of a slab in supercell geometry.

Performing the spatial integration, one finally gets

χ
(2)S
M (q,q1,q2; ω1,ω2)

=
[4π

↔
α̃ (1)S(q; ω) q

|q|
q
|q|

1 − 4πα̃LL
00 (q,q; ω)

↔
α̃

(2)
000(q,q1,q2; ω1,ω2)

+ ↔
α̃ (2)S(q,q1,q2; ω1,ω2)

] ↔
A(q1; ω1)

↔
A(q2; ω2). (38)

This equation is the equivalent of Eq. (21) for the second

order, where both the bulk quasipolarizability (
↔
α̃ (2)) and its

surface counterpart (
↔
α̃ (2)S) contribute.

B. Optical limit for the surface macroscopic
second-order susceptibility

Similarly to the linear case, we now consider the optical limit
and calculate the longitudinal (LLL) part of the macroscopic
second-order susceptibility tensor.

We obtain, from charge conservation in the presence of the
cut function and with the same restrictions as for the linear
response [see Eq. (B5)],

↔
α̃ (2)S,LLL(q,q1,q2; ω1,ω2)

= −i

2|q||q1||q2|χ
(2)S
000 (q,q1,q2; ω1,ω2), (39)

where χ (2) is the density-density-density response function.
The LLL part of the macroscopic-surface second-order
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susceptibility tensor reads

χ
(2)S,LLL
M (q,q1,q2; ω1,ω2)

= −i

2|q||q1||q2|
×[ − v0(q)χ̄ (1)S

00 (q,q; ω)χ (2)
000(q,q1,q2; ω1,ω2)

+χ
(2)S
000 (q,q1,q2; ω1,ω2)

]
εLL
M (q1; ω1)εLL

M (q2; ω2). (40)

It shows that the LLL part of the surface second-order sus-
ceptibility tensor depends only on the density-density-density
response function and its surface average. This equation is
the equivalent of Eq. (28) obtained for the linear case. We
also have to make the link between the second-order surface
quantity χ (2)S and the second-order response function χ (2), as
obtained in TDDFT.

C. Calculation of χ
(2)S,LLL
M in TDDFT

Similarly to the linear case, we define χ̄ (2) as the second-
order response function to the total macroscopic classical
potential and we have shown (see Appendix D) that χ (2) can
be expressed in terms of χ̄ (2) as

χ
(2)
GG′G′′ = χ̄

(1)
G0v0χ

(2)
0G′G′′ +

∑
G1G2

χ̄
(2)
GG1G2

[
δG1,G′ + δG1,0v0χ

(1)
0G′

]

× [
δG2,G′′ + δG2,0v0χ

(1)
0G′′

]
, (41)

and we obtain, from surface macroscopic averaging, that

χ
(2)S
000 = χ̄

(1)
00 v0χ

(2)
000 + χ̄ (2)S

[
1 + v0χ

(1)
00

][
1 + v0χ

(1)
00

]
. (42)

The quantity χ̄ (2)S is given in RPA by (see Appendix D)

χ̄
(2)S
000 =

∑
G1

χ
(1)S
0,0G1

v̄G1 χ̄
(2)
G100

+
∑
G1G2

χ
(2)S
00G1G2

[
δG10 + v̄G1 χ̄G10

][
δG20 + v̄G2 χ̄G20

]
.

(43)

Inserting Eq. (42) into Eq. (40) yields

χ
(2)S,LLL
M (q,q1,q2; ω1,ω2)

= −i

2|q||q1||q2| χ̄
(2)S
000 (q,q1,q2; ω1,ω2). (44)

This equation is the second-order equivalent of Eq. (33),
where we find that the surface macroscopic quantity can
be obtained from the surface response function to the total
macroscopic classical potential. This exhibits the tight relation
between the macroscopic quantities and the response functions
to the total macroscopic classical potential (χ̄). Indeed, it
was already known that the bulk linear optical properties
(εM ) were given by either the response to the total potential
(χ (1)) or by the response to the total macroscopic classical
potential (χ̄ (1)). Here we generalize this result by showing that
the nonlinear optical properties of bulk (χ (2)

M ) and surfaces
(χ (2)S

M ) can also be obtained from the response functions to the
total macroscopic classical potential. We have transformed the
problem of computing χ

(2)S,LLL
M into the problem of computing

χ̄
(2)S
000 , given by

χ̄
(2)S
000 (q,q1,q2; ω)

=
∑
G1

χ
(1)S
0,0G1

(q; ω)v̄G1 (q)χ̄ (2)
G100(q,q1,q2; ω)

+
∑
G1G2

χ
(2)S
0,0G1G2

(q,q1,q2; ω)
[
δG10 + v̄G1 (q1)χ̄ (1)

G10(q1; ω)
]

× [
δG20 + v̄G2 (q2)χ̄ (1)

G20(q2; ω)
]
. (45)

The derivation of χ
(2)S
0 is similar to χ

(1)S
0 (see Appendix C).

We solve the Dyson equation for χ̄ (2) [Eq. (D9)] and then use
Eq. (45) to get χ̄ (2)S .

Note that if we put C(z) = 1 in Eq. (38), we recover the
result for the bulk obtained in Ref. [17], while Eq. (45) gives,
in that case, an alternative expression for χ

(2)
M .

V. NUMERICAL RESULTS

We have applied this formalism to study the optical
properties of silicon surfaces. We have used the recently
developed selected-G method in order to correctly take into
account the LF effect in the supercell calculation [24]. The
cut function C(z) has allowed us to extract the single-surface
response for SHG calculations. Before presenting SHG results,
we have addressed the question of the independence of the
two surfaces in a slab geometry. For this purpose, we have
considered the linear case. Results do not rely on C(z), since
we have dealt with asymmetric supercells.

The electronic structure for the ground state was determined
within DFT in the local density approximation (LDA), using
the plane-wave ABINIT code [52]. We used norm-conserving
Troullier-Martins pseudopotentials [53] for Si and H atoms.
The linear response calculations are performed using the DP

code [54], whereas the SHG calculations where carried out
using the 2LIGHT code [55].

A. Independence of the two surfaces in a slab geometry

In the independent-particle approximation, the two surfaces
of the slab have been shown to be independent for linear
optics [45] and second-harmonic generation [41]. When local-
field effects are included, due to the long-range Coulomb
interaction, the two surfaces of the slab of matter may
potentially couple. In that case, it could be difficult to interpret
the result of a slab calculation in terms of the semi-infinite
system that we want to model.

To check the independence of the two surfaces, we consider
three different slabs (see Fig. 2): two symmetric slabs,
composed of (a) clean surfaces and (b) dihydride surfaces, and
(c) an asymmetric slab with a clean surface and a dihydride
surface.

Results for the linear spectra are presented in Fig. 3. These
spectra have been computed for two different sizes of the
slab: 12 atomic layers, i.e., 16.29 Å (top panels of Fig. 3),
and 16 atomic layers, i.e., 21.72 Å (bottom panels of Fig. 3).
These calculations include the local-field effects and have been
performed using the selected-G method. The local fields do
not modify the shape of the spectra. They only lead to a small
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(a) (b) (c)

FIG. 2. Ending of the three slabs used: (a) symmetric Clean-
Clean, (b) symmetric DiH-DiH, and (c) asymmetric Clean-DiH.

reduction of the amplitude for the in-plane components. For
the z component, due to the finite thickness of the slab, the
reduction is a bit larger and a small blueshift is also visible
[24]. In all cases, we used 256 off-symmetry in-plane k points.
For 12 atomic layers, spectra were obtained using 250 bands
and 250 G vectors, and for 16 atomic layers, we used 300
bands and 300 G vectors. For both cases, the height of matter
and vacuum are equal and we have checked that this amount of
vacuum is enough to prevent the coupling between slabs. As
stated before, the calculations presented here have been done
without the C(z) cut function. We have checked that for the
symmetric slabs, the results are the same when using C(z).

The spectra denoted “Average” correspond to the half sum
of the two symmetric slab spectra. The difference between
these spectra and the one obtained for the asymmetric slab
(“Clean-DiH”) are found to be small for the 12 atomic layers.
When increasing the thickness of the slab, the differences
almost vanish. The spectra calculated without local field (NLF)
yield the same quantitative differences (not shown here) and
we conclude that these remaining differences originate from
the finite size of the slabs and not from the local fields.

This shows finally that the surfaces in a slab are also
independent in the presence of LF, as soon as the slab is thick
enough.

B. Components of the surface second-order susceptibility tensor

We calculated the SHG spectra, including the effects of
local fields, of the dihydride Si(001)1 × 1:2H [6,15,37,56–61],
monohydride Si(001)2 × 1:H [6,60], and clean Si(001)2 × 1
[6,37,59] surfaces.

The calculations are performed for slabs of 24 atomic
layers. The convergence parameters are summarized in Table I.
The spectra have been obtained using a broadening η =
100 meV.

For the Si(001)1 × 1:2H surface, three independent com-
ponents of the second-order susceptibility tensor are nonzero.
The corresponding spectra, with and without local-field
effects, are reported in Fig. 4. These three components
are also shown for the two other surfaces: monohydride
Si(001)2 × 1:H (Fig. 5) and clean Si(001)2 × 1 (Fig. 6). For

FIG. 3. Comparison between the real part (left panel) and imaginary part (right panel) of εzz computed for two sizes of the slabs (12 layers:
top; 16 layers: bottom): Clean-DiH (black solid curve), Clean-Clean (blue dotted curve), DiH-DiH (green dot-dashed curve), and the average
of the two symmetric slabs (Average: red dashed curve). Local-field effects are included.
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TABLE I. Convergence parameters used for the different Si(001)
surfaces: nkpt stands for the number of in-plane off-symmetry k
points; npw and nband are the number of plane waves and bands,
respectively; nmat is the number of G vectors used to converge the
local field. Note that due to the symmetry, twice fewer atoms are
needed for the 2H.

Si(001)1 × 1:2H Si(001)2 × 1:H Si(001)2 × 1

nkpt 288 256 256
npw 3999 3989 3989
nmat 73 93 89
nband 140 220 220

these two last cases, other nonvanishing components can be
found, but are not shown here.

For the yyz component, the effect of local fields is a slight
reduction of the amplitude of the peak (see top panels of
Figs. 4–6). For the zzz and zyy components, the effect is much
stronger and results in a blueshift. Indeed, the main structure
of the zzz component, located at 1.9 eV, appears now at

FIG. 4. Surface second-harmonic generation spectra of the dihy-
dride Si(001)1 × 1:2H surface, for the yyz, zzz, and zyy components
of the χ (2)S tensor. No scissor correction is included.

FIG. 5. Surface second-harmonic generation spectra of the mono-
hydride Si(001)2 × 1:H surface, for the yyz, zzz, and zyy components
of the χ (2)S tensor. No scissor correction is included.

3.8 eV for the two hydrogenated surfaces, and at 2.6 eV for
the clean surface (center panels of Figs. 4–6). The same kind
of behavior is seen for the zyy component (bottom panels of
Figs. 4–6).

A deeper analysis of these effects has been performed on
the Si(001)1 × 1:2H. For this purpose, we recall that SHG
spectra can present two series of peaks, arising from the
different kinds of resonances at ω and 2ω, as shown in Ref.
[17]. Screening and many-body effects can be accounted for
using a scissor operator [62], which affects differently the
peaks coming from the ω or 2ω resonances and discussed in
Ref. [41]. To investigate the nature of the shift observed in
Figs. 4–6, we have compared the spectra with and without a
scissor operator. The scissor correction has been chosen to be

 = 0.6 eV [63].

The spectra are shown in Fig. 7 for the zzz component.
The effect of introducing the scissor correction on the NLF
spectrum (see the two black curves) is a shift of 
/2 = 0.3 eV,
indicating their 2ω origin. On the other hand, the shift observed
for the LFE peaks is 
 = 0.6 eV, indicating their 1ω origin
(see red curves with crosses). We conclude that the effect of
local fields on the zzz component is not a blueshift but a
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FIG. 6. Surface second-harmonic generation spectra of the clean
Si(001)2 × 1 surface, for the yyz, zzz, and zyy components of the
χ (2)S tensor. No scissor correction is included.

1.9 eV

2.2 eV

2.9 eV
3.5 eV

3.8 eV

4.4 eV

FIG. 7. Comparison of the effect of scissor correction on the
surface second-harmonic generation of the Si(001)1 × 1:2H, with
(red curves with crosses) and without (black curves without symbols)
local fields included. The scissor correction is chosen to be 
 =
0.6 eV. Arrows indicate the positions of main structures.

redistribution of the spectral weight between the 2ω and the
1ω transitions. The same conclusion can be drawn for the other
two surfaces. A difference is, however, observed between the
clean and the hydrogenated surfaces: the structures are broader
for the clean surface, at the origin of the less visible effect.

In many experimental situations, the probed region lies
between 1 and 3 eV (see, for instance, Refs. [6,60,64]). Our
calculation, including local fields, shows that the spectrum is
actually located at higher energy. This is particularly true for
the two hydrogenated surfaces (Figs. 4 and 5) and could be at
the origin of the experimentally observed “strong quenching”
of the spectra for surfaces covered by hydrogen in these energy
ranges.

Local fields have different effects, depending on the kind
of component studied. If the component corresponds to
an emitted polarization propagating perpendicularly to the
surface plane (zzz, zxx, and zyy), the spectral weight is
redistributed to higher energies by changing the weight from
2ω transitions to 1ω transitions. On the contrary, if the
polarization is propagating in the plane of the surface (xxz

and yyz), the local fields reduce the spectral weight of the
main structures, but their positions are not altered. This result
is clearly shown in Figs. 4–6 for the three Si(001) surfaces.

In conclusion, the LFs are found to significantly affect
the surface second-harmonic generation, and are therefore
required to obtain a quantitative description of the surface
second-harmonic generation.

C. Generalized reflection coefficients

The surface susceptibility components enter in the second-
harmonic reflection coefficients or generalized reflection
coefficients R. They are defined as the ratio of the reflected
second-harmonic intensity to the square of the fundamental
intensity. They depend on the input and output polarizations,
and on the incidence and the azimuthal angles.

The dihydride surface possesses two nonzero reflection
coefficients, given by

Rpp(θ,ω) = 2ω2 tan2 θ

c3ε0

∣∣∣∣ t
p
mv(2ω)tpvm(ω)2

√
ε(2ω)ε(ω)

qv
z (2ω)

qm
z (2ω)

∣∣∣∣
2∣∣∣∣ sin2 θχ (2)S

zzz

+ c2

ω2

[
qm

z (ω)2χ
(2)S
z‖‖ −qm

z (2ω)qm
z (ω)χ (2)S

‖‖z
]∣∣∣∣

2

, (46)

Rsp(θ,ω) = 2ω2 tan2 θ

c3ε0

∣∣∣∣ t
p
mv(2ω)t svm(ω)2

√
ε(2ω)

∣∣∣∣
2∣∣∣∣ qv

z (2ω)

qm
z (2ω)

∣∣∣∣
2∣∣χ (2)S

z‖‖
∣∣2

.

(47)

θ is the angle of incidence and ε is the bulk dielectric
function. The subscript ‖ refers to in-plane directions x or y.
t imv and t ivm are the Fresnel transition coefficients, respectively,
describing the matter-to-vacuum and the vacuum-to-matter
transmissions for the i polarization (i = p or s); see
Ref. [65] for more details.

Figure 8 presents the reflection coefficient Rpp, correspond-
ing to a p-polarized incoming light and a p-polarized outgoing
photon. The difference between the calculations with and
without local fields is quite small. This can be understood
by the fact that due to the different weights in Eq. (46),
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FIG. 8. Rpp spectra vs the two-photon energy for an incidence
angle θ = 45◦ for the dihydride Si(001)1 × 1:2H surface. The scissor
correction is 
 = 0.6 eV. Black solid line: without local-field effects.
Red dashed line: with local-field effects.

the Rpp spectrum is dominated by the component yyz (as
already noticed in Ref. [36]), which is only slightly affected
by local-field effects (see Fig. 4).

Figure 9 presents the reflection coefficient Rsp, corre-
sponding to an s-polarized incoming light and a p-polarized
outgoing photon. Note that the spectrum including local-field
(LF) effects is scaled by a factor of 50 to be compared to the one
without local fields (NLF). By opposition to the Rpp reflection
coefficient, the local fields completely quench the response in
this energy range. Indeed, the Rsp coefficient depends only
on |χ (2)

zyy | [see Eq. (47)], which is strongly affected by the
local-field effects as seen in Fig. 4.

These results illustrate how local fields can also influence
the reflection coefficients due to the mixing of the different
second-order components.

D. Comparison with experimental results

We further study second-harmonic generation from the
Si(001)1 × 1:2H surface by comparing our calculations with
the experimental results of Ref. [56], in which the spectra
for χ (2)S

xxz and χ (2)S
zxx are presented (see Fig. 3, where tensor

elements ∂31 and ∂15 correspond, respectively, to the zxx and

FIG. 9. Same as in Fig. 8, but for the s-in/p-out reflection
coefficient Rsp .

xxz components). These results are not given in absolute units
but the SHG spectra are normalized with respect to the reflected
SHG signal from a quartz reference. However, recently,
the absolute amplitude of some components of the surface
second-order susceptibility tensor χ (2)S has been measured
[57]. In particular, it was found that χ (2)S

xxz = 3.5 ± 0.7 × 10−19

m2/V at the second-harmonic energy 2ω = 3.1 eV, for the
native-oxide covered Si(001) surface. This energy is out of the
resonance due to the E1 critical point of silicon and is found
to be quite insensitive to the surface termination, as shown
in Ref. [56]. Using the above value as a reference, we have
converted the data of Ref. [56] into absolute units. Due to the
uncertainty on the experimental absolute value of χ (2)S

xxz (3.5 ±
0.7 × 10−19 m2/V), there is at least 20% of uncertainty on the
experimental spectra. Nevertheless, this allows us to compare
our calculations with experimental data in absolute units.

The comparison between calculations and experimental
data is reported in Fig. 10. Due to the small energy range
spanned by the experiment, we have decreased the broadening
in our calculation (25 meV). It requires that we increase the
number of k points to 578 for convergence. The value for the
scissor operator is 
 = 0.6 eV [66].

The calculation without local fields (left panel of
Fig. 10) does not reproduce, even qualitatively, the
experimental data, as we found that |χ (2)

zxx | > |χ (2)
xxz| whereas

the opposite is observed experimentally; see also Ref. [40].
The local-field effects (center panel of Fig. 10) significantly
improves the agreement between theory and experiment.
Indeed, the relative weight of the two components is now
found to be consistent with the experimental data. Moreover,
we obtain a good agreement for the absolute intensity,
showing the importance of including local-field effects to
quantitatively reproduce the experiments.

Concerning the energy position of the peaks, there is still a
discrepancy of about 0.3 eV (in the two-photon energy scale).
The experimental data presented here have been measured at
room temperature. It is known that the temperature has a strong
influence on the peak position of the clean and the monohy-
dride surfaces, and that lowering the temperature induces a
blueshift of the E1 resonance [6,67]. Comparing the SHG
spectra of Refs. [6,60,67], we have evaluated that the decrease
of the temperature from 300 to 80 K induces a blueshift of
about 0.1 eV (in two-photon energy scale), explaining part of
the discrepancy. Nevertheless, the effect of the temperature
does not entirely explain the difference in the peak positions
found here. We would like to stress that including excitonic
effects and a GW correction, instead of a scissor operator,
would give a much better agreement, as seen in Refs. [63,68].
However, it is beyond the scope of this calculation.

VI. CONCLUSIONS

In this work, we present the detailed derivation of an ab
initio formalism for the first- and second-order macroscopic
optical responses of crystal surfaces, including the local-field
effects. We have used a cut function, previously introduced for
the independent-particle approximation [41,45,46] to extract
the response of a single surface (in a supercell, the two surfaces
interfere destructively for the second-order susceptibility), and
we have derived an expression of this surface susceptibility to
account for local fields.
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FIG. 10. Comparison between the theoretical calculation of |χ (2)S
xxz | and |χ (2)S

zxx | without local-field effects (left panel), with local-field effects
(middle panel), and the experimental data from Ref. [56] (right panel). Here we used η = 0.025 eV and a scissor correction of 
 = 0.6 eV.

We first established a relation between the macroscopic
surface-averaged quantities and the microscopic components
of the linear and second-order response functions. In the
case of the long-wavelength limit, every quantity can be
expressed in terms of the longitudinal response functions,
allowing for the use of time-dependent density functional
theory. We have shown that they are also related to the response
function to the total macroscopic classical potential. Here,
this link, which was already known for linear bulk properties,
is generalized to nonlinear bulk properties and for surfaces.
All of the derivations are done in the framework of the
random-phase approximation, but excitonic effects, when they
can be accounted for by a scalar exchange-correlation kernel,
can be included as a postprocessing [50].

We have applied this formalism to study three silicon
surfaces: the dihydride Si(001)1 × 1:2H, the monohydride
Si(001)2 × 1:H, and the clean Si(001)2 × 1. We have checked
that the two surfaces of a slab are independent, with and
without local-field effects. We have evidenced that local fields
are particularly important when the emitted electric field is
perpendicular to the surface and appears as a blueshift in
frequency. Using a scissor operator, we have demonstrated
that this apparent shift was indeed a redistribution of the
spectral weight between the 2ω and the 1ω transitions.
Finally, we have compared our results with experimental data,
showing that the inclusion of local-field effects is crucial for
a good quantitative agreement.
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APPENDIX A: FOURIER TRANSFORM
IN THE MIXED SPACE

We define the mixed space as a slab-adapted space where
the in-plane periodicity is treated in the reciprocal space and
the aperiodic z direction is treated in real space.

The direct and inverse Fourier transforms in this mixed
space are defined as

f (q + G) =
∫

dze−i(qz+Gz)zf (q|| + G||,z), (A1)

f (q|| + G||,z) = 1

2Lz

BZ∑
qz

∑
Gz

ei(qz+Gz)zf (q + G), (A2)

where q is a vector in the first Brillouin zone, G is a reciprocal
lattice vector, q = q|| + qzẑ, G = G|| + Gzẑ, and 2Lz is the
size of the cell along the z axis.

For two-variable response functions, one has

χG||1,G||2 (q||,z1,z2) = 1

2Lz

BZ∑
qz

∑
Gz1,Gz2

ei(qz+Gz1)z1

×χG1,G2 (q)e−i(qz+Gz2)z2 , (A3)

χG1,G2 (q) = 1

2Lz

∫
dz1dz2e

−i(qz+Gz1)z1

×χG||1,G||2 (q||,z1,z2)ei(qz+Gz2)z2 . (A4)

Similar Fourier transform can be written between the mixed
space and the real space.

APPENDIX B: CHARGE CONSERVATION
AND CUT FUNCTION

Define ρS(r; ω) by C(z)ρ(r; ω) and jSind(r; ω) by
C(z)jind(r; ω), where ρ is the density, jind is the induced current,
and C(z) is the cut function used to select the response from a
part of the system.

Using vector calculus relations, one can write that

∇ · [
jSind(r; ω)

] = C(z)∇ · [jind(r; ω)] + gradC(z) · jind(r; ω).

(B1)
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Inserting the continuity relation yields

∇ · [
jSind(r; ω)

] = −iωρS(r; ω) + gradC(z) · jind(r; ω). (B2)

Here we choose to assume the following:
Approximation 1. The system is invariant under the inver-

sion z ↔ −z.
Approximation 2. The function C(z) is a step function.
Using Approximation 2, one finds that

gradC(z) · jind(r; ω) = êz · jind(r; ω)δ(z)

= êz · jind(x,y,z = 0; ω).

Due to Approximation 1, the plane z = 0 is a mirror plane of
the system, imposing that jind is contained in the plane [x,y].

This results in

k · jSind(k; ω) = ωρS
ind(k; ω). (B3)

Physically, this result shows that the charge is conserved in
each half of the system separately.

Replacing the current and the density by their expressions
in terms of response functions [44], we obtain, at first order
and second order,

ω2χ (1)S(k,k′; ω) = kχ
(1)S
jj (k,k′; ω)k′ − 〈ρS〉δk,k′k2, (B4)

ω3χ (2)S(k,k′,k′′; ω) = kχ
(2)S
jjj (k,k′,k′′; ω)k′k′′. (B5)

APPENDIX C: EXPRESSIONS OF χ
(1)S
0 AND χ

(2)S
0

The elements χ
(1)S
0 (q,q + G′; ω) are obtained from the independent-particle response function by

χ
(1)S
0 (q,q + G′; ω) = 1

Lz

∑
Gz

C̃(−Gz)
[
χ

(1)
0 (q; ω)

]
GzG′ , (C1)

where the supercell contains N atomic layers of thickness Lz. Inserting the expression of the Kohn-Sham response function [48]
into Eq. (C1), we obtain

χ
(1)S
0 (q,q + G′; ω) = 2

NkVcell

∑
n,n′

BZ∑
k

(fn,k − fn′,k+q)
ρ̃S

n,n′,k(q)〈n′,k + q|ei(q+G′)r|n,k〉
(En,k − En′,k+q + ω + iη)

, (C2)

where fn,k is the Fermi occupation number of the Bloch state |n,k〉 and

ρ̃S
n,n′,k(q) = 1

Lz

∑
Gz

C̃(−Gz)〈n,k|e−i(q+Gz)r|n′,k + q〉.

This quantity has to be evaluated in the optical limit, q → 0.
The expression of ρ̃S

n,n′,k(q) is also given by

ρ̃S
n,n′,k(q) =

∫
d3rφ∗

n,k(r)C(z)e−iqrφn,k+q(r). (C3)

In the optical limit, q → 0 and therefore, from k · p perturbation theory [69], we get

ρ̃S
n,n′,k(q → 0) = 〈n,k|C(z)|n′,k〉 +

∑
m/∈Dn′

〈n,k|C(z)|m,k〉〈m,k|qv|n′,k〉
En′,k − Em,k

. (C4)

Using the interband part [70] re of the position operator r, defined by

〈n,k|re|m,k′〉 = (1 − δnm)δ(k − k′)ξnm,

with ξnm = 〈n,k|r|m,k〉 for m /∈ Dn, where Dn are the n-degenerate states, we get

ρ̃S
n,n′,k(q → 0) = 〈n,k|C(z) − iC(z)qre|n′,k〉. (C5)

For n′ /∈ Dn, we have

i〈n,k|[H,re]|n′,k′〉 = 〈n,k|v|n′,k′〉. (C6)

From this result, we can compute the last term of Eq. (C5) for n′ /∈ Dn,

−i (En,k − En′,k)〈n,k|C(z)re|n′,k〉 = 〈n,k|C(z)v + vC(z)

2
|n′,k〉. (C7)

Here we recognize the expression of the modified velocity [41], defined by V = C(z)v+vC(z)
2 , which has been previously used to

compute surface SHG at the level of the independent-particle approximation.
The final expression of ρ̃S

n,n′,k(q → 0) is

ρ̃S
n,n′,k(q → 0) = 〈n,k|C(z)|n′,k〉 + 〈n,k|q · V|n′,k〉

En,k − En′,k
. (C8)
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For G′ = 0, and in the limit q → 0, χ
(1)S
0 reads

χ
(1)S
0 (q,q; ω) = 2

NkVcell

∑
n,n′

BZ∑
k

fnn′

[ 〈n,k|C(z)|n′,k〉〈n′,k|iq · r|n,k〉〈n′,k|q · v|n′,k〉
(En,k − En′,k + ω + iη)2

+〈n,k|C(z)|n′,k〉〈n′,k|iq · r|n,k〉
(En,k − En′,k + ω + iη)

+ 〈n,k|q · V|n′,k〉〈n′,k|iq · r|n,k〉
(En,k − En′,k)(En,k − En′,k + ω + iη)

]
+ O(q3), (C9)

whereas for G′ �= 0, we obtain

χ
(1)S
0 (q,q + G′; ω) = 2

NkVcell

∑
n,n′

BZ∑
k

fnn′

[ 〈n,k|C(z)|n′,k〉〈n′,k|eiG′r′ |n,k〉〈n,k|q · v|n,k〉
(En,k − En′,k + ω + iη)2

+ 〈n,k|q · V|n′,k〉〈n′,k|eiG′r′ |n,k〉
(En,k − En′,k)(En,k − En′,k + ω + iη)

+ 〈n,k|C(z)|n′,k〉〈n′,k|eiG′r′ |n,k〉
(En,k − En′,k + ω + iη)

]
+ O(q2). (C10)

We first note that Eq. (C9) and Eq. (C10) contain, respectively, a term at first order in q and at zero order in q, which
are not present in the corresponding bulk expressions. Nevertheless, from the comparison between the left-hand side and the
right-hand side of Eq. (B4), we directly obtain that at lowest order in q, χ (1)S

0 (q,q; ω) is proportional to q2, and χ
(1)S
0 (q,q + G; ω)

is proportional to q. This proves that the terms at first order in q and at zero order in q, respectively, in Eq. (C9) and Eq. (C10)
vanish.

Finally, one can easily show that the first terms in Eq. (C9) and in Eq. (C10) are equal to zero.
To summarize, we obtain, at the lowest order in q, that

χ
(1)S
0 (q,q; ω) = 2

NkVcell

∑
n,n′

BZ∑
k

fnn′
〈n,k|q · V|n′,k〉〈n′,k|iq · r|n,k〉

(En,k − En′,k)(En,k − En′,k+q + ω + iη)
, (C11)

χ
(1)S
0 (q,q + G′; ω) = 2

NkVcell

∑
n,n′

BZ∑
k

fnn′
〈n,k|q · V|n′,k〉〈n′,k|eiG′r′ |n,k〉

(En,k − Em,k)(En,k − En′,k + ω + iη)
. (C12)

These expressions are similar to the usual expressions for matrix elements of χ
(1)S
0 ; except the replacement 〈n,k|q · v|n′,k〉 →

〈n,k|q · V|n′,k〉, which allows us to calculate the optical properties of a single surface.
At second order, the quantity χ

(2)S
0 (q,q1 + G1,q2 + G2; ω,ω) is defined by

χ
(2)S
0 (q,q1 + G1,q2 + G2; ω,ω) = 1

Lz

∑
Gz

C̃(−Gz)χ
(2)
0,GzG1G2

(q,q1,q2; ω,ω), (C13)

where χ
(2)
0 is the Kohn-Sham second-order density response function [17].

Similarly to the first-order case, we obtained that the resulting expressions are similar to the expressions for bulk materials,
where the only changes are due to the replacement of the matrix elements of q · v by matrix elements of q · V . The matrix
elements associated to q1 and q2 are identical to those of the “usual” bulk formula. Note that an equivalent expression for the
head of the matrix, χ

(2)S
0,000, can be found in Ref. [41].

APPENDIX D: RESPONSE FUNCTION TO THE TOTAL
MACROSCOPIC CLASSICAL POTENTIAL

AT SECOND ORDER

Let us define the total macroscopic classical potential [51]
as

V̂mac[ρ] = V̂ext + v0ρ, (D1)

where v0 is the long-range part of the Coulomb potential and
v0ρ stands for

∫
d3r2v0(r1 − r2)ρ(r2). In the following, for the

ease of notation, space and time integration will be implicitly
assumed.

The density of the system reads as

ρ = ρ(0) + ρ
(1)
ind + ρ

(2)
ind, (D2)

where ρ(0) is the unperturbed density. Inserting this expression
in Eq. (D1), yields

V̂mac[ρ] = V̂ (0)
mac + V̂ (1)

mac + V̂ (2)
mac, (D3)

where

V̂ (0)
mac = v0ρ

(0), (D4)

V̂ (1)
mac = V̂

(1)
ext + v0ρ

(1)
ind, (D5)

V̂ (2)
mac = V̂

(2)
ext + v0ρ

(2)
ind. (D6)

We define the response functions χ̄ (1) and χ̄ (2) to that total
macroscopic classical potential,

ρ
(2)
ind = χ̄ (2)V̂ (1)

macV̂
(1)

mac + χ̄ (1)V̂ (2)
mac. (D7)
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From this definition and the definition of the Kohn-Sham
and the fully interacting response functions (see Ref. [17]), we
obtain the two equations

χ (2) = χ̄ (2)[1 + v0χ
(1)][1 + v0χ

(1)] + χ̄ (1)v0χ
(2), (D8)

χ̄ (2) = χ
(2)
0 [1 + v̄χ̄ (1)][1 + v̄χ̄ (1)] + χ

(1)
0 v̄χ̄ (2), (D9)

where v̄ is the Coulomb potential without its long-range part.
For obtaining the second relation, we use

V̂
(1)

tot = V̂ (1)
mac + v̄ρ

(1)
ind, (D10)

V̂
(2)

tot = V̂ (2)
mac + v̄ρ

(2)
ind. (D11)
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