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All-coupling polaron optical response: Analytic approaches
beyond the adiabatic approximation
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In the present work, the problem of an all-coupling analytic description for the optical conductivity of the
Fröhlich polaron is treated, with the goal being to bridge the gap in the validity range that exists between two
complementary methods: on the one hand, the memory-function formalism and, on the other hand, the strong-
coupling expansion based on the Franck-Condon picture for the polaron response. At intermediate coupling, both
methods were found to fail as they do not reproduce diagrammatic quantum Monte Carlo results. To resolve this,
we modify the memory-function formalism with respect to the Feynman-Hellwarth-Iddings-Platzman approach
in order to take into account a nonquadratic interaction in a model system for the polaron. The strong-coupling
expansion is extended beyond the adiabatic approximation by including in the treatment nonadiabatic transitions
between excited polaron states. The polaron optical conductivity that we obtain at T = 0 by combining the two
extended methods agrees well, both qualitatively and quantitatively, with the diagrammatic quantum Monte Carlo
results in the whole available range of the electron-phonon coupling strength.
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I. INTRODUCTION

The polaron, first proposed as a physical concept by Landau
[1] in the context of electrons in polar crystals, has become a
generic notion describing a particle interacting with a quan-
tized bosonic field. The polaron problem has consequently
been used for a long time as a testing ground for various
analytic and numerical methods with applications in quantum
statistical physics and quantum field theory. In condensed-
matter physics, the polaron effect coming from the electron-
phonon interaction is a necessary ingredient in the description
of the dc mobility and the optical response in polar crystals (see
Ref. [2]). Polaronic effects are manifest in many interesting
systems, such as magnetic polarons [3], polarons in semicon-
ducting polymers [4], and complex oxides [5,6], which are de-
scribed in terms of the small-polaron theory [7]. Large-polaron
theory has recently been stimulated by the possibility to study
polaronic effects using highly tunable quantum gases: the
physics of an impurity immersed in an atomic Bose-Einstein
condensate [8] can be modeled on the basis of a Fröhlich
Hamiltonian. Another recent development in large-polaron
physics stems from the experimental advances in the determi-
nation of the band structure of highly polar oxides [9], relevant
for superconductivity, where the optical response of complex
oxides explicitly shows the large-polaron features [10,11].

Diagrammatic quantum Monte Carlo (DQMC) methods
have been applied in recent years to numerically calculate
the ground-state energy and the optical conductivity of the
Fröhlich polaron [12,13]. Advances in computational tech-
niques such as DQMC have inspired renewed study of the
key problem in polaron theory—an analytic description of
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the polaron response. For the small-polaron optical conduc-
tivity, the all-coupling analytic theory has been successfully
developed [14], showing good agreement with the numeric
results of the DQMC. However, the optical response problem
for a large polaron is not yet completely solved analytically.
It should be noted that here we refer to “analytic” methods,
which in fact can require massive computations (e.g., the
Feynman variational method and the methods used in the
present work), in order to distinguish them from the purely
numerical methods, such as DQMC.

Asymptotically exact analytic solutions for the polaron
optical conductivity have been obtained in the limits of
weak [15–17] and strong coupling [18,19]. A first proposal
for an all-coupling approximation for the polaron optical
conductivity has been formulated in Ref. [20] [referred
to below as Devreese–De Sitter–Goovaerts (DSG)], further
developing the Feynman-Hellwarth-Iddings-Platzman (FHIP)
theory [21] and using the Feynman variational approach [22].
However, in Ref. [20], it was already demonstrated that FHIP
is inconsistent at large α with the Heisenberg uncertainty
relations. This inconsistency is revealed in Ref. [20] through
extremely narrow peaks of the optical conductivity at large
α. Nevertheless, the peak positions for the polaron optical
conductivity as obtained in Ref. [20] have been confirmed
with high accuracy [19] by the DQMC calculation [13]. This
inspired further attempts to develop analytical methods for
the polaron optical response, especially at intermediate and
strong coupling. Among these analytic methods, an extension
of the DSG method has been proposed in Ref. [18], introducing
an extended memory-function formalism with a relaxation
time determined from the additional sum rule for the polaron
optical conductivity. Alternatively, for the strong-coupling
regime, the strong-coupling expansion (SCE) based on the
Franck-Condon scheme for multiphonon optical conductivity
has been developed in Refs. [18,19].

In the limit of small α, the optical conductivity derived
within the memory-function formalism (both DSG and ex-
tended methods [18,20]) analytically tends to the asymptot-
ically exact perturbation results of Refs. [15–17]. As seen
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from the comparison of the memory-function polaron optical
conductivity with numerically accurate DQMC data [13,18],
they agree well with each other for α � 4 (for DSG) and for
α � 6 (the extended memory-function formalism). As written
above, the conclusion that the memory-function formalism
based on the Feynman polaron model failed at large α due to
inconsistency with the Heisenberg uncertainty relations was
already formulated in Ref. [20].

The alternative method, i.e., the strong-coupling expansion
of Refs. [18,19], is based on the adiabatic approximation
for electron-phonon states which is asymptotically exact in
the strong-coupling limit. In summary, the memory-function
formalism is well substantiated for small and intermediate
values of α, and the strong-coupling expansion adequately
describes the opposite limit of large α. Consequently, the
extended memory-function formalism and the strong-coupling
expansion are complementary to each other. The quantitative
comparison of these two methods with each other and
with DQMC performed in Ref. [18] shows that they only
qualitatively agree with each other and with the DQMC data
in the range of intermediate-coupling strengths (6 � α � 10).
On the one hand, the memory-function formalism explicitly
disagrees with DQMC at large α. On the other hand, the strong-
coupling expansion only qualitatively reproduces the shape of
the optical conductivity and fails at intermediate α [18,19].

The main aim of the current paper is to extend both the
memory-function formalism and the strong-coupling expan-
sion in order to bridge the gap that remains between their
regions of validity, such that the combination of both methods
allows one to find analytical results in agreement with the
numeric DQMC results at all coupling. In the present work, as
in Ref. [19], the T = 0 case is considered. We have added the
following elements in the theory, which lead to an overlapping
of the areas of applicability for the two aforesaid analytic
methods. For weak- and intermediate-coupling strengths,
an extension of the Feynman variational principle and the
memory-function method for a polaron with a nonquadratic
trial action has been developed. As distinct from the memory-
function formalism of Ref. [18], we do not use additional sum
rules and relaxation times, and we perform the calculation
ab initio. For intermediate- and strong-coupling strengths, the
strong-coupling expansion of Ref. [19] is extended beyond the
adiabatic approximation in the following way.

In the strong-coupling approximation for polaron optical
conductivity [18,19], the matrix elements for the electron-
phonon interaction between electron states with different
energies are neglected. This is consistent with the adiabatic
approximation, as described below in detail. The similar
approach is well recognized in the theory of multiphonon
transitions in deep centers [23,24]. In the present work,
transitions between different excited polaron states due to
the electron-phonon interaction are also taken into account.
Because these transitions are beyond the adiabatic approx-
imation, they are referred to as “nonadiabatic transitions.”
The incorporation of nonadiabatic transitions in the treatment
leads to a substantial expansion of the range of validity for the
strong-coupling expansion towards smaller α and to an overall
improvement of its agreement with DQMC.

The paper is organized as follows. In Sec. II, we describe
an all-coupling analytic description for the polaron optical

conductivity within the extended memory-function formalism
with a nonparabolic trial action and the nonadiabatic strong-
coupling expansion. Section III contains the discussion of the
obtained optical conductivity spectra and their comparison
with results of other methods and with the DQMC data. The
discussion is followed by conclusions, given in Sec. IV.

II. ANALYTIC METHODS FOR THE POLARON
OPTICAL CONDUCTIVITY

A. Memory-function formalism with a nonparabolic trial action

To generalize the memory-function formalism, we start
by extending Feynman’s variational approach to translation-
invariant non-Gaussian trial actions. The electron-phonon
system is described by the Fröhlich Hamiltonian, using the
Feynman units with � = 1, the longitudinal-optical (LO)
phonon frequency ωLO = 1, and the band mass mb = 1,

Ĥ = p̂2

2
+

∑
q

(
â+

q âq + 1

2

)

+ 1√
V

∑
q

√
2
√

2πα

q
(âq + â+

−q)eiq·r̂, (1)

where r̂ is the position operator of the electron and p̂ is its
momentum operator; â

†
q and âq are, respectively, the creation

and annihilation operators for LO phonons of wave vector
q. The electron-phonon coupling strength is described by the
Fröhlich coupling constant α. As this Hamiltonian is quadratic
in the phonon degrees of freedom, they can be integrated
out analytically in the path-integral approach. The remaining
electron degree of freedom is described via an action functional
where the effects of electron-phonon interaction are contained
in an influence phase �[re(τ )] [22]:

S[re(τ )] = 1

2

∫ β

0
ṙ2
e(τ )dτ − �[re(τ )]. (2)

Here, re(τ ) is the path of the electron, expressed in imaginary
time so as to obtain the Euclidean action, and β = 1/(kBT )
with T the temperature. The influence phase corresponding to
(1) depends on the difference in electron position at different
times, resulting in a retarded action functional. In the path-
integral formalism, thermodynamic potentials (such as the free
energy) are calculated via the partition sum, which in turn is
written as a sum over all possible paths re(τ ) of the electron
that start and end in the same point, weighted by the exponent
of the action.

Feynman’s original variational method considers a
quadratic trial action Squad[re(τ ),rf (τ )] where the phonon
degrees of freedom are replaced a a fictitious particle with
coordinate rf (τ ), interacting with the electron through a
harmonic potential. Feynman restricted his trial action to a
quadratic action, since only for this case can one calculate the
influence phase analytically.

Using the Feynman variational approach with the Gaussian
trial action, excellent results are obtained for the polaron
ground-state energy, free energy, and the effective mass.
Moreover, this approach has been effectively used to derive the
DSG all-coupling theory for the polaron optical conductivity
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(see Ref. [20]). However, as mentioned in Sec. I, the DSG and
DQMC results contradict each other in the range of large α.
The most probable source of this contradiction is the Gaussian
form of the trial action used in the DSG theory. Indeed, the
model system contains only a single frequency, leading to
unphysically sharp peaks in the spectrum, subject to thermal
broadening only [25,26]. Extensions to the formalism [18]
have tried to overcome this problem by including an ad hoc
broadening of the energy level, chosen in such as way as to
comply with the sum rules. Remarkable success in the problem
of the polaron optical response has been achieved in a recent
work [27], where the all-coupling polaron optical conductivity
is calculated using the general quadratic trial action instead of
the Feynman model with a single fictitious particle. The re-
sulting optical conductivity is in good agreement with DQMC
results [13] in the weak- and intermediate-coupling regimes
and is qualitatively in line with DQMC even at extremely
strong coupling, resolving the issue of the linewidth in the
FHIP approach. However, there is a quantitative difference
between the results of [27] and DQMC in the strong-coupling
regime, which is overcome in the present work.

In the literature, there are attempts to reformulate the
Feynman variational approach, avoiding retarded trial actions.
For example, Cataudella et al. [28] introduce an extended
action which contains the coordinates of the electron, the
fictitious particle, and the phonons. This action, however, is
not exactly equivalent to the action of the electron-phonon
system, and hence the results obtained in [28] need verification.
In Ref. [29], we introduced an extended action/Hamiltonian
for an electron-phonon system and reformulated the Feynman
variational method in the Hamiltonian representation. This
method leads to the same result as the Feynman variational
approach. However, the method of Ref. [29] reproduces the
strong-coupling limit for the polaron energy only when using
a Gaussian trial action.

In the current work, we propose to extend the Feynman
variational approach to trial systems with nonparabolic in-
teractions between an electron and a fictitious particle. The
difficulty with using non-Gaussian trial actions is that the path
integrals with the influence phase can only be computed ana-
lytically for quadratic action functionals. However, quantum-
statistical expectation values (such as the one in the Jensen-
Feynman inequality) can be calculated for nonquadratic model
systems by other means, in particular if the spectrum of eigen-
values and eigenfunctions can be found. So, what we propose
is to focus on keeping the influence phase for a quadratic model
system in the expressions, while at the same time allowing for
non-Gaussian potentials for the expectation values.

The present variational method uses the following identical
transformation as a starting point. Let us equivalently rewrite
the partition function of the true electron-phonon system,

Z =
∫

Dree
−S[re(τ )], (3)

as the extended path integral,

Z = 1

Zf

∫
Dre exp{�[re(τ )] − �quad[re(τ )]}

∫
Drf

× exp

{
−

∫ β

0

[
mṙ2

e

2
+ mf ṙ2

f

2
+ Uquad(rf − re)

]
dτ

}
, (4)

with the partition function Zf for a fictitious particle, and with
the mass mf in a harmonic potential Uquad(rf ) = m2

f ω2r2
f /2.

Indeed, performing the path integration for the fictitious
particle cancels �quad[re(τ )] as well as the factor Zf , and
leaves the kinetic-energy contribution, restoring the action
function of the true electron-phonon system. Hence, (3) and (4)
are equivalent. The usefulness of the above transformation lies
in the fact that (4) can be interpreted as an expectation value
with respect to the model system. This identity transformation
is being used here in the polaron problem.

In order to demonstrate the effectiveness of the transforma-
tion (4), consider a nonquadratic variational trial action,

Svar[re(τ ),rf (τ )] =
∫ β

0

[
mṙ2

e

2
+ mf ṙ2

f

2
+ U (rf − re)

]
dτ,

(5)

with a general potential U . We can rewrite (4) to the partition
function,

Z = Zvar

Zf

〈
exp

{
�[re(τ )] − �quad[re(τ )]

−
∫ β

0
[Uquad(rf − re) − U (rf − re)]dτ

}〉
var

, (6)

where Zvar is the partition function for a trial system with
the action Svar. With Zvar/Zf = e−βFvar and using the Jensen-
Feynman variational inequality, we arrive at

F � Fvar + 1

β
〈�quad[re(τ )] − �[re(τ )]〉var

+ 〈Uquad(rf − re) − U (rf − re)〉var. (7)

When U = Uquad, this restores the original Jensen-Feynman
variational principle for the polaron [22].

Introducing a nonquadratic potential leads to two changes.
First, there is an additional term corresponding to the expec-
tation value of the difference between the chosen variational
potential and the quadratic one. Second, the expectation values
are to be calculated with respect to the chosen variational
potential U rather than with respect to the quadratic potential.
Thus the variational inequality (7) is a nontrivial extension of
the Feynman-Jensen inequality.

It is important for the calculations that Svar is translation
invariant but nonretarded action, so that all expressions in
the variational functional (7) have the same form in both
representations—path-integral and standard quantum mechan-
ics. Apart from the parameters appearing in the trial action Svar,
the inequality (7) still contains variational parameters mf and
ω, inherited from the “auxiliary” quadratic action Squad and
appearing in �quad and Uquad(rf − re).

A physically reasonable choice of the trial interaction
potential U (ρ) with ρ = |rf − r| is no longer restricted to
a single frequency oscillator. According to Refs. [23,30], the
self-consistent potential for an electron induced by the lattice
polarization is parabolic near the bottom and Coulomb-like at
large distances. Therefore, for the calculation of the optical
conductivity, we choose a trial potential in the piecewise form,
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TABLE I. Parameters used for the calculation of the polaron
optical conductivity within the memory-function formalism.

α μ ω v r0

1 0.1035 3.139 3.882 2.499
3 0.3080 5.570 7.860 1.018
5.25 0.5255 5.189 8.885 0.733
6.5 0.6209 4.938 9.483 0.653

stitching together a parabolic and a Coulomb-like potential,

U (ρ) =
{−U0 + 1

2μv2ρ2, ρ � r0

−α0
ρ

, ρ > r0,
(8)

with the following variational parameters: the reduced mass
μ = mmf /(m + mf ), the bottom energy U0, the confinement
frequency v, and the parameter α0 characterizing the Coulomb-
like potential. The number of independent variational param-
eters is reduced because we impose the boundary conditions
for U (ρ) to be continuous and smooth at ρ = r0. This leads to
the following relations:

U0 = 3
2μv2r2

0 , α0 = μv2r3
0 . (9)

Thus the independent parameters for the present model are
μ,ω,v,r0.

In Table I, we represent optimal variational parameters for
several values of α corresponding to the spectra of the optical
conductivity calculated below within the memory-function
formalism. The frequency v is the analog of the first variational
frequency parameter v of the Feynman model, and ω has
some similarity with the second one, w. Figure 1 shows the
trial potential corresponding to these parameters. As can be
seen from the figure, the potential becomes gradually deeper
when α increases. Also the radius r0 separating the parabolic
and Coulomb-like fits for U (r) decreases with an increasing
coupling strength.

Because of using an auxiliary parabolic potential, the
extended Jensen-Feynman inequality (7), despite having more
variational parameters, does not lead in general to a lower

FIG. 1. Trial potential U (ρ) calculated for parameters of the
polaron model listed in Table I.

polaron free energy than the original Feynman result, except
in the extremely strong-coupling regime where the present
variational functional analytically tends (for T = 0) to the
exact strong-coupling limit obtained by Miyake [30]. However,
its advantage with respect to the original Feynman treatment
is in calculating the optical conductivity. The spectrum of
internal states of the model system with the chosen potential
necessarily consists of an infinite number of nonequidistant
energy levels with the energies En < 0 (counted from the
potential energy at the infinity distance from the polaron) and
a continuum of energies E > 0. Accounting for transitions
between all of these levels, one must expect a significant
broadening of the peak absorption.

The polaron optical conductivity is calculated following the
scheme of Ref. [31], where the memory-function expression
for the polaron optical conductivity is derived using the
Mori-Zwanzig projection operator formalism [32]. We repeat
the derivation up to formula (17) of Ref. [31], which is still
formally exact. In the subsequent approximation, we extend
the approach of Ref. [31], considering the density-density
correlation function 〈eiq·r(t)e−iq·r(0)〉var, where averaging is
performed with the nonquadratic trial action/Hamiltonian.
Note that these derivations in Ref. [31] and in the present
work do not utilize the weak-coupling condition. As a result,
the polaron optical conductivity takes the form

σ (
) = e2n0

mb

i


 − χ (
)/

, (10)

where n0 = N/V is the carrier density. The memory function
in the nonquadratic setting is given by

χ (
) = 2

3�mb

∫
dq

(2π )3
q2|Vq|2

∫ ∞

0
dte−δt (ei
t − 1)

× Im

{
cos [ω0(t + i�β/2)]

sinh (β�ω0/2)
〈eiq·r(t)e−iq·r(0)〉var

}
,

(11)

where δ → +0, r(t) and r(0) are electron coordinate vectors in
the Heisenberg representation with the Hamiltonian of the trial
system, ω0 is the LO phonon frequency, and the correlation
function 〈eiq·r(t)e−iq·r(0)〉var is calculated with the quantum
states of the trial Hamiltonian corresponding to Svar. In the
quadratic setting, χ (
)/
 exactly reproduces the function

(
) of Ref. [31]. Further on, we consider the case T = 0 and
apply the formula following from (11),

χ (
) = 1

3π2�mb

lim
δ→0+

∫ ∞

0
dq|Vq|2q4

∫ ∞

0
dte−δt (ei
t − 1)

× Im(e−iω0t 〈eiq·r(t)e−iq·r(0)〉var). (12)

Rather than computing the correlation function
〈eiq·r(t)e−iq·r(0)〉var as a path integral, we choose to evaluate it
in the equivalent Hamiltonian formalism. In this Hamiltonian
framework, (12) is written as a sum over the eigenstates of the
trial Hamiltonian for the electron and the fictitious particle
interacting through the potential U ,

Ĥvar = p̂2

2
+ p̂2

f

2mf

+ U (r̂f − r̂). (13)
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The quantum numbers for the Hamiltonian Ĥvar are the
momentum k, the quanta l,m related to angular momentum,
and a nodal quantum number n for the relative-motion wave
function. The quantum numbers l,n determine the energy
εl,n associated with the relative motion between electron and
fictitious particle (including both the discrete and continuous
parts of the energy spectrum). The eigenfunctions |ψk;l,n,m〉
of the trial Hamiltonian (13) are factorized as a product of a
plane wave for the center-of-mass motion (with center-of-mass
coordinate R) and a wave function for the relative motion
|ϕl,n,m〉 (with the coordinate vector ρ of the relative motion),

|ψk;l,n,m〉 = 1√
V

eik·R|ϕl,n,m〉, (14)

|ϕl,n,m〉 =Rl,n(ρ)Yl,m(θ,ϕ). (15)

The density-density correlation function at T = 0 is therefore
the average with the ground state of the trial system, which
can be expanded in the basis of eigenfunctions |ψk;l,n,m〉:

〈eiq·r(t)e−iq·r(0)〉var

= 〈ψ0;0,0,0|e i
�

Ĥvart eiq·re− i
�

Ĥvart e−iq·r|ψ0;0,0,0〉
=

∑
k;l,n,m

ei t
�

(ε0,0−εl,n− �
2k2

2M
)|〈ψ0;0,0,0|eiq·r|ψk;l,n,m〉|2, (16)

where M = 1 + mf is the total mass of the trial system.
Further on, the Feynman units are used, where � = 1, ω0 = 1,
and the band mass mb = 1. In these units, the squared modulus
|Vq|2 is

|Vq|2 = 2
√

2πα

q2
.

When substituting (16) into the memory function, we arrive at
the result

χ (
) = 2
√

2α

3π

∫ ∞

0
dqq2

∑
k;l,n,m

|〈ψ0;0,0,0|eiq·r|ψk;l,n,m〉|2

×
∫ ∞

0
dte−δt (ei
t − 1) Im(e−it(εl,n−ε0,0+ k2

2M
+1)).

(17)

Using analytic summations as described in the Appendix and
the integration over time, the memory function takes the form

χ (
) =
√

2α

3π

∫ ∞

0
dqq2

∑
l,n

(2l + 1)S2
q (0,0|l|l,n)

×
(

1


− 
q,l,n + iδ
− 1


+ 
q,l,n + iδ
+ 2


q,l,n

)
,

δ → +0, (18)

with the transition frequency for transitions between the
ground and excited states of the trial system accompanied
by an emission of a phonon,


q,l,n ≡ q2

2M
+ εl,n − ε0,0 + 1, (19)

and the matrix element with radial wave functions for the trial
system Sq(l,n|l′′|l′,n′) determined by (A6).

The limiting transition δ → +0 in (18) is performed analyt-
ically using the relation limδ→+0 (x + iδ)−1 = P/x − iπδ(x),
where P/x is the Cauchy principal value and δ(x) is the
delta function. This explicitly separates the real and imaginary
parts of the memory function and eliminates the integration
over q for the imaginary part. The obtained expressions are
then used for the numerical calculation of the polaron optical
conductivity within the extended memory-function formalism.

B. Nonadiabatic strong-coupling expansion

Next, we describe the strong-coupling approach and its
extension beyond the adiabatic approximation, denoted below
as the nonadiabatic SCE. Here, the goal is to take nonadiabatic
transitions between different excited levels of a polaron into
account in the formalism. The notations in this section are the
same as in Ref. [19]. The polaron optical conductivity in the
strong-coupling regime is represented by the Kubo formula,

Re σ (
) = 


2

∫ ∞

−∞
ei
tfzz(t)dt, (20)

with the dipole-dipole correlation function

fzz(t) =
∑
n,l,m,

∑
n′,l′,m′,

∑
n′′,l′′,m′′

〈ψn,l,m|ẑ|ψn′′,l′′,m′′ 〉〈ψn′,l′,m′ |ẑ|ψ0〉

× 〈0ph|〈ψ0|eitĤ ′ |ψn,l,m〉〈ψn′′,l′′,m′′ |e−itĤ ′

× |ψn′,l′,m′ 〉|0ph〉, (21)

where |ψn,l,m〉 are the polaron states as obtained within
the strong-coupling ansatz in Ref. [19]. The transformed
Hamiltonian Ĥ ′ of the electron-phonon system after the
strong-coupling unitary transformation [19] takes the form

Ĥ ′ = Ĥ ′
0 + Ŵ , (22)

with the terms

Ĥ ′
0 = p̂2

2
+

∑
q

|fq|2 + Va(r̂) +
∑

q

(
b̂+

q b̂q + 1

2

)
, (23)

Ŵ =
∑

q

(ŵqb̂q + ŵ∗
qb̂

+
q ). (24)

Here, wq are the amplitudes of the renormalized electron-
phonon interaction,

ŵq =
√

2
√

2πα

q
√

V
(eiq·r̂ − ρq,0), (25)

where ρq,0 is the expectation value of the operator eiq·r̂ with
the trial electron wave function |ψ0〉,

ρq,0 = 〈ψ0|eiq·r̂|ψ0〉, (26)

and Va(r̂) is the self-consistent potential energy for the
electron,

Va(r̂) = −
∑

q

4
√

2πα

q2V
ρ−q,0e

iq·r̂. (27)

The eigenstates of the Hamiltonian Ĥ ′
0 are the products of

the electron wave functions and those of the phonon vacuum
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FIG. 2. Self-consistent potential Va(r) determined by (27) and
energy levels for a polaron in the strong-coupling regime at α = 15.

|ψn,l,m〉|0ph〉. The dipole-dipole correlation function fzz(t)
given by (21) is simplified within the adiabatic approximation
for the ground state and using the selection rules for the dipole
transition matrix elements and the symmetry properties of the
polaron Hamiltonian, as in Ref. [19]. The correlation function,
using the interaction representation, takes the form

fzz(t) =
∑
n′,n

〈ψ0|ẑ|ψn,1,0〉〈ψn′,1,0|ẑ|ψ0〉e−i
n,0t

× 〈ψn,1,0|〈0ph|T exp

[
−i

∫ t

0
dsŴ (s)

]
|0ph〉|ψn′,1,0〉,

(28)

with the Franck-Condon (FC) transition frequency


n,0 ≡ εn,1 − ε1,0,

and the interaction Hamiltonian in the interaction representa-
tion,

Ŵ (s) = eiĤ ′sŴ e−iĤ ′s .

As found in early works on the strong-coupling Fröhlich
polaron (see, for review, Refs. [23,33]), the energy differences
between different excited FC states for a strong-coupling
polaron are much smaller than the energy difference between
the ground and lowest excited FC state. For illustration, the
self-consistent potential for the electron in the strong-coupling
approximation Va(r) given by (27) and energy levels for an
electron in this potential have been plotted for a polaron in
the strong-coupling regime in Fig. 2. In the strong-coupling
limit, the scaling invariance appears for energies, which
are proportional to α2, and for the length scale, which
decreases in the strong-coupling regime as α−1. Therefore, for
sufficiently strong couplings, the energy diagrams plotted in
units (E/α2,αr) depend only very slightly on α, tending to an

α-independent picture when α → ∞. Thus we restricted the
strong-coupling energy diagrams to one chosen α, e.g., here
α = 15. As can be seen from the figure, the difference ε1,1 −
ε1,0 is indeed large with respect to differences between excited
levels. Therefore, here we keep the adiabatic approximation for
the ground state and, consequently, for the transition between
the ground and excited states. On the contrary, the adiabatic
approximation for the transitions between different excited
states is not applied in (28), as distinct from the calculation in
Ref. [19].

The matrix elements for the dipole transitions from
the ground state to excited states other than |ψ1,1,0〉 (i.e.,
〈ψ0|z|ψn,1,0〉 with n 
= 1) have small relative oscillator
strengths with respect to 〈ψ0|z|ψ1,1,0〉 (of the order of ∼10−2).
Therefore further on we consider the next-to-leading-order
nonadiabatic corrections for the contribution to (28) with
n = n′ = 1 and the adiabatic expression for the contribution
with other (n,n′). In other words, for n = n′ = 1, the treatment
will account for nonadiabatic effects, while for other n,n′ 
= 1,
we apply the adiabatic approximation to (28). Consequently,
the terms with n′ 
= n, which are beyond this adiabatic
approximation, are neglected in the next expression,

fzz(t) =
∑

n

|〈ψ0|ẑ|ψn,1,0〉|2e−i
n,0t

× 〈ψn,1,0|〈0ph|T exp

[
−i

∫ t

0
dsŴ (s)

]
|0ph〉|ψn,1,0〉,

(29)

where T is the time-ordering symbol. The exact averaging
over the phonon variables is performed by the disentangling
of the evolution operator (in analogy with [34]). As a result,
we obtain the formula

fzz(t) =
∑

n

|〈ψ0|z|ψn,1,0〉|2e−i
n,0t 〈ψn,1,0|Te exp(�̂)|ψn,1,0〉,

(30)

with the “influence phase” (assuming � = 1 and ω0 = 1)

�̂ = −
∫ t

0
ds

∫ s

0
ds ′e−i(s−s ′)

∑
q

ŵq(s)ŵ+
q (s ′), (31)

and Te the time-ordering symbol with respect to the electron
degrees of freedom. The correlation function (30) is the basis
expression for further treatment.

The next approximation is the restriction to the leading-
order semi-invariant expansion:

〈ψn,1,0|Te exp(�̂)|ψn,1,0〉 ≈ exp〈ψn,1,0|Te(�̂)|ψn,1,0〉. (32)

As shown in Ref. [19], this approximation accounts for the
static Jahn-Teller effect, and it works well because the dynamic
Jahn-Teller effect appears to be very small. The influence phase
is invariant under spatial rotations so that

〈ψn,1,0|Te(�̂)|ψn,1,0〉 = 〈ψn,1,1|Te(�̂)|ψn,1,1〉
= 〈ψn,1,−1|Te(�̂)|ψn,1,−1〉.
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Hence the correlation function (30) can be simplified to

fzz(t) =
∑

n

|〈ψ0|ẑ|ψn,1,0〉|2 exp

(
−i
n,0t − 1

3

∑
q

∑
n′,l′,m′,m

|〈ψn,1,m|ŵq|ψn′,l′,m′ 〉|2 1 − iωn′,l′;n,1t − e−iωn′ ,l′ ;n,1t

ω2
n′,l′;n,1

)
, (33)

with the notation

ωn′,l′;n,1 ≡ 1 + εn′,l′ − εn,1. (34)

In our previous treatments of the strong-coupling polaron
optical conductivity, we neglected the matrix elements for ŵq
between the electron energy levels with different energies that
correspond to the adiabatic approximation.

As described above, the correlation function (28) goes
beyond this approximation, taking into account the transitions
between different excited states but still assuming that the
adiabatic approximation holds for the transitions between
the ground and excited states. The physical picture beyond
this approximation consists in the fact that the ground
state is far below other states. Therefore, to be consistent
with the above reasoning, we can keep in (33) the matrix

elements 〈ψn,1,m|ŵq|ψn′,l′,m′ 〉 only with the excited states,
neglecting those matrix elements which contain the ground
state. To summarize, here we keep the adiabatic approximation
for the ground state and, consequently, for the transition
between the ground and excited states. On the contrary, the
adiabatic approximation for the transitions between different
excited states is not assumed in (28) and (33), as distinct from
the calculation in Ref. [19].

Introducing parameters related to the extension of the
Huang-Rhys factor used in Ref. [19],

Sn′,l;n,1 ≡ 1

3ω2
n′,l;n,1

∑
q

∑
m′,m

|〈ψn,1,m|ŵq|ψn′,l,m′ 〉|2, (35)

the correlation function is rewritten as follows:

fzz(t) =
∑

n

|〈ψ0|z|ψn,1,0〉|2 exp

[
−i
n,0t −

∑
n′,l

Sn′,l;n,1
(
1 − iωn′,l;n,1t − e−iωn′ ,l;n,1t

)]
. (36)

The states |ψn′,l,m′ 〉 can be subdivided into two groups: (1) the states |ψ1,1,m′ 〉 with the energy level ε1,1, and (2) the higher-energy
states with (n′,l) 
= (1,1). The first group of states was already taken into account in our previous treatments and in Ref. [19].
Taking into account the second group of states provides the step beyond the adiabatic approximation—this is the focus of the
present treatment. We denote the parameters corresponding to the adiabatic approximation by

Sn ≡ Sn,1;n,1 ≡ 1

3

∑
q

∑
m′,m

|〈ψn,1,m|ŵq|ψn,1,m′ 〉|2. (37)

Correspondingly, the correlation function (36) is rewritten as

fzz(t) =
∑

n

|〈ψ0|z|ψn,1,0〉|2 exp

⎡
⎣−i
n,0t − Sn(1 − it − e−it ) −

∑
(n′,l)
=(n,1)

Sn′,l;n,1(1 − iωn′,l;n,1t − e−iωn′ ,l;n,1t )

⎤
⎦. (38)

When performing the Taylor expansion of this correlation function in powers of Snand Sn′,l;n,1 and substituting it into (20), the
spectrum of the optical conductivity will give us a set of δ-like peaks, similar to formula (2) of Ref. [18], which is a Poissonian
distribution. For sufficiently large coupling strengths, it is relevant to consider an envelope of this distribution, which is obtained
in the following way. In the strong-coupling regime, the phonon frequency is small with respect to the Franck-Condon frequency

1,0, which increases as 
1,0 ∝ α2 at large α. Therefore, at a strong coupling, the range of convergence for the integral over time
in (20) is of the order of t ∝ 1/
1,0 � 1. Consequently, at large α, we can expand the factor (1 − it − e−it ) in powers of t up
to the second order,

1 − it − e−it = 1
2 t2 + O(t3). (39)

In the particular case when nonadiabatic terms are not taken into account, the expansion (39) provides a Gaussian envelope of
the optical conductivity spectrum obtained in [18,19]. The other factor (1 − iωn′,l;n,1t − e−iωn′ ,l;n,1t ) should not be expanded in
the same way because the frequencies ωn′,l;n,1 (n′,l) 
= (1,1) also increase in the strong-coupling limit as α2. Therefore, we keep
the nonadiabatic contribution as is, without expansion. As a result, in the strong-coupling regime, we arrive at the correlation
function,

fzz(t) =
∑

n

|〈ψ0|z|ψn,1,0〉|2 exp

⎛
⎝−δSn − i
̃n,0t − 1

2
Snt

2 +
∑

(n′,l) 
=(n,1)

Sn′,l;n,1e
−iωn′ ,l;n,1t

⎞
⎠, (40)
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with the parameters

δSn ≡
∑

(n′,l) 
=(1,1)

Sn′,l;n,1, (41)

δ
n ≡
∑

(n′,l)
=(1,1)

Sn′,l;n,1ωn′,l;n,1, (42)


̃n,0 ≡ 
n,0 − δ
n. (43)

The parameter δSn plays the role of the Debye-Waller factor and ensure the fulfillment of the f -sum rule for the optical
conductivity. The parameter δ
n is the shift of the Franck-Condon frequency to a lower value due to phonon-assisted transitions
to higher-energy states. The exponent can be expanded, yielding a description in terms of multiphonon processes:

exp

⎛
⎝ ∑

(n′,l)
=(n,1)

Sn′,l;n,1e
−iωn′ ,l;n,1t

⎞
⎠ =

∑
{pn′ ,l�0}

⎛
⎝ ∏

(n′,l) 
=(n,1)

S
pn′ ,l;n,1

n′,l;n,1

pn′,l;n,1!

⎞
⎠e−i

∑
n′,l pn′ ,l;n,1ωn′,l;n,1t , (44)

where the sum
∑

{pn′,l} is performed over all combinations {pn′,l � 0}.
With the expansion (44), the polaron optical conductivity takes the form

Re σ (
) = 

∑

n

|〈ψ0|z|ψn,1,0〉|2e−δSn

√
π

2Sn

∑
{pn′,l;n,1�0}

⎛
⎝ ∏

(n′,l) 
=(n,1)

S
pn′ ,l;n,1

n′,l;n,1

pn′,l;n,1!

⎞
⎠ exp

[
−

(

̃n,0 + ∑

n′,l pn′,l;n,1ωn′,l;n,1 − 

)2

2Sn

]
.

(45)

In formula (45), the term where all pn′,l;n,1 = 0 corresponds
to the adiabatic approximation and exactly reproduces the
result of Ref. [19]. The other terms represent the nonadiabatic
contributions to Re σ (
) and are correction terms to the
previously found results.

III. RESULTS AND DISCUSSIONS

The polaron optical conductivity derived in the above sec-
tion is in line with the physical understanding of the underlying
processes for the polaron optical response, achieved in early
works [20,35] and summarized in Ref. [36]. It is based on the
concept of the polaron excitations of three types:

(i) relaxed excited states (RES) [35] for which the lattice
polarization is adapted to the electronic distribution;

(ii) Franck-Condon states (FC) where the lattice polariza-
tion is “frozen,” adapted to the polaron ground state; and

(iii) scattering states characterized by the presence of real
phonons along with the polaron.

These polaron excitations are schematically shown in Fig. 3.
The polaron RES can be formed when the electron-phonon
coupling is strong enough, for α � 4.5. At weak coupling,
the polaron optical response at zero temperature is due to
transitions from the polaron ground state to scattering states.
In other words, the optical absorption spectrum of a weak-
coupling polaron is determined by the absorption of radiation
energy, which is reemitted in the form of LO phonons. At
stronger couplings, the concept of the polaron relaxed excited
states introduced in Ref. [35] becomes of key importance. In
the range of sufficiently large α when the polaron RES are
formed, the absorption of light by a polaron occurs through
transitions from the ground state to RES, which can be
accompanied by the emission of different numbers n � 0
of free phonons. These transitions contribute to the shape
of a multiphonon optical absorption spectrum. At very large

coupling, lattice relaxation processes become too slow and the
Franck-Condon states determine the optical response.

We analyze polaron optical conductivity spectra both with
the memory-function formalism and with the strong-coupling
expansion, and compare these to the DQMC numerical data
[13]. Within the framework of formalisms based on the
memory function (MF), we compare the following theories:

(a) The original DSG method of Ref. [20], where the
expectation value in (17) is calculated with respect to a
Gaussian trial action. This will be denoted by MF-1 in the
figures.

FIG. 3. Structure of the energy spectrum of a polaron at strong
coupling, according to Refs. [35–37].
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(b) The extended MF formalism of [18], where an ad
hoc broadening with a strength determined from sum rules
is included in (10). This will be denoted by MF-2.

(c) The current nonquadratic MF formalism, based on the
extension of the Jensen-Feynman inequality introduced in this
paper, denoted by MF-new.

Among the strong-coupling expansions (SCE), we distin-
guish the following:

(1) The strong-coupling result in the adiabatic approxima-
tion, as obtained in Ref. [18]. This will be denoted here by
SCE-1.

(2) The adiabatic approximation of Ref. [19], which uses
more accurate trial polaron states. This will be denoted by
SCE-2.

(3) The current nonadiabatic strong-coupling expansion,
denoted by SCE-new.

The subsequent figures show the results for increasing
α. In Fig. 4, the optical conductivity is shown for small
coupling, α = 1, and for α = 3,α = 5.25, which correspond
to the dynamic regime where the RES start to play a role.
In this regime, analytic solutions are provided by the various
memory-function formalisms listed above, and we compare
them to DQMC numeric data [13]. At weak coupling α = 1
[Fig. 4(a)], all of the approaches based on the memory function
give results in agreement with DQMC. For α = 3 [Fig. 4(b)],
the current method gives a better fit to the DQMC result than
the other two methods. For a stronger coupling α = 5.25
[Fig. 4(c)], the MF-2 approach substantially improves the
original result MF-1, but the optical conductivity spectrum
calculated within the nonquadratic MF-new formalism lies
closer to the DQMC data than either of the other two.

Figure 5 demonstrates the behavior of the polaron optical
conductivity spectra in the intermediate-coupling regime, for
α = 6.5 and α = 7. In this regime, the existing memory-
function approaches (MF-1, MF-2) as well as the existing
strong-coupling expansions (SCE-1, SCE-2) do not provide
satisfactory results. The memory-function approach presented
here and the strong-coupling expansion presented here are in
much better agreement with the DQMC data.

This range of coupling parameters is where one would want
to cross over from using a memory-function-based approach
to a strong-coupling expansion. Whereas the existing methods
do not allow one to bridge this gap at intermediate coupling,
the extensions that we have proposed here are suited to
implement such a crossover. The present memory-function
approach with the nonparabolic trial action leads to a relatively
small extension of the range of α where the polaron optical
conductivity compares well with the DQMC data, namely
from α ≈ 4.5 to α ≈ 6.5. For α � 6.5, the memory-function
approach with the nonparabolic trial action provides a better
agreement with DQMC than all other known approximations.
Remarkably, the optical conductivity spectra as given by the
nonquadratic MF formalism and the nonadiabatic SCE are
both in better agreement with the Monte Carlo data than
any of the preceding analytical methods. For α = 6.5, the
polaron optical conductivity calculated within nonquadratic
MF formalism and the nonadiabatic SCE lie rather close to
each other. We can conclude, therefore, that the ranges of
validity of those two approximations overlap, despite the fact
that these approximations are based on different assumptions.
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FIG. 4. Polaron optical conductivity calculated for (a) α = 1,
(b) α = 3, and (c) α = 5.25 within the present nonquadratic MF
formalism (denoted in the figure as MF-new), compared with
the polaron optical conductivity calculated within the extended
memory-function formalism (MF-2) of Ref. [18], the results of the
memory-function approach using the Feynman parabolic trial action
[20] (MF-1), and the diagrammatic quantum Monte Carlo (DQMC)
[13,18].

The maximum of the optical conductivity spectrum pro-
vided by the nonquadratic MF formalism for α = 6.5 is
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FIG. 5. Polaron optical conductivity calculated for (a) α = 6.5
and (b) α = 7 using different analytic approaches: the nonquadratic
MF formalism (MF-new), the extended memory-function formalism
of Ref. [18] (MF-2), the memory-function approach with the Feynman
parabolic trial action [20] (MF-1), the nonadiabatic strong-coupling
expansion (SCE-new), and the adiabatic strong-coupling expansions
of Refs. [18,19] (SCE-1 and SCE-2). The results are compared to
DQMC data of Refs. [13,18].

positioned at slightly higher frequency than that for the
maximum of the optical conductivity obtained in the strong-
coupling approximation with nonadiabatic corrections. They
lie remarkably close to two features of the DQMC optical
conductivity spectrum: the higher-frequency peak, which is the
maximum of the spectrum, and the lower-frequency shoulder.
The similar comparative behavior of the memory-function
and strong-coupling results was noticed in Ref. [18], where
it was suggested that these two features in the DQMC spectra
can correspond physically to the dynamic (RES) and the
Franck-Condon contributions. The present results are in line
with that physical picture.

In Fig. 5(b), the arrows indicate the FC transition frequency
for the transition to the first excited FC state 
1,0 ≡ 
FC

and the RES transition frequency 
RES for a strong coupling
polaron, as calculated in Ref. [35]. We can see that both
the shape and the position of the maximum of the optical
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FIG. 6. Polaron optical conductivity calculated for (a) α = 8,
(b) α = 8.5, and (c) α = 9 within several analytic strong-coupling
approaches and compared to the DQMC data of Refs. [13,18]. The
notations are the same as in Fig. 5.

conductivity band obtained within the adiabatic approximation
in Refs. [18,19] are rather far from those for the DQMC
data. Taking into account nonadiabatic transitions drastically
improves the agreement of the strong-coupling approximation
with DQMC, even for α = 7, which, strictly speaking, is
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FIG. 7. Polaron optical conductivity in the extremely strong-
coupling regime, for (a) α = 13 and (b) α = 15. The notations are
the same as in Fig. 5.

not yet the strong-coupling regime. The value α = 7 can
be rather estimated as an intermediate coupling. However,
even at this intermediate-coupling strength, the results of the
present approach lie much closer to the DQMC data than
those obtained within all other aforesaid analytic methods.
Also a substantial improvement of the agreement between the
strong-coupling expansion and DQMC is clearly expressed
in Fig. 6, where the polaron optical conductivity spectra are
shown for the strong-coupling regime for α = 8 to α = 9. For
strong couplings, the nonadiabatic SCE accurately reproduces
both the peak position and the overall shape of the DQMC
spectra. Finally, we see that the results of the nonadiabatic
SCE remain accurate also in the extremely strong-coupling
regime, as shown in Fig. 7.

IV. CONCLUSIONS

In the present work, we have modified two basic analytic
methods for the polaron optical conductivity in order to extend
their ranges of applicability for the electron-phonon coupling
constant in such a way that these ranges overlap. The memory-
function formalism using a trial action for a model two-particle
system has been extended to work with nonquadratic interac-

tion potentials in the model system. This method combines
the translation invariance of the trial system, which is one of
the main advantages of the Feynman variational approach,
with a more realistic interaction between the electron and
the fictitious particle. This extension leads to a substantial
improvement of the polaron optical conductivity for small- and
intermediate-coupling strengths with respect to the preceding
known versions of the memory-function approach.

The other method is the strong-coupling expansion, and
we have extended it beyond the Franck-Condon adiabatic
approximation by taking into account nonadiabatic transitions
between different excited polaron states. As a result, the
modified nonadiabatic strong-coupling expansion appears now
to be in good agreement with the numerical DQMC data
in a wide range of α, from intermediate-coupling strength
to the strong-coupling limit. For the intermediate-coupling
value α = 6.5, the two methods that we propose, i.e., the
nonquadratic MF formalism and the nonadiabatic SCE, result
in optical conductivity spectra which are remarkably close to
each other and to the DQMC results. Thus, both methods can
be combined to provide all-coupling, accurate analytic results
for the polaron optical absorption.

For larger α, the agreement between the results of the
nonadiabatic SCE and DQMC becomes gradually better. At
very strong coupling, even the preceding adiabatic SCE [19]
is already sufficiently good, so that the improvement due to
the nonadiabatic transitions, e.g., for α = 15, is relatively
small. However, for a slightly weaker coupling, e.g., for
α = 9, we can observe a drastically improved agreement with
DQMC for the present nonadiabatic SCE as compared to the
adiabatic approximation. We can conclude that at present, the
strong-coupling approximation, taking into account nonadi-
abatic contributions, provides the best agreement with the
DQMC results for α � 6.5 compared to other known analytic
approaches for the polaron optical conductivity. We find that
the nonadiabatic transitions lead to a substantial change of the
spectral shape with respect to the optical conductivity derived
within the adiabatic approximation. The nonadiabatic effects
are non-negligible in the whole range of the coupling strength,
at least for α � 15, available for DQMC.

As discussed in Ref. [33], at strong coupling the distances
between different polaron energy levels rise as ∝α2, and
hence the matrix elements of the electron-phonon interaction
diminish. Thus the small parameter in the strong-coupling
approximation for a polaron is 1/α. The contribution to
the optical conductivity taking into account nonadiabatic
transitions represent in fact the next-to-leading-order correc-
tion in powers of this small parameter. Consequently, this
correction is more significant at weaker couplings, and is
relatively small at strong coupling. The comparison of the
calculated optical conductivity with DQMC confirms this
prediction.

In summary, extending the MF and SCE formalisms
leads to an overlapping of the areas of α where these two
analytic methods are applicable. These analytic methods
have been verified, appearing to be in good agreement with
numeric DQMC data at all α available for DQMC. We
therefore possess the analytic description of the polaron optical
response which embraces the whole range of the coupling
strength.

125206-11



S. N. KLIMIN, J. TEMPERE, AND J. T. DEVREESE PHYSICAL REVIEW B 94, 125206 (2016)

ACKNOWLEDGMENTS

We thank A. S. Mishchenko for valuable discussions and
for the DQMC data for the polaron optical conductivity, and
we thank V. Cataudella for the details of the EMFF method.
Discussions with F. Brosens and D. Sels are gratefully ac-
knowledged. This research has been supported by the Flemish
Research Foundation (FWO-Vl), Projects No. G.0115.12N,
No. G.0119.12N, No. G.0122.12N, and No. G.0429.15N, by
the Scientific Research Network of the Flemish Research
Foundation, Grant No. WO.033.09N, and by the Research
Fund of the University of Antwerp.

APPENDIX: ANALYTIC SUMMATIONS

The matrix element in (17) is a particular case of the product
of two matrix elements:

〈ψk;l,n,m|eiq·r|ψk′;l′,n′,m′ 〉

= 1

V
〈e−ikR|eiq·R|eik′R〉〈ϕl,n,m|eiμq·ρ |ϕl′,n′,m′ 〉, (A1)

where μ is the reduced mass of the trial system. The first matrix
element is

1

V
〈e−ikR|eiq·R|eik′R〉 = δk′,k−q. (A2)

This eliminates the integration over the final electron momen-
tum k′ and reduces the memory function to the expression

χ (
) = 2
√

2α

3π

∫ ∞

0
dqq2

∑
l′,n′,m′

|〈ϕ0,0,0|eiμq·ρ |ϕl′,n′,m′ 〉|2

×
∫ ∞

0
dte−δt (ei
t − 1) Im

(
e−it( q2

2M
+εl′ ,n′−ε0,0+1)

)
.

(A3)

For a more general expression |〈ϕl,n,m|eiμq·ρ |ϕl′,n′,m′ 〉|2, the
summation over m and m′ is performed explicitly:∑

m,m′
|〈ϕl,n,m|eiμq·ρ |ϕl′,n′,m′ 〉|2

= (2l + 1)(2l′ + 1)

2

∫ ∞

0
ρ2dρ

∫ ∞

0
(ρ ′)2dρ ′

× Rl,n(ρ)Rl′,n′(ρ)Rl,n(ρ ′)Rl′,n′ (ρ ′)

×
∫ 2π

0

sin(μq|ρ − ρ ′|)
μq|ρ − ρ ′| Pl(cos θ )Pl′(cos θ ) sin θdθ.

(A4)

The modulus |ρ − ρ ′| is expressed as

|ρ − ρ ′| =
√

ρ2 + (ρ ′)2 − 2ρρ ′ cos θ. (A5)

Hence we can use the expansion of sin (μq|ρ−ρ ′|)
μq|ρ−ρ ′| through the

Legendre polynomials Pl(z) and spherical Bessel functions
jl(z),

sin(μq|ρ −ρ ′|)
μq|ρ − ρ ′| =

∞∑
l′′=0

(2l′′ + 1)jl′′ (μqρ)jl′′ (μqρ ′)Pl′′ (cos θ ).

The integral of the product of three Legendre polynomials is
expressed through the 3j symbol,

∫ 2π

0
Pl′′ (cos θ )Pl(cos θ )Pl′(cos θ ) sin θdθ = 2

(
l l′ l′′
0 0 0

)2

.

Therefore, we find that

∑
m,m′

|〈ϕl,n,m|eiμq·ρ |ϕl′,n′,m′ 〉|2 =
∞∑

l′′=0

(2l + 1)(2l′ + 1)(2l′′ + 1)

×
(
l l′ l′′
0 0 0

)2

S2
q (l,n|l′′|l′,n′),

where Sq(l,n|l′′|l′,n′) is the matrix element with radial wave
functions for the trial system,

Sq(l,n|l′′|l′,n′) ≡
∫ ∞

0
Rl,n(ρ)Rl′,n′ (ρ)jl′′ (μqρ)ρ2dρ. (A6)

FIG. 8. Radial wave functions Rl,n(ρ) calculated for several
values of the quantum numbers l,n.
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For l = 0, the result of the summation over intermediate states
is reduced to the formula∑

m′
|〈ϕ0,n,0|eiμq·ρ |ϕl′,n′,m′ 〉|2 = (2l′ + 1)S2

q (0,0|l′|l′,n′), (A7)

which is used in our calculations.

Figure 8 shows radial wave functions Rl,n(ρ) entering
the matrix elements. The wave functions are plotted for
several lowest values of the quantum numbers l,n. The
figure corresponds to the intermediate-coupling regime with
α = 5.25. These radial wave functions represent analytically
exact solutions of the Schrödinger equation for a particle with
the reduced mass μ in the trial potential U (ρ) given by (8).
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