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Automated construction of maximally localized Wannier functions for bands
with nontrivial topology
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We show that an optimized projection functions method can automatically construct maximally localized
Wannier functions even for bands with nontrivial topology. We demonstrate this method on a tight-binding model
of a two-dimensional Z2 topological insulator, on a three-dimensional strong Z2 topological insulator, as well
as on first-principles density functional theory calculated valence states of Bi2Se3. In all cases, the resulting
Wannier functions contain large imaginary components and are more extended than those in the topologically
trivial phase.
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I. INTRODUCTION

A useful representation of the occupied states in a periodic
insulator is the Wannier function. Wannier functions (WFs)
provide a localized real-space description of the extended
Bloch states [1]. In particular, WFs give a chemical picture
of the bonding nature of a material, an alternative real-space
formalism for many quantities, and can also be used for
interpolating various physical properties on a fine mesh in
the Brillouin zone [2,3]. For examples, WFs can be used
to compute electronic polarization, orbital magnetization, the
component of isotropic magnetoelectric coupling, and various
transport properties.

However, an exponentially localized Wannier function rep-
resentation does not exist for insulators with a nonzero Chern
number C [4,5]. Insulators with a nonzero Chern number are
called integer quantum Hall insulators (or Chern insulators)
and are characterized with a nonzero Hall conductance σ =
Ce2/h. (Three-dimensional insulators are characterized by a
triplet of Chern numbers.)

In the past several years there has been significant interest
in a group of materials related to the Chern insulator. These
are called Z2 topological insulators (TIs). In two dimensions
these Z2 topological insulators can be seen as topologically
equivalent to two copies of a Chern insulator, one with C = 1
and another with C = −1,

HTI = H+1 ⊕ H−1. (1)

Therefore the Chern number for a Z2 topological insulator is
zero [5] which guarantees that it allows exponentially localized
WFs (C is additive over bands so in this case we have C =
1 − 1 = 0).

However, WFs of Z2 topological insulators do not preserve
time reversal (TR) symmetry [6] even though the underlying
Hamiltonian HTI itself is time-reversal symmetric. This can be
seen by realizing that constructing TR-preserving WFs would
be equivalent to constructing WFs individually for the bands
given by H+1 and H−1 separately, which is not possible as
bands with nonzero C don’t have exponentially localized WFs.
Therefore, the only possibility for constructing a smooth gauge
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of a compound system (HTI) is to break TR symmetry in the
gauge by mixing eigenstates of H+1 with those of H−1.

Constructing Wannier functions from a guess

Generalized WFs [7] are obtained as the Fourier transform
of the Bloch states ψmk (here we consider the case of three
dimensions)

|Rn〉 = V

(2π )3

∫
dke−ik·R ∑

m

u(k)
mn|ψmk〉, (2)

where u(k) is an arbitrary unitary matrix that mixes different
bands for a given k point, R is a translation vector, and n is
an integer running over the number of bands considered. This
gauge freedom can be used to construct WFs with minimal
possible spatial extent. These so-called maximally localized
Wannier functions (MLWFs) minimize the spread functional
�,

� =
∑

n

(〈r2〉n − 〈r〉2
n

)
, (3)

with

〈r2〉n = 〈0n | r2 | 0n〉, (4)

〈r〉n = 〈0n | r | 0n〉. (5)

Due to the properties of the Fourier transform, localization
of Wannier function |0n〉 in real space is equivalent to the
smoothness of Bloch states

∑
m u(k)

mn|ψmk〉 in k space.
Within the standard approach [7] MLWFs are constructed

for a set of N composite bands by first guessing a set of N

localized orbitals gn(r) that are close to the N target Wannier
functions,

|gn〉 ≈ |0n〉. (6)

Now given a set of Bloch states |ψmk〉 that are potentially not
smooth in k space (or equivalently its WFs are not localized)
one can try smoothening them by first projecting them into
these guess orbitals gn

a(k)
mn = 〈ψmk | gn〉 (7)
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and then constructing the unitary matrices u(k) via the Löwdin
orthonormalization procedure [8],

u(k) = a(k)[a(k)†a(k)]−1/2. (8)

If the overlap matrix appearing above under the inverse square
root

s(k) ≡ a(k)†a(k) (9)

has large singular values, then this procedure is well defined
and matrices u(k) constructed in this manner can be used to
rotate Bloch states into a smooth gauge u(k)|ψ〉.

It is trivial to show that if |gn〉 are MLWFs, that singular
values of s(k) all equal 1 and this procedure gives back rotated
Bloch states u(k)|ψ〉 that correspond to the original MLWFs.
Therefore, one can hope that if the |gn〉 are at least close to
MLWFs the resulting rotated Bloch states again correspond
to localized—but not necessarily maximally localized—WFs.
Given this starting point one can use procedure from Ref. [7]
to arrive at MLWFs if needed.

On the other hand if the |gn〉 are not close to MLWFs then
the resulting rotated Bloch states need not be smooth. This is
easily seen in the case of a single band. In this case if the orbital
|g〉 fails to capture the character of the Bloch state |ψk〉 for
some k point then the complex number a(k) will have a small
norm at that k. If the norm of a(k) is exactly zero for some k
then the procedure involving an inverse square root in Eq. (8) is
ill defined as it involves division by zero. However, if the norm
of a(k) is small but nonzero then the procedure is potentially
numerically unstable as small noise in a(k) might get amplified
when taking the inverse square root of s = a†a. This analysis
generalizes to the case of multiple occupied bands (N > 1) in
the following way. If one of the rotated N Bloch states are not
captured well by guess |gn〉 then the overlap matrix (which is
now a full N×N matrix) will have one small singular value
and again the process of taking the inverse square root of s(k)

in Eq. (8) will be ill-defined or unstable.
In fact this is precisely the way in which the Löwdin

procedure fails if one tries to apply it to the case of a Chern
insulator [4]. For any localized trial orbital |gn〉 the overlap
matrix s(k) for a Chern insulator will have at least one zero
singular value at least at one point in the Brillouin zone. This
will also happen in the case of a Z2 topological insulator if
one chooses trial orbitals that form a time-reversal symmetric
pair. In Ref. [6] it was recognized that projecting trial orbitals
that break TR symmetry is necessary to ensure that all singular
values of s(k) are nonzero everywhere in the Brillouin zone.
In practice this approach still requires an initial guess of
orbitals that approximate the target WFs. This guessing is
somewhat harder than in the case of a nontopological insulator
since it must break TR and potentially some other crystalline
symmetries. In Ref. [6] this was achieved for a tight-binding
model by an educated guess of trial orbitals based on the
orbital character of the bands at the band inversion points and
symmetries present in the model.

Another approach for constructing WFs for Z2 topological
insulators was introduced in Ref. [9]. This approach relies
on constructing a smooth gauge in a closely related nontopo-
logical insulator phase and then transporting that gauge to
the TI of interest by following a path in the parameter space

that explicitly breaks time-reversal symmetry (and potentially
other symmetries such as inversion). This parameter space
has to be chosen for each system at hand by adding terms
to the Hamiltonian that break TR (and potentially crystalline)
symmetry and keep the electron band gap open. In this paper
we will present a method that can automatically construct WFs
for topologically nontrivial insulators.

II. OUR APPROACH, THE OPFM

In a recent paper we introduced the optimized projection
functions method (OPFM) [10] that allows automatic construc-
tion of MLWFs. We will now give a brief review of the OPFM
and then discuss why this approach is suitable for constructing
WFs for Z2 topological insulators.

As opposed to the standard approach, which requires N

trial orbitals for N composite electron bands, in the OPFM one
selects a larger set of M >N orbitals hi(r) that approximately
span the space of N Wannier functions in a home cell,

Span(|hi〉) ⊇ Span(|0n〉). (10)

This can easily be achieved by including in {h} valence atomic
orbitals.

Given a set of projection orbitals {h}, we use the OPFM to
find a semiunitary M×N matrix W such that the N orbitals

|̃gj 〉 =
M∑
i=1

Wij |hi〉 (11)

are as close as possible to localized WFs. Given the functions
g̃j one can construct the smooth gauge by first expanding the
original functions into Bloch states,

A(k)
mn = 〈ψmk | hn〉 (12)

and then rotating them into the optimal subset,

a(k)
mn = A(k)W (13)

which can then be used in the Löwdin procedure.
Now we discuss why the OPFM is suitable for constructing

WFs in topological insulators. InZ2 topological insulators, the
spin-orbit interaction induces a band inversion between states
of different orbital character. For example, in the case of Bi2Se3

the topologically nontrivial state is induced by a band inversion
at the � point between Se and Bi states. Therefore one can
expect that the MLWFs for the occupied bands in this system
will contain a mixture of both Se and Bi states. Guessing such a
mixture is nontrivial for several reasons. First, as we will show
later, this mixture includes complex imaginary components.
Second, the mixture typically contains a contribution from
more than two atoms. Third, the mixture must break all relevant
symmetries which enforce the topologically nontrivial state.
However, our OPFM can find this mixture since {h} in the case
of Bi2Se3 can include both Se and Bi atomic orbitals as M , the
number of orbitals in set {h}, can be larger than the number of
electron bands N .

In this paper we follow the notation we introduced in
Ref. [10] where square N×N matrices are represented by
lowercase letters (e.g., a(k) and u(k)), and larger rectangular
N×M , M×N , or square M×M matrices are represented by
uppercase letters (e.g., A(k) and W ).
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A. Selecting the set {h}
Now we will discuss a choice of orbitals hi that satisfy the

condition given in Eq. (10). Mathematically speaking, without
knowing anything about chemical bonding in the insulator
of interest, one would have to include in set {h} all atomic
orbitals on all atoms in the crystal to guarantee a complete
basis for expansion of the WFs. Luckily, in an ionic or a
covalent insulator it is enough to choose set {h} to include
only valence atomic orbitals, as they are typically the ones
forming atomic bonds. In addition, since WFs are typically
exponentially localized it is enough to choose orbitals in the
home cell, and possibly a few atoms in the neighboring unit
cells. (For example, as discussed in Ref. [10] in the case of
cubic silicon one has to include in set {h} atomic orbitals
centered on two atoms in the basis as well as three neighboring
atoms, so that, for each of the four Si-Si bonds, both Si atoms
forming a particular bond are included in the set {h}.)

However, bonding in the case of Z2 TIs is more involved
than in a typical insulator. As we will show in this paper,
the presence of spin-orbit induced band inversion induces
an intricate bonding network so that some WFs extend over
more than two atoms (as in the case of the bonds in silicon)
and thus one needs to use a somewhat larger set {h} than in
a conventional covalent material. However, in all cases we
tested, it was enough to include in {h} orbitals in the home cell
along with the orbitals in a single neighboring cell.

B. Finding matrix W

The spread in Eq. (3) can be decomposed into diagonal,
off-diagonal, and invariant parts [7] as follows

� = �D + �OD + �I. (14)

In Ref. [10], the problem of finding W that minimizes the WF
spread � was reduced to minimizing the Lagrangian

L(W,λ) = �I,OD(W )

+ λw
∑

k

N∑
i=1

|[W †(S(k) − IM )W ]ii |2, (15)

where �I,OD is the sum of the off-diagonal and invariant parts
of the spread and we define the large overlap matrix

S(k) ≡ A(k)†A(k). (16)

For WFs constructed from orbitals in or near the home cell,
the invariant and off-diagonal parts of the spread dominate
[10] and, as such, the diagonal part has been neglected in
Eq. (15). The first term in Eq. (15) approximates the sum of
the invariant and off-diagonal parts of the spread �. However,
this approximation is valid only when rotated overlap matrix
W †S(k)W is close to the identity matrix (see discussion in
Ref. [10]). For simply bonded insulators this condition is
enforced by the second term in Eq. (15).

While strictly speaking the entire matrix W †S(k)W should
be close to the identity matrix, the second term in Eq. (15)
only penalizes the deviation of diagonal elements of W †S(k)W

away from 1. This simplification is adequate for the case of
simply bonded insulators where only a small number of atoms
are needed to span the space of WFs centered in the home cell.

However, for the case of Z2 TIs, one needs to use a somewhat
larger set {h}, and this simplification is insufficient since now
some contributions to a WF could potentially be duplicated by
more than one element in the set {h}.

Therefore, in this paper we will construct W by minimizing
the following Lagrangian that penalizes the off-diagonal
elements of W †S(k)W as well,

L(W,λ) = �I,OD(W )

+ λw
∑

k

N∑
i=1

N∑
j=1

|[W †(S(k) − IM )W ]ij |2.

(17)

We describe the algorithm to minimize such a Lagrangian in
Appendix.

We confirmed that with this extended Lagrangian WF
spreads for conventional insulators investigated in Ref. [10] are
unaffected. For example, the initial spread in the case of cubic
silicon changes by less than 0.2% when off-diagonal elements
are included in L. The only difference with respect to Ref. [10]
is that now—with the Lagrangian from Eq. (17)—it doesn’t
matter whether some WFs can be represented by orbitals from
{h} in more than one way, at a small additional cost in the
computational time. For example, in the case of the cubic
silicon if we include 6 (instead of 3) neighboring atoms in the
set {h} so that three out of four Si-Si bonds can be represented
in duplicated ways, the total initial spread is changed only by
0.6%.

We note here that it is numerically straightforward to
construct an arbitrary set {h} given a set of orbitals hi in the
home cell. For a particular orbital hi(r) on the basis atom, a
projection onto another orbital given by the same orbital but
translated by lattice vector R is simply,

〈ψnk | hi(r − R)〉 = e−ik·R〈ψnk | hi(r)〉 (18)

by the virtue of Bloch’s theorem.

III. EXAMPLES

In the following subsections, we apply the optimized pro-
jection functions method to three examples of Z2 topological
insulators. The first is the Kane-Mele model [11], which is
a two-dimensional tight-binding model on the honeycomb
structure. The second is a three-dimensional tight-binding
model of a strong topological insulator that was introduced
in Ref. [12]. The third example is a realistic case of a three-
dimensional strong topological insulator (Bi2Se3) as calculated
within the density functional theory approach [13,14].

A. Two-dimensional model

The Kane-Mele model is a two-dimensional model of a
Z2 topological insulator. It contains four electron bands, two
of which are considered to be occupied. It is defined on
a honeycomb structure that can be described in terms of
the hexagonal lattice with primitive lattice vectors a1,2 =
a
2 (

√
3ŷ ± x̂), and a basis of two sites, A and B, located

at τA = aŷ/
√

3 and τB = 2aŷ/
√

3, respectively. In what
follows, we choose a = 1Å for convenience.
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The Kane-Mele Hamiltonian is

H = t
∑
〈ij〉

c
†
i cj + iλSO

∑
〈〈ij〉〉

νij c
†
i s

zcj

+ iλR

∑
〈ij〉

c
†
i (s × d̂ij )zcj + λv

∑
i

ξic
†
i ci . (19)

We suppressed spin indices on the electron creation and
annihilation operators. The symbol 〈ij 〉 indicates a sum over
nearest neighbors and 〈〈ij 〉〉 indicates a sum over next-nearest
neighbors. The first term in the Hamiltonian is the nearest
neighbor hopping, with hopping strength t that we set equal
to 1 for convenience (i.e., all energies are in units of t). The
second term describes spin-dependent second nearest neighbor
hopping, which emulates a spin-orbit interaction. Here, νij

takes on the value ±1 depending on the sign of (d̂1 × d̂2)z,
where d̂1 and d̂2 are the unit vectors along the bonds traversed
as the electron hops from site j to i, and sz is the Pauli
spin matrix. The third term describes nearest neighbor Rashba
coupling, where d̂ij is the unit vector along the bond from j to i.
Lastly, the fourth term introduces a staggered on-site potential
(ξi = ±1) between the A and B sublattices; we choose ξi so
that the on-site potential is negative on the B sublattice and
the occupied bands in the normal phase have dominant B

character. In the following we set the staggered on-site term
λv = 1 and the Rashba term λR = 0.5. Increasing the strength
of the spin-orbit term λSO tunes the model from describing the
normal to the topological insulator phase, with the transition at
λSO ≈ 0.27. For calculations in the topological phase we use
λSO = 0.6.

The Kane-Mele model is solved using the PythTB [15]
package with a basis of two orbitals per site, one each for
spin-up and spin-down,

|A; ↑z〉, |A; ↓z〉, |B; ↑z〉, |B; ↓z〉. (20)

In Fig. 1 we plot the band structures in both the normal
phase (Z2 even) and the topological phase (Z2 odd). The
bands are colored according to the character of the state, with
red corresponding to a state of B-orbital character and blue
corresponding to A-orbital character, and gray indicating a
mixture.

The thickness of the line indicates the spin of the state
along the z axis, with thicker corresponding to mostly spin-
up and thinner line corresponding to mostly spin-down; an
intermediate thickness indicates mixed spin state due to the
Rashba-like term. In the topological phase, there is a clear
inversion of the character of the states near the K and K ′
points.

1. Selecting the set {h}
Our results of the OPFM applied to the case of a Kane-Mele

model are shown at the top of Table I along with the result from
previous work [6]. In the previous work the following guess
orbitals were used to construct WFs for the Kane-Mele model
in the topological phase: |A; ↑x〉 and |B; ↓x〉. Note that spins
here point in plane (x) while the basis functions have spins
pointing perpendicular to the plane (z).

To construct localized WFs for the Kane-Mele model using
the OPFM we consider several different sets {h} of basis
functions. The smallest set consisted of the four orbitals on the

FIG. 1. Band structures of the Kane-Mele model in the normal
phase (top) and topological phase (bottom). The part of the bands
colored red correspond to B-orbital character, while blue corresponds
to A-orbital character. The thickness of the line corresponds to the
spin component, with thicker indicating mostly spin-up, and thinner
indicating spin-down. The zero of energy is set to the middle of the
gap.

two atoms in the home cell defined in Eq. (20). As expected,
this small set is unable to capture the extended nature of the WF
in theZ2 topological insulator. The fact that this set is too small
is numerically indicated with a small minimal singular value
of s(k) = W †S(k)W (its value is only 0.03, not given in Table I)
which then results in an ill-defined Löwdin orthonormalization
procedure. This procedure produces a gauge with an initial
WF spread �0 = 0.333, significantly higher than that of the
MLWFs (at the global minimum, �GM = 0.189). If we try
smoothening this gauge further with the Marzari-Vanderbilt
procedure [7] it remains stuck in a local minimum as the
spread is only slightly reduced to �GM = 0.319.

Since the figure of merit (i.e., the minimal singular value
of s(k)) was small for this set {h} we decided to use the OPFM
with larger sets {h}. The next set we considered, labeled {0,1st},
includes—in addition to orbitals in the home cell—orbitals on
their four first-neighboring atoms. An even larger set we tried
{0,1st,2nd} includes both first and second nearest neighboring
atoms.

As soon as we include first or second neighbor atoms into
the set {h} the resulting minimal singular value of s(k) increases
from 0.03 to 0.40 and 0.71, respectively for the two sets, and
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TABLE I. Results of the OPFM applied to the examples in Section III. The first column gives the square moduli of s(k) − IN averaged over
k-points and matrix elements. The second column lists the minimal singular value of s(k) over all k-points. The third column show the spread
�0 after Löwdin procedure while the fourth column shows the spread �GM when Löwdin procedure is followed up by the Marzari-Vanderbilt
[7] procedure. For three-dimensional cases, the fifth column gives the value for the Chern-Simons θ term. See text for a description of the sets
{h} used in the OPFM.

Spread (Å
2
)

Average |(s(k) − IN )ij |2 Min. sing(s(k)) �0 �GM Chern-Simons θ

Two-dimensional model
Previous work, Ref. [6] 0.148 0.11 0.212 0.189
OPFM using set {0,1st} 0.017 0.40 0.244 0.189
OPFM using set {0,1st,2nd} 0.006 0.71 0.207 0.189

Three-dimensional model
OPFM using set {0,1} 0.0184 0.0472 0.142 0.135 0.96π

OPFM using set {0,1,2,3} 0.0133 0.1022 0.142 0.135 0.96π

Density functional theory, Bi2Se3

Previous work, Ref. [16] 0.0068 0.0003 109.80 95.84 0.32π

Previous work, Ref. [9] 0.0057 0.0002 126.12 95.85 0.35π

OPFM using set {0,1} 0.0026 0.0001 133.43 95.84 0.34π

OPFM using set {0,1,2,3} 0.0017 0.0240 310.29 95.83 0.34π

the resulting spread �0 decreases. Final spread �GM agrees
with previous result [6] up to numerical precision.

Table I contains also the average distance between the
overlap matrix s(k) and the identity matrix. However, that
averaged quantity masks the fact that the overlap matrix is
typically different from an identity matrix only in a small
part of the Brillouin zone where inversion occurs (see band
characters near K and K ′ points in Fig. 1). Therefore for the
purpose of presentation we give in Fig. 2 the distribution of

FIG. 2. Histograms of the square moduli of the elements of s(k) −
I for guess orbitals from Ref. [6] (top panel) and two sets {h} within
the OPFM (middle and bottom panel).

|(s(k) − I )ij |2 over all k points and all its matrix elements ij .
Note that this quantity is the one that is optimized by the second
term in Eq. (17).

As can be seen from Fig. 2 in all cases distance of s(k) from
identity is small for nearly all k points (note that the vertical
scale is logarithmic). However, in the case of the guess orbitals
from Ref. [6] there is a fraction of k points for which matrix
elements of s(k) are quite far away from identity matrix (up
to 0.7). These k points correspond to the small part of the
Brillouin zone with inverted bands. However, singular values
of s(k) are large enough (smallest one is 0.11) so that the
Löwdin procedure is well behaved even for the guess orbital
from Ref. [6]. In the case of the OPFM the deviation of s(k)

from identity is significantly smaller (the maximum value is
only 0.1 for the cluster {0,1st,2nd}). We also confirmed that
OPFM gives automatically good spread as one varies λSO

through the transition from the topological all the way to the
normal phase.

For this two-dimensional model we constructed the pro-
jection matrices on a 152 k-point grid. We find that the
optimal value for the Lagrange multiplier (λ) is 0.03, which
we determine by minimizing the spread with respect to λ

(following the procedure from our earlier work [10]). The
optimal value for λ also yields minimal singular values that are
large. We also note that while in the case of normal insulators
studied previously one can often initialize W with the identity
matrix, in the case of Z2 TIs we sometimes need to start
off the minimization from a random matrix so that the initial
W breaks all symmetries. (We confirmed that, in the case of
normal insulators studied in Ref. [10], starting minimization
procedure from a random matrix does not affect the final
spread. For example, in the case of cubic silicon the total
spread is unaffected within numerical precision.)

2. Analysis of the WF

As expected, we find that the WF in the Z2 topological
insulator case extends well beyond the home cell. This finding
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is expected since band inversion usually occurs over a small
region in k space. To analyze the extent of the Wannier function

in more detail we show in Fig. 3 the MLWFs for the Kane-Mele
model in the real space. We write the WF amplitude on a

FIG. 3. Plot of the Wannier functions obtained via the OPFM on set {0,1st,2nd}, for the two occupied bands of the Kane-Mele model in
the normal insulator phase (top) and the topological insulator phase (bottom). The crosses (×) indicate the A sites, while the plus signs (+)
indicate the B sites. Red circles correspond to a component that is positive and blue circles correspond to negative. The size (area) of the circle
is proportional to the magnitude of the component α1,α2,β1,β2. Here, the WFs plotted are for a Kane-Mele model with λv = 1 and λR = 0.
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particular sublattice j = {A,B; R} in the crystal as

(α1 + iα2)|j ↑〉 + (β1 + iβ2)|j ↓〉. (21)

These amplitudes can be computed from the projections of
Bloch states into basis functions (A(k)) and the smooth gauge
for the WFs u(k) as,

〈hj | Rn〉 = 〈hj | 1

Nk

∑
mk

eik·Ru(k)
mn|ψmk〉

= 1

Nk

∑
k

eik·RA(k)†u(k).

In the expression above we have recast the definition of the
WFs in Eq. (2) as a sum over the k points in the Brillouin zone,
where Nk is the number of k points in the sum.

Figure 3 shows the amplitudes α1, α2, β1, and β2 on each
site j in the crystal for both occupied bands (labelled #1 and
#2). The size of the circles are proportional to the absolute
value of the magnitude of α1,α2,β1,β2 while color denotes
their sign (red for positive and blue for negative). The cross
symbols (×) denote A sites while plus symbols (+) denote B

sites.
In the normal phase, both WFs are centered near the B site

in the home cell, with components of opposite sign on the first
nearest neighbors, and small components on second nearest
neighbors. The topological phase has WFs that are centered
near different sites (A and B in the home cell), with both being
a mixture of spin-up and spin-down. Most importantly, in the
topological phase the WF amplitude extends well beyond the
home cell into the first and second nearest neighbors. The
beyond-home-cell component of the WF in addition has a
significant imaginary part. Therefore, from here we confirm
once again that the set {h} in the case of a Z2 topological
insulator must include orbitals beyond those in the home cell.

B. Three-dimensional model

We now turn to the model of a three-dimensional strong
Z2 topological insulator. A simple model of such an insulator
is given in Ref. [12] by constructing a higher dimensional
insulator with a nonzero second Chern number and then
restricting the model to three dimensions. Similarly as in the
case of a Kane-Mele model this model consists of four orbitals
in the basis and two occupied electronic bands. One difference
with respect to the Kane-Mele model is that the only hopping
terms in the model are either between orbitals in the same unit
cell, or between the first neighboring cells. The Kane-Mele
model includes hopping to second nearest neighboring cells as
well.

As is done for the Kane-Mele model, here we performed
OPFM with sets {h} of increasing size. Once again we find
that as soon as neighboring cells are included in the set {h},
the OPFM procedure produces a smooth gauge. Similarly,
as in the case of Kane-Mele model, we find that with larger
sets {h} the minimal singular value of the overlap matrix is
increased. Here we adopt a notation by which the set {0,1}
corresponds to orbitals in the home cell as well as neighboring
cells translated along the first lattice vector. Similarly, the set
{0,1,2,3} corresponds to orbitals in the home cell as well as
those translated along all three lattice vectors.

In addition to the quantities reported in Table I for the Kane-
Mele model, here we also report the value of the Chern-Simons
orbital magnetoelectric coupling θ [12,17]. The θ term takes
on the value 0 or π (modulo 2π ) in the normal and topological
phase, respectively. However, these values would be obtained
only in the limit of infinitely dense k meshes, as the discretized
expression for θ we used is not gauge invariant (gauge invariant
discrete form of θ is unknown, as far as we are aware). On a
finite mesh the calculated value of θ in the topological phase
is typically smaller than π and it converges very slowly to π

as the k mesh gets denser. We used a 203 mesh of k points for
this calculation. Here the value of the Lagrange multiplier (λ)
is 1.

The expressions for θ in terms of WFs given in Ref. [16]
clearly shows that θ must be 0 if the WFs are purely real.
Therefore, just as in the case of the two-dimensional model,
the WFs in the three-dimensional topological insulator must
contain large imaginary components so that θ can be nonzero
(θ = π modulo 2π to be precise).

Table I contains some of the results of the OPFM applied to
the three-dimensional model. In the normal phase of that model
(not shown in Table I) our OPFM finds projection functions
that well approximate the WFs even when we use the set {0}
with orbitals only in the home cell. The minimal singular value
of the s(k) matrix is close to identity (0.92) and the spread after
the Löwdin procedure agrees with the spread at the global
minimum within the first four nonzero significant digits.

In the topological phase of the model, the set {0} results
in an overlap matrix with a very small singular value (10−29)
but with an inclusion of a larger set {h} all figures of merit
improve, as in the case of the Kane-Mele model. Therefore
we conclude that even in the case of three-dimensional models
the WF in a Z2 topological insulator extends well beyond the
home cell.

We note here that for relatively small sets such as {0,1}
the minimal singular value is rather small (0.0472); however,
the resulting final spread is very close to the spread at the
global minimum and the value of θ is close to π . The minimal
singular value increases to 0.1022 in the set {0,1,2,3}. We
also tried using an even larger set where orbitals are translated
both in the positive and negative direction of the lattice vector
{0,1,1̄,2,2̄,3,3̄} and we find that the minimal singular value
increases to 0.514. Despite having a larger minimal singular
value, θ and �GM computed from this set are up to numerical
precision equal to those obtained using a much smaller set,
{0,1}. Therefore we conclude that the set {0,1} is adequate for
this system even though it yields a somewhat small minimal
singular value of the overlap matrix (0.0472).

To further test our method we generalized the tight-binding
model from Ref. [12] to a higher number of bands. The model
from Ref. [12] was constructed from 2n-dimensional Clifford
algebra where n = 2. If we use n = 3 or n = 4 algebras and
again perform dimensional reduction to three dimensions, the
resulting tight-binding model will have 2n−1 occupied bands
out of 2n bands. This means that in the n = 3 case we have
an 8-band model with 4 occupied bands, while with n = 4
we have a 16-band model with 8 occupied bands. Applying
the OPFM to these models using the set {0,1,1̄,2,2̄,3,3̄} again
produces a smooth gauge. While the minimal singular value in
the 4-band model (n = 2) discussed earlier is 0.514, with the
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FIG. 4. Band structure of Bi2Se3. The part of the bands colored
red correspond to Se p character, while blue corresponds to Bi p

character. The zero of energy is set to the middle of the gap.

8-band model (n = 3) it is 0.356, and with the 16-band model
(n = 4) it is 0.360.

C. Density functional theory, Bi2Se3

We now turn from the tight-binding models to some realistic
calculations based on density functional theory. As an example
of a prototypical strong 3D TI we use Bi2Se3 [13,14]. Its crystal
structure is described by a rhombohedral lattice within the D5

3d

space group. The material is made up of units of quintuple
layers of Bi and Se. Each of the five layers in the quintuple
forms a hexagonal sheet in plane. The topological phase is
realized due to the strong spin-orbit coupling causing a band
inversion of Se p and Bi p character around the � point [14].
This inversion is evident in Fig. 4.

To construct localized WFs for Bi2Se3, we first perform
fully relativistic density functional theory calculations with the
QUANTUM ESPRESSO package [18]. The ground state properties
are obtained using a 63 k-point grid and a kinetic energy cutoff
of 60 Ry. The projection matrices A(k)

mn are obtained on an
unshifted 123 k-point grid by projecting the top 28 valence
bands into atomic Bi and Se s and p orbitals. We use Eq. (18)
to construct projections into orbitals translated by a lattice
vector. In all calculations for Bi2Se3 we used the value λ = 1
for the Lagrange multiplier.

Again we consider several sets {h} generated by translating
the basis atoms by different lattice vectors, as using only
orbitals in the home cell once again gave a very small (10−6)
minimal singular value of s(k). As soon as neighboring cells
are included in the set {h} the minimal singular values increase
as well as the spread �0. We used the same translation vectors
as in the three-dimensional model case: {0,1} and {0,1,2,3}.
Here again 0 represents orbitals in the home cell while
nonzero integers 1,2,3 represent translations along the three
equivalent rhombohedral lattice vectors. For completeness, we
note that we chose as basis atoms those for which the reduced
coordinates in the rhombohedral frame are as small as possible
(between −1/2 and 1/2).

The results of OPFM in the case of Bi2Se3 are shown in
Table I along with the results from previous work. One of
the previous works [16] guessed WFs by trying out various
initial projections that break symmetries while the other [9]

found it by constructing a path in parameter space that breaks
time-reversal and inversion symmetry. In both earlier works
the Bloch states were projected into hydrogenlike orbitals. We
find very good agreement in both θ and �GM between our
approach and two earlier works. The computed value for θ in
all three cases is close to θ ≈ 0.3π since we used a relatively
small k-point grid (it was 123). With larger k grids θ converges
towards π .

We note here that the minimal singular value of s(k) using
a relatively large set {0,1,2,3} in OPFM is still somewhat
small (0.0240) even though it is two orders of magnitude
larger than those in previous works [9,16]. Nevertheless �GM

agrees well with each other in all cases and the value of
θ is what is expected for a three-dimensional strong Z2

topological insulator. (Some of the difference between the
minimal singular values in these approaches might originate
from use of hydrogenlike projection functions in Refs. [9,16].)

IV. OUTLOOK

In this paper we described a procedure for automated
construction of maximally localized Wannier functions for
topologically nontrivial set of bands. We expect that this
method can be applied to any topological insulator, either pro-
tected by time-reversal symmetry, or by crystalline symmetry,
as long as there exists a localized representation, i.e., as long
as the first Chern numbers are all zero. Similarly, we expect
that this method could be applied to topologically nontrivial
bands not only of electrons, but also of phonons, photons, cold
atoms, or other particles.
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APPENDIX: OFF-DIAGONAL COMPONENTS

In our earlier paper (see Appendix B in Ref. [10]) we
described an implementation of the optimized projection
functions method. The appendix in the present paper describes
how to incorporate the off-diagonals of W †(S(k) − IM )W into
Lagrangian.

As before, we construct the semiunitary W as the M×N

submatrix of a square M×M unitary matrix W̃ . The matrix
W̃ is written as a product (post-multiplication) of Givens
rotations,

W̃ =
L∏

l=1

N∏
i=1

M∏
j=i+1

Rl[i,j,θ,φ]. (A1)
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FIG. 5. The red lines indicate the rows modified by left multipli-
cation by R†. The blue lines indicate the columns modified by right
multiplication by R.

A Givens rotation R[i,j,θ,φ] (R†[i,j,θ,φ]) is a unitary planar
rotation that only acts on the ith and j th columns (rows) of a
matrix (see Figure 5). The matrix R[i,j,θ,φ] is identity except
the ii, ij , ji, and jj elements,(

Rii Rij

Rji Rjj

)
=

(
cos θ eiφ sin θ

−e−iφ sin θ cos θ

)
. (A2)

Again we consider two cases (see Figure 5). If j � N , the
ij and ji elements enter the Lagrangian L. Just like the ii

and jj components of the transformed matrices can be written
in a quadratic form, so too can the off-diagonal ij and ji

components∑
α

t (α)(|[R†X(α)R]ij |2 + |[R†X(α)R]ji |2) = xᵀQx + c,

(A3)

where

xᵀ = (cos 2θ, sin 2θ cos φ, sin 2θ sin φ). (A4)

The matrix Q is symmetric, and its independent components
are:

2Q11 = ∣∣X(α)
ij

∣∣2 + ∣∣X(α)
ji

∣∣2

2Q22 = ∣∣X(α)
ii

∣∣2 + ∣∣X(α)
jj

∣∣2 − 2 Re
[
X

(α)
ij X

(α)∗
ji + X

(α)
ii X

(α)∗
jj

]

2Q33 = ∣∣X(α)
ii

∣∣2 + ∣∣X(α)
jj

∣∣2 + 2 Re
[
X

(α)
ij X

(α)∗
ji − X

(α)
ii X

(α)∗
jj

]
2Q12 = Re

[(
X

(α)
ii − X

(α)
jj

)(
X

(α)∗
ij + X

(α)∗
ji

)]
2Q13 = Re

[(
X

(α)
ii − X

(α)
jj

)
Im

(
X

(α)
ij − X

(α)
ji

)
+ (−X

(α)
ij + X

(α)
ji

)
Im

(
X

(α)
ii − X

(α)
jj

)]
2Q23 = 2 Im X

(α)
ji Re X

(α)
ij − 2 Im X

(α)
ij Re X

(α)
ji . (A5)

The term c can be ignored as it does not depend on x. For the
other off-diagonal matrix elements (ik, ki, jk, and kj , with
k 
= i 
= j 
= k), the sum∣∣X(α)

ik

∣∣2 + ∣∣X(α)
ki

∣∣2 + ∣∣X(α)
jk

∣∣2 + ∣∣X(α)
kj

∣∣2
(A6)

is conserved and therefore does not affect the variation of the
Lagrangian.

In the case of j > N , the ij and ji elements are outside
of the N × N submatrix and they therefore do not enter the
Lagrangian. However, in this case when j > N , the sum of
the square moduli of the ik and ki off-diagonal elements,∑

α

t (α)(|[R†X(α)R]ik|2 + |[R†X(α)R]ki |2) = pᵀx + c, (A7)

is not conserved and it therefore must be included in the
minimization of L. The coefficient p of the term linear in
x can be expressed as

p1 =
∑

α

1

2

(∣∣X(α)
ik

∣∣2 − ∣∣X(α)
jk

∣∣2 + ∣∣X(α)
ki

∣∣2 − ∣∣X(α)
kj

∣∣2)
p2 =

∑
α

− Re
[
X

(α)
ik X

(α)∗
jk + X

(α)
ki X

(α)∗
kj

]
p3 =

∑
α

(
Im X

(α)
jk Re X

(α)
ik − Im X

(α)
ik Re X

(α)
jk

− Im X
(α)
kj Re X

(α)
ki + Im X

(α)
ki Re X

(α)
kj

)
. (A8)

For each k (such that k 
= i 
= j 
= k) we have a term as in
Eq. (A7), with p = p(k), so that in L we include the term∑

k p(k)ᵀx. The terms in Eq. (A3) and (A7) are easily added to
the minimization algorithm described in Ref. [10].
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