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Topological spin liquids in the ruby lattice with anisotropic Kitaev interactions
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The ruby lattice is a four-valent lattice interpolating between honeycomb and triangular lattices. In this work
we investigate the topological spin-liquid phases of a spin Hamiltonian with Kitaev interactions on the ruby
lattice using exact diagonalization and perturbative methods. The latter interactions combined with the structure
of the lattice yield a model with Z2 × Z2 gauge symmetry. We mapped out the phase diagram of the model
and found gapped and gapless spin-liquid phases. While the low-energy sector of the gapped phase corresponds
to the well-known topological color code model on a honeycomb lattice, the low-energy sector of the gapless
phases is described by an effective spin model with three-body interactions on a triangular lattice. A gap is
opened in the spectrum in small magnetic fields, where we showed that the ground state has a finite topological
entanglement entropy. We argue that the gapped phases could be possibly described by exotic excitations, and
their corresponding spectrum is richer than the Ising phase of the Kitaev model.
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I. INTRODUCTION

Topological phases of matters have attracted a great deal of
attention in recent years due to their novel properties such as
topologically protected ground states [1], long-range entangle-
ment [2], and emergent quasiparticles with fractional statistics,
i.e., anyons [3–7], which make them a suitable playground
for topological quantum computation [8]. Our understanding
of topologically ordered phases in an exactly solvable spin
model began with the toric code introduced by Kitaev [1]. The
ground-state manifold is multiple degenerate depending on
the genus of the space where the lattice is embedded, and the
excitations carry Abelian statistics. However, the many-body
nature of the spin interactions involving four-body terms in
the underlying Hamiltonian makes its physical realization
challenging. This problem was resolved by Kitaev in his
seminal work [7] by introducing a simple nearest-neighbor
spin Hamiltonian on the honeycomb lattice. An exact solution
based on Majorana representation of spins exists for the model
yielding the Kitaev model two quantum spin-liquid phases [see
Fig. 2(a) for a schematic representation] with Z2 topological
order: a gapped phase which is continuously connected to the
toric code and a gapless phase which can host non-Abelian
Ising anyons when the Majorana fermions are gapped out
by adding perturbations breaking the time-reversal symmetry.
Although the toric model was first aimed at exotic excitations
for quantum computations, recent experiments have unveiled
the prospect of relevance of the Kitaev interactions in the
highly anisotropic magnets on honeycomb lattices such as
Na2IrO3, Li2IrO3 [9–12], and α-RuCl3 [13].

The discovery of such quantum magnets presaged the study
of other models with anisotropic interactions on different lat-
tices, including decorated honeycomb [14], triangular [15,16],
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FIG. 1. Ruby lattice � of the two-body color code. Spin-1/2
particles are placed on the vertices of the lattice and the spin-spin
interactions are denoted by colored links. The rectangular dashed
regions further represent the clusters used for exact diagonalization.

spin ladder [17,18], and ruby [19,20] lattices. The latter one,
the ruby color code (RCC) shown in Fig. 1, is central to our
work in this paper. The bismuth ions in layered materials such
as Bi14Rh3I9 form a bilayer ruby lattice [21–23] with interest-
ing topological properties. We explore the phase diagram of a
spin model with Kitaev interactions (1) on the ruby lattice in
terms of exchange couplings (Jx,Jy,Jz) restricted to the plane
Jx + Jy + Jz = 2J . Anisotropic interactions can in principle
arise in transition-metal compounds with strong spin-orbit
couplings, which make the superexchange processes highly
anisotropic and bond dependent [24].

When Jz � Jx,Jy , the low-energy spectrum of the spin
model (1) is gapped and the ground-state manifold is topolog-
ically ordered [19,20]. The low-energy sector is continuously
connected to the so-called topological color code (TCC) model
first introduced by Bombin et al. [25] to implement the Clifford
group, transversally. In contrast to the Kitaev model, the
topological order in TCC is associated with Z2 × Z2 gauge
symmetry. This symmetry gives rise to emergence of highly
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interacting fermions with semionic mutual statistics in the
gapped phase [19].

In this paper, we explore the full phase diagram of the RCC
model, which to our best knowledge has not been explored
so far. We contrast the phase diagram of Z2 × Z2 RCC with
that of the Z2 Kitaev model; see Figs. 2(a) and 2(b). We used
finite-size exact diagonalization (ED) based on the Lanczos
algorithm on periodic clusters of different sizes to map out
the full phase diagram of the RCC model from analysis of the
ground-state energy and its derivatives. Our results show that
the phase diagram contains one gapped and two gapless phases.
The gapped phase corresponds to TCC on the honeycomb
lattice as mentioned above. The gapless phases appear at
the corner of the phase diagram in the regime where either
Jx � Jz,Jy or Jy � Jz,Jx . This allows us to use degenerate
perturbation theory (DPT) to derive the low-energy effective
theory of the underlying phases. We find that the gapless phases
are described by an effective Hamiltonian with three-body
interactions on a triangular lattice. We argue that the latter
phases could be possibly described by a rich structure of Ising
anyons due to the underlying Z2 × Z2 gauge symmetry.

The paper is organized as follows: In Sec. II we introduce
the RCC model and review some of the features of the model
used in the paper. We present the phase diagram of the model
in Sec. III and characterize the underlying phases emerging
in different coupling regimes of the problem in Sec. IV. A
possible description of phases in terms of Ising anyons is
discussed in Sec. V.

II. THE MODEL

The RCC model [19] is a quantum spin system defined on a
certain type of four-valent graphs, i.e., the ruby lattice � shown
in Fig. 1. The model is constructed by placing the spin-1/2
degrees of freedom on vertices of the lattice and inducing two-
body interactions of different types, distinguished by colored
links, between nearest neighbors. The Hamiltonian of the RCC
model is then defined as

H = −
∑

α=x,y,z

Jα

∑
α−links

sα
i sα

j , (1)

where the first sum runs over α links (α = x,y,z) labeled by red
(r), green (g), and blue (b) colors, respectively, and the second
sum runs over the two-body interactions acting on sites i and
j of the α links, and sα stands for Pauli matrices. Here, we
set Jα >0. The RCC model supports loop structures as well as
string-net integrals of motions defined by connecting certain
vertices and links of the lattice, underlying a Z2 × Z2 gauge
symmetry [20].

In contrast to the Kitaev honeycomb model [7], the
two-body color code on the ruby lattice is not exactly
solvable because of the four-valence structure (four bonds are
emanating from each site) of the lattice as opposed to the
three-valence structure of the honeycomb lattice. Therefore,
we resort to numerical techniques and approximation methods
to map out the phase diagram of the Hamiltonian (1) in
different coupling regimes (Jx,Jy,Jz). We restrict the exchange
coupling to the Jx + Jy + Jz = 2J . The coupling J accounts
for an overall energy scale, which we set to be unit J = 1
throughout.

III. PHASE DIAGRAM

We apply the exact diagonalization technique to the
Hamiltonian (1) to capture the possible phases and phase
transitions in different coupling regimes, by analyzing the
ground-state energy of the system and its derivatives. Our
ED algorithm relies on the Lanczos method on the periodic
clusters with 18 and 24 sites shown in Fig. 1. Matrix elements
of the Hamiltonian are further generated using the sz Pauli
vector space and bit representation.

In order to capture the phase transitions of the model,
we have calculated the second derivative of the ground-state
energy per site (SDE) in the Jx + Jy + Jz = 2 plane and
detected the phase boundaries from the diverging behavior
of the second derivatives of the energy as shown in Fig. 2(c).
Due to the finite-size lattices, a real divergence is obscured.
Thus, we take the location of the minimum of SDE as a phase
transition point. This might be a crude estimation of locating
the phase transition, but we notice that on the paths in the phase
diagram with possible phase transitions, e.g., the dashed red
line in Fig. 2(b), the behavior of SDE significantly differs from
those paths with no phase transition. Moreover, moving from
a lattice with 18 sites to a larger one with 24 sites, the minima
in SDE become slightly deeper providing a strong evidence of
phase transition. We elaborate on details on such transitions
below.

To find the phase boundaries we look for the minima in
SDE along paths corresponding to the intersection of the plane
Jx + Jy + Jz = 2 with a plane at fixed Jz (0<Jz <2). We use
Js accounting for a one-dimensional parameter space referring
to the points lying on the intersection line. A few of such lines
are shown as dashed lines in Fig. 2(b), where we show the
full phase diagram of the RCC model. We begin by setting
Jz = 0.1, the dashed green line. The corresponding SDE is
plotted in Fig. 2(c) with the same color to make the comparison
with other SDE’s easier. As seen, only one phase transition
is signaled at (Jx = 0.95,Jy = 0.95,Jz = 0.1). Increasing Jz

further, we did not observe other phase transitions until a
multicritical point at Jc ≈ (0.85,0.85,0.3) is reached, beyond
which there are multiple phase transitions. We sum up this
part by concluding that the region of the phase diagram with
0<Jz <0.3 has two phases which we label as A2 and A3. The
phase transition in this region occurs when Jx = Jy .

Now we move the parameter line Js to go beyond the Jc ≈
(0.85,0.85,0.3) point in the phase diagram, e.g., the dashed
red and blue lines in Fig. 2(b). Increasing Jz >0.3, we observe
that two distinct minima start to appear in the SDE curves. For
instance let us consider the behavior of SDE as the parameter Js

varies on the dashed red line in Fig. 2(b). On this particular line
Jz = 0.5. We observed that two minima appeared in SDE. The
first minimum signals a phase transition out of the A2 phase
to another phase that we call A1, and the second minimum
signals yet another phase transition from A1 phase to A3 phase.
For Jz’s in the interval 0.3<Jz <0.69 two minima appeared
in SDE’s, making phase boundaries between different phases
marked by squares in Fig. 2(b). Moving beyond the Jz >0.69,
no phase transition appears, which shows that the RCC model
is in the A1 phase in this part of the phase diagram. Consider
a parameter line Js corresponding to the dashed blue line
Jz = 0.9 on the phase diagram. The SDE plot is free of any
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FIG. 2. Phase diagrams of (a) the Kitaev model [7] in the Jx + Jy + Jz = 1 plane and (b) the ruby color code model in Eq. (1) in the
Jx + Jy + Jz = 2 plane studied in this paper. The Kitaev model has the following phases: three symmetry-related gapped phases denoted by
phase A, the low-energy description of which is given by the toric code model and the gapless phase B, which becomes a gapped phase with
non-Abelian Ising anyons upon breaking time-reversal symmetry. On the other hand the phase diagram of the RCC model consists of three
phases labeled as A1,A2,A3. The A1 phase is a topological gapped phase, and two symmetry-related gapless A2 and A3 phases. The phase
boundaries are signaled by diverging, up to finite-size effects, of the second derivative of the ground-state energy per site, obtained by ED on
periodic clusters with 18 and 24 sites. In (c) we show a few of them each corresponds to the line Jx + Jy = 2 − Jz for a fixed Jz. We show this
line by Js .

minimum leading us to a conclusion that there is no more
phase transition.

IV. LOW-ENERGY DESCRIPTION OF PHASES

The analysis presented in the preceding section yields a
phase diagram with three distinct phases for the RCC model (1)
within ED on finite clusters. According to the phase diagram
Fig. 2(b), each phase emerges when one of the couplings of the
Hamiltonian is stronger than the two others. For example, the
A1 phase corresponds to the Jz � Jx,Jy coupling regime with
strong interaction on the blue links, while the A2 (A3) phase
emerges in the Jx �Jy,Jz (Jy �Jy,Jz) coupling regime with
strong interaction on the red (green) links. Symmetry of the
lattice structure further imposes that A2 and A3 phases be
equivalent, up to the interchange of the couplings (Jy ↔ Jx)
and colors of the red and green links. Here, we elaborate on
the properties of the phases by focusing on each regime.

A. Topological color code: A1 gapped phase

The A1 phase arises in the particular regime of the couplings
where Jz � Jx,Jy . This regime of the problem has already
been studied in detail in Refs. [19,20] and it has been shown
that the low-energy physics of the Hamiltonian (1) in this limit
is described by an effective topological color code model [25]
on the honeycomb lattice; see Figs. 3(a)–3(c). The low-energy
description in this limit is given by a many-body Hamiltonian
as follows:

HTCC = −
∑

p

(J̃zZp + J̃xXp + J̃yYp), (2)

where the sum runs over hexagonal plaquettes and the
plaquette operators are the product of Pauli matrices around a
hexagon Zp = ∏

i∈p sz
i and Xp = ∏

i∈p sx
i and Yp = ∏

i∈p s
y

i .
The coupling J̃z arises at sixth order of degenerate perturbation
theory, while J̃x and J̃y arise at ninth order [20]. The ground

state of the model (2) is separated from the excited state by a
gap. For a lattice with periodic boundary conditions defined on
a torus with genus g = 1 the ground-state manifold is 16-fold
degenerate resulting from the Z2 × Z2 gauge symmetry, as
opposed to fourfold degeneracy of the toric code with a
Z2 gauge group symmetry. Recently, a minimal TCC with
seven qubits has been simulated in optical lattices being
capable of detecting and correcting the errors [26]. The
model has been the subject of several studies and many
features of the model have already been revealed, ranging
from error threshold [27], robustness [28–30], entanglement
properties [31], and interesting quasiparticle excitations [32].

B. Effective low-energy description of A2 and A3 phases

The nature of the A2 phase and low-energy physics of
the Hamiltonian (1) in the limit Jx � Jy,Jz, to the best of
our knowledge, is not a priori known. A similar limit for
the Kitaev model on the honeycomb lattice has already been
studied in Refs. [33,34]. As discussed above, the phase A3

arises in the limit Jy � Jx,Jz. Thus, we need to study one of
them. We argue how the ruby lattice in the isolated-dimer limit
is connected to a triangular lattice, and we set up a perturbative
picture in the low-energy sector of the RCC model based on
degenerate perturbation theory which is applied directly to the
(Jx � Jy,Jz) limit of the Hamiltonian (1).

The ruby lattice in the isolated-dimer limit is connected to
a triangular lattice as shown in Figs. 3(d)–3(f). This is best
perceived by coloring the hexagons and the rectangles of the
ruby lattice such that each rectangle connects two hexagons
of the same color in the long direction and shares the same
color with the hexagons. Following such coloring rules, the
resulting colored ruby lattice is illustrated in Fig. 3(e). Next
we replace the red links of the ruby lattice by red sites which
shrink the hexagons and rectangles of the ruby lattice into
down and up triangles labeled by �c and �c, respectively
[see Fig. 3(g)]. The subscript c ∈ {r,b,g} denotes the color of
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FIG. 3. The connection between the original ruby lattice and
effective honeycomb (a–c) and triangular (d–f) lattices corresponding
to shrinking of blue triangles and red links to sites v. These limits,
in the degenerate perturbation theory, correspond to Jz � Jx,Jy and
Jx � Jz,Jy yielding effective Hamiltonians (2) and (6), respectively.
(g) Examples of the transformation of a blue hexagon and red
rectangle to down triangle �b and up triangle �r , respectively. (h) A
ruby plaquette and its corresponding triangular cluster in the effective
language. The plaquette spin operators appearing in Hamiltonian (6)
are further shown by notations x ≡ τ x and z ≡ τ z.

the reduced triangles. The ruby lattice is then reduced to a
triangular lattice labeled by �̃; see Fig. 3(f).

Next we use degenerate perturbation theory in the limit
Jx � Jy,Jz to derive an effective model on the triangular
lattice �̃. Before that, let us for simplicity rotate the Hamilto-
nian (1) such that (sx,sy,sz) → (sz,sy, − sx) and then write it
in the form H = H0 + V where H0 is the unperturbed diagonal
part and V is the perturbation represented by

H0 = −Jx

∑
r−link

sz
i s

z
j , (3)

V = −Jy

∑
g−link

s
y

i s
y

j − Jz

∑
b−link

sx
i sx

j , (4)

where i,j denote the nearest neighbors on the bonds of
the ruby lattice. In the extreme case where Jy,Jz = 0, the
system is composed of isolated red dimers, where its ground
state is given by |↑↑〉 and |↓↓〉 ferromagnetic states on
the red links. The ground state of the system is therefore
2Nd -fold degenerate (where Nd = N/2 is the number of red
dimers) with ground-state energy E0 = −NdJx . Excitations
of the model correspond to antiferromagnetic red dimers that
each cost 2Jx , i.e., the first excited state of the system is
2Nd × 2Nd−1-fold degenerate and has a total energy E1 =

E0 + 2Jx . Effects of Jy,Jz = 0 interactions can further be
studied perturbatively, around the strong Jx couplings.

As we pointed out, the red dimers of the ruby lattice are
equivalent to the vertices of the effective triangular lattice �̃.
We therefore label each dimer by an index v and define a
projection operator on each dimer:

Pv = |⇑〉〈↑↑| + |⇓〉〈↓↓|, (5)

where |⇑〉 and |⇓〉 are effective spin-1/2 on the vertex v of
lattice �̃. The ground state of H0 is massively degenerate,
and a weak perturbation V lifts the degeneracy substantially.
The low-energy sector then can be described by an effective
Hamiltonian arising at the third order of perturbation. The
details of the calculation are given in Appendix A. The
effective Hamiltonian reads as

H
(3)
eff = e0 + J�

∑
�∈�̃

A� + J�
∑
�∈�̃

B� (6)

where

e0

N
= −1

2
− J 2

y

2Jx

− J 2
z

Jx

− J 3
y

J 2
x

, (7)

J� = 3J 3
y

2J 2
x

, J� = 3JyJ
2
z

2J 2
x

, (8)

A� = −
∏
v∈�

τ x
v , (9)

B� = −
∏
v∈�

τw
v , w =

{
x, if v ∈ V
z, if v ∈ E , (10)

where τα
v (α = x,z) are the pseudo-Pauli operators acting on

space spanned by |⇑〉 and |⇓〉 states. On the triangular lattice
�̃, each �c triangle is surrounded by three �c̄ triangles and
shares three edges with them and is further connected to three
� ¯̄c triangles through its corners. Here the color changing bar
operators are defined as

r̄ = g, ḡ = b, b̄ = r. (11)

Figure 3(h) illustrates an example of a down triangle �g

which shares edges with the three neighboring up triangles �b

and is connected to three other up triangles �r at its corners.
Denoting the group of shared edges (vertices) by E (V), the
structure of the B� plaquette operator in Eq. (10) becomes
clear.

Other orders of perturbation rather contribute to the ground-
state energy as an energy shift or produce terms that are always
products of A� and B� plaquette operators. The overall low-
energy effective theory of the RCC in the isolated-dimer limit
is therefore given by Eq. (6). Unlike the TCC model, which
is exactly solvable, the anticommutation of some plaquette
operators appearing in Eq. (6) obscures the exact solution. It
is easy to see that {Bc

�,Bc′
�} = 0 when triangles share a site.

Nevertheless, as shown in Appendix B, the model possess the
Z2 × Z2 gauge symmetry.

We, therefore, numerically explore the energy spectrum
of Eq. (6). In the extreme limit where J� = 0, the energy
spectrum of Heff is gapped as shown in Fig. 4. The most left
pillar of the spectrum clearly shows the large gap between
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FIG. 4. Left: Energy spectrum of the effective Hamiltonian (6) for
J� = 0.048 and varying J� obtained by ED on periodic triangular
clusters with 24 sites. Right: Scaling of the energy gap � between
the two lowest-energy levels for different couplings in the A2 phase.
The gap approaches zero by increasing the system size, indicating the
gapless nature of the A2 phase.

the degenerate ground states and the excited states of the the
effective Hamiltonian (6) at J� = 0. The energy spectrum of
the effective Hamiltonian (6) is studied by gradually increasing
J�. Surprisingly, even a very small J� would drastically
change the energy spectrum and breaks the degeneracy of
the ground state at J� = 0 coupling. Splitting of the energy
levels at the bottom of the spectrum for different regimes of
J� is clearly shown in Fig. 4.

In order to determine if the energy spectrum of the A2

phase is gapped or gapless, we performed scaling over the
energy gap between the two lowest eigenstates of the effective
Hamiltonian (6) in the (J�,J� = 0) limits for different system
sizes on triangular lattice �̃ with N = 12,18,24. The scaling
was performed for different J�,J� couplings and (Jx,Jy,Jz)
were chosen to make sure we are deeply in the A2 phase (see
Fig. 4). Our results certify that the energy gap approaches zero
by increasing the system size indicating the gapless nature of
the A2 phase. The same fact holds for the A3 phase up to the
interchange of Jx and Jy couplings.

V. SUMMARY AND OUTLOOK

In this work we used numerical and perturbative methods
to map out the phase diagram of the RCC model with Z2 ×Z2

gauge symmetry, and the main results are summarized in
Fig. 2(b). We found three distinct phases present in the phase
diagram separated from each other by three phase boundaries
met at a multicritical point: (i) the A1 is a gapped phase
arising in the strong Jz coupling, the low-energy excitations
of which are known to have Abelian statistics, and (ii) the
A2 and A3 are two gapless phases arising in the regimes of
couplings where either Jx or Jy , respectively, is the strongest
one. The low-energy descriptions of latter phases are given by
a three-body effective Hamiltonian (6) on the triangular lattice.

The latter phases are not continuously connected to a
trivial paramagnetic phase in the presence of a magnetic
field; see Appendix C for details. Indeed, we found there is a
regime where the spectrum becomes gapped in the presence

of a magnetic field. This behavior is not dissimilar to the
magnetic field-induced gapped phase, the B phase in Fig. 2(a),
in the Kitaev honeycomb model [7]. To determine whether
the gapped phase is possibly a topologically ordered phase,
we evaluated the topological entanglement entropy (TEE).
The results are shown in Fig. 7. In contrast to the trivial
polarized phase, which gives zero for TEE, the nonzero
value of TEE in the gapped phase points to a distinct
feature of this phase; the ground state could be topologically
ordered.

The exact determination of the nature of excitations in A2

and A3 phases is, however, rather elusive due to the lack of the
exact solutions of the RCC model (1) and three-body effective
interactions (6). However, we present a possible scenario
below. We use an analogy with the Abelian and non-Abelian
phases of the Kitaev model. The very low-energy description
of the former is given by four superselection sectors: the
vacuum 1, the magnetic m and electric e particles, and the
fermion ε = e × m. The latter phase is described by three
superselection sectors: the vacuum 1, the Ising anyons σ , and
the fermion ε. A connection between Abelian and non-Abelian
Ising anyons has already been put forward [35,36]. Especially,
it is shown that the σ particles can be identified form a
superposition of strings of m and e anyons [35]:

|σ1σ2; ±〉 = 1√
2

(|e1e2〉 ± |m1m2〉), (12)

where e1 and e2 are the end points of an open string;
the same holds for m1 and m2. The Z2 × Z2 Abelian
gapped phase is basically two copies of the toric code
model [37–39]. Thus, we expect the same construction
can be used to identify the possible Ising anyons in
the RCC model. The low-energy sector of the Abelian
phase is described by 16 superselection sectors [20,32]:
the vacuum 1, the anyons {er,eb,eg,mr,mb,mg}, bosons
{er × mr,eb × mb,eg × mg}, and the fermions {er × mb,er ×
mg,eb × mr,eb × mg,eg × mr,eg × mb}. Note that er × eb ×
eg = 1 and mr × mb × mg = 1 due to Z2 × Z2 symmetry.
Superposing the anyonic states, we obtain the Ising anyons
as follows:

∣∣σ c
1 σ c

2 ; ±〉 = 1√
2

(∣∣ec̄
1e

c̄
2

〉 ± ∣∣m ¯̄c
1m

¯̄c
2

〉)
. (13)

This suggests that two classes of colored Ising anyons, due
to Z2 × Z2 symmetry, may arise in the gapless phases of the
RCC model upon adding time-reversal breaking perturbations.
Therefore, we conjecture that the Abelian A1 phase undergoes
a phase transition to A2 and A3 phases with colored Ising
anyons σ c. Viewed the topological color code as two coupled
toric code models [37–39], it suggests that the construc-
tion (13) could be a spin analog of coupled bilayer fractional
quantum Hall states with Z2 symmetry. It is shown that for
latter systems the condensation of Abelian anyons in the layers
via a phase transition leads to rich structure for non-Abelian
anyons such as Ising × Z2 and Ising × Ising [40,41]. However,
understanding the precise connection of this scenario to A2 and
A3 phases requires more elaborative numerical studies, which
can be a subject for future study.
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APPENDIX A: DEGENERATE PERTURBATION THEORY

In this section, we study the low-energy physics of the
RCC Hamiltonian (1) in the Jx � Jy,Jz limit. Considering
H0 [Eq. (3)] as diagonal part of the RCC Hamiltonian, the
effect of the remaining parts [Eq. (4)] on H0 can be studied
as perturbation V . As we have pointed out in Sec. IV, H0

has a highly degenerate ground-state subspace and a weak
perturbation can lift the degeneracy substantially. We therefore
apply the DPT technique based on the projection operators
and Green’s-function formalism [42] to extract the low-energy
effective theory of the RCC model. Denoting the degenerate
ground-state subspace of the diagonal unperturbed part, H0,
by C, the projection of any state |�〉 to this subspace is given
by |�0〉 = P|�〉 where

P =
∏
v

Pv (A1)

and Pv , defined in Eq. (5), is the projection from the |↑↑〉, |↓↓〉
physical qubits on sites i,j of a red dimer on the ruby lattice
� to logical qubits on the vertex v of the effective triangular
lattice �̃. The projected state |�0〉 then satisfies the effective
Schrödinger equation in a perturbative level[

E0 + PV

∞∑
n=0

GnP
]
|�0〉 = E|�0〉 = Heff|�0〉, (A2)

where G = 1
E−H0

(1 − P)V . The ground-state energy E can
then be expanded in a series in perturbation parameters (Jy,Jz

in our case) within the degenerate manifold

E = E
(0)
0 +

∞∑
k=1

E
(k)
0 , (A3)

where k is the order of perturbation.
According to the particular form of Eq. (4), the perturbation

V would be a product of sx and sy Pauli operators, which act
on different green and blue bonds of the ruby lattice in different
orders of perturbation and take the ground-state subspace to
the excited state. However, there are particular configurations
of the bonds by acting on which the ground-state subspace is
projected to itself, i.e., preserves the ferromagnetic configura-
tions of the dimers.

At zeroth order of perturbation, the effective Hamiltonian
is denoted by H

(0)
eff = E

(0)
0 . The first-order contribution is given

by

H
(1)
eff = PVP. (A4)

It is straightforward to check that the action of any two-body
perturbation of the form sw

i sw
j (w = x,y) on green and

blue links excites two red bonds to their antiferromagnetic
configurations and takes the system out of its ground-state
manifold. Therefore,PVP = 0 in the first order. In the second

order of perturbation, the effective Hamiltonian reads

H
(2)
eff = PV SVP, (A5)

where S = 1/(E(0)
0 − H0). The second order consists of two

V terms and the only nonzero contribution which keeps the
system in its ground-state subspace originates from those
processes, wherein the two V terms double touch the blue and
green bonds. In other words, the first V excite two red dimers
connected by a blue or green link to their excited states and the
second V returns them back to their original state. Therefore,
in the second order the effective Hamiltonian acts trivially
on the ground-state manifold and just shifts the ground-state
energy by

H
(2)
eff = − J 2

y

2Jx

N − J 2
z

Jx

N, (A6)

where N is the number of lattice sites.
Order 3 is by far the most interesting because the first non-

trivial terms emerge at this order. The effective Hamiltonian at
order 3 is given by

H
(3)
eff = PV (SV )2P. (A7)

There are particular products of green and blue bonds,
which map the subspace of the system to itself and break
the degeneracy of the ground-state manifold:∏

〈ij〉∈g,b−link

sw
i sw

j , w = x,y. (A8)

Heff at the third order contains three V terms which can act in
two different ways with nontrivial outcome on the ruby lattice
as depicted in Fig. 5. The first nontrivial term emerges from the
product of three s

y

i s
y

j on the green bonds of the inner hexagons
of a plaquette on the ruby lattice [see Fig. 5(a)]. Such a product
shrinks the inner hexagon of a ruby plaquette with color c to a
down triangle �c and encodes a logical −τ x

v operator on each
vertex v of the �c triangle. This can explicitly be seen from
the following relation:

Pvs
y

i s
y

j Pv = −|⇑〉〈⇓| − |⇓〉〈⇑| = −τ x
v , (A9)

where Pv is the projector defined in Eq. (5). Therefore,
the expression (A8) at order 3 encodes the three-body

(a)

s y s yPv Pv =- 1
x

2 3
1

6

2

5
4

3
s 1
y s 2

y

s 3y
s 4y

s
5

ys
6

y

=

==

- 1
x

- 2
x

- 3
x

g

s x s xPv Pv = 3
x

3 4
2

s y s xPv Pv =i 2
z

s1
x s3

x

s2
x s4

x

1

2

4

3

s 1
y s 2

y

= =

= 3
x

i 1
z

i 2
z

b
(b)

FIG. 5. The pictorial demonstration of the action of Heff in order
3 of perturbation which shrinks the hexagons and rectangles of the
ruby lattice to the up and down triangles and encodes effective Pauli
operators on the vertices v of the triangles. (a) Emergence of �g and
(b) �b triangles and the corresponding plaquette operators.
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plaquette operator A� (9) on the �c triangles of the
lattice �̃.

The next nontrivial term emerges from the action of two
sx
i sx

j on blue links and one s
y

i s
y

j on the green bond of the
rectangles of the ruby lattice as shown in Fig. 5(b). The action
of V then maps the the red dimer of the rectangle to an effective
vertex and encodes a logical τ x

v operator on it. This process
further encodes two logical iτ z

v operators on the remaining
vertices of the rectangle. As a result, the rectangle with color
c is reduced to an up triangle �c. The projection can be best
understood by noting that

Pvs
x
i s

y

i Pv = Pvis
z
i Pv = i|⇑〉〈⇑| − i|⇓〉〈⇓| = iτ z

v , (A10)

Pvs
x
i sx

j Pv = |⇑〉〈⇓| + |⇓〉〈⇑| = τ x
v . (A11)

These operators all together encode the B� plaquette opera-
tor (10) acting on the �c triangles the lattice �̃.

There is also another term at order 3 which arises from
the action of three sx

i sx
j on the three connected bonds of a

blue triangle on the ruby lattice which has a trivial action
on the ground-state subspace and just shifts the ground-state
energy. The low-energy spectrum of the system at order 3 of
perturbation is then given by Hamiltonian (6).

Similar to order 2, the fourth order also shifts the ground-
state energy, trivially. However, starting from order 5, the
nontrivial terms which break the degeneracy again start to
appear in the ground-state manifold. One can check that these
new terms are always the products of A� and B� plaquette
operators. The overall low-energy effective theory of the ruby
color code model in the isolated-dimer limit is therefore given
by Eq. (6).

APPENDIX B: STRING OPERATORS AND INTEGRALS
OF MOTION IN THE A2 PHASE

In the previous section, we showed that the low-energy
physics of the A2 phase is described by the effective Hamil-
tonian (6). With a closer look at the model and the effective
lattice �̃ as shown in Fig. 3(f), one can notice that the following
commutation relations hold for the A� and B� plaquette
operators:

[
Ac

�,Ac
�
] = [

Ac
�,Ac′

�
] = 0, (B1)[

Ac
�,Bc

�
] = [

Ac
�,Bc′

�
] = 0, (B2)[

Bc
�,Bc

�
] = 0, (B3)[

Bc
�,Bc′

�
] = 0 if they share no sites, (B4){

Bc
�,Bc′

�
} = 0 if they share a site. (B5)

Due to the latter anticommutation relation, Eq. (B5), the
effective Hamiltonian (6) is not exactly solvable. However,
the A� operator commutes with all terms of the Heff and is
therefore the integral of motion (IOM). It is possible to show
that the effective model further possesses two other IOMs
which can be produced either by the products of certain A�
and B� operators or by going to high orders of perturbation,
as will be shown subsequently.
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=
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FIG. 6. (a–c) Top: The links which are touched by sw
i sw

j

(w = x,y) interaction in orders 15,12, and 3 with the net effect
of producing BA

f ,BB
f , and BC

f elementary IOMs on the triangular
lattice, respectively. (a–c) Bottom: The effective elementary IOMs
on the triangular lattice. The black stars denote the A�,B� operators,
which their product contributes in the structure of the elementary
IOM operators.

The second IOM of the model emerges at order 12
of perturbation. Similar to the procedure we envisaged in
Appendix A, there is a particular configuration for the action
of two-body perturbations where six s

y

i s
y

j and six sx
i sx

j act on
the green and blue links of the ruby plaquette as shown in
Fig. 6(a) (top). The action of V terms then projects the ground
state to itself by reducing the red links of the lattice to effective
vertices and encode the BA

f plaquette operator on the logical
qubits as illustrated in Fig. 6(a) (bottom). The corresponding
effective operator is given by

B
A(B)
f = −(+)

∏
v

τw
v , w =

{
x, if v ∈ V
z, if v ∈ E (B6)

where V (E) are the edges (vertices) shared by �c and its
surrounding �c̄ (� ¯̄c) triangles.

The last elementary IOM, BB
f , is a closed string which

appears at order 15 from the action of three s
y

i s
y

j and twelve
sx
i sx

j terms, respectively on the green and blue links of the
ruby plaquettes according to the convention shown in Fig. 6(b)
(top). The BB

f plaquette operator is defined in Eq. (B6) and
demonstrated in Fig. 6(b) (bottom).

Defining BC
f = A�, it is immediately followed from the

above relations that, locally, BA
f BB

f = BC
f and the local

Z2 × Z2 symmetry of the RCC model is restored in the
Jx � Jy,Jz limit. One can also check that the BA

f and BB
f

plaquette operators can alternatively be constructed from the
product of A�,B� operators located inside BA

f and BB
f . The

contributing A�,B� operators in the structure of each IOM
are denoted by black stars in Fig. 6.

On a triangular lattice with Nt = N/2 sites (N is the number
of sites on the ruby lattice), there exist Nt/3 IOMs of each type
(A,B,C) and the total number of Nt elementary IOMs. The
model therefore, possesses 2Nt independent IOMs.
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APPENDIX C: RCC IN A MAGNETIC FIELD

In this section, we study the stability of the gapless phases in
the presence of a magnetic field in the z direction, by analyzing
the original RCC model (1) for JA2 = (1.4,0.4,0.2) couplings.
The RCC Hamiltonian in the presence of the magnetic field is
given by

H ′ = −
∑

α=x,y,z

Jα

∑
α−links

sα
i sα

j − hz

∑
i

sz
i . (C1)

In the extreme case where hz = 0, the system is in the A2

phase, which according to our numerical results (see Sec. IV)
is a gapless phase. However, in the high magnetic field limit
where Jα = 0, (α = x,y,z), the Pauli spins are all aligned in
the field direction and the ground state of the system is given by
a polarized phase in the z direction. The low-lying excitations
over this polarized ground state are denoted by single spin flips
each with 2hz energy cost. The system is therefore gapped.
When all couplings are nonzero, at least a phase transition
between the A2 gapless phase and the gapped polarized phase
of the high-field limit is expected. Other intermediate phases
may also emerge in between. In order to capture the possible
phase transitions, we calculated the energy gap of the system
as a function of hz, as well as the ground-state energy of the
system and its derivatives.

The energy gap for different values of magnetic field hz is
shown in the upper panel of Fig. 7. The results show that the A2

gapless phase is stable up to a finite field at hc1
z ≈ 0.05 where a

phase transition occurs to an intermediate gapped phase. This
latter phase is not continuously connected to a trivial polarized
phase arising at high magnetic field. Indeed, a second phase
transition to a polarized phase occurs at hc2

z ≈ 0.11. In the inset
of this plot we also show the SDE with respect to hz; it clearly
shows two phase transitions signaled by divergences of SDE.

The intermediate gapped phase could be a topological phase
distinct from a trivial paramagnetic phase. To explore the
topological properties, a natural way would be to evaluate the
topological entanglement entropy of gapped phases. Given a
normalized wave function |φ〉 and a partition of the system into
subsystems A and B, the reduced density matrix of subsystem
A is given by ρA = TrB |φ〉〈φ|. The von Neumann entropy
S = −Tr(ρA log2 ρA) measures the entanglement between two
subsystems. For a two-dimensional topologically ordered
gapped phase, the latter quantity assumes an area law scaling
as S = αL − γ + O(1/L) [43,44], where L is the length of
the region A with smooth boundary. In this expression the first
term arises from the nonuniversal and local contribution of
the entanglement entropy. The second term γ , however, is a
universal constant being a signature of a topologically ordered
phase. A distinctive feature of a topological phase is signaled
by nonzero γ . We evaluated γ as a function of magnetic field
hz for gapped phases. The results are shown in the lower panel
in Fig. 7. It shows that the TEE is nonzero in the intermediate

∂2 hz
 ε
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2

4

 

hz

0 0.05 0.1 0.15 0.2 0.25Δ
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0.3

0.4

0.5

0.6

0.7

0.8
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0 0.05 0.1 0.15 0.2 0.25

N=18

FIG. 7. Upper panel: Energy gap of Hamiltonian (1) as a function
of magnetic field in the z direction obtained from ED on the ruby
clusters with 18, 24 sites. The inset demonstrates the second derivative
of ground-state energy with respect to hz. The red dashed lines in
the inset further demonstrate the location of the transition points.
Lower panel: Topological entanglement entropy (TEE) calculated
for gapped phases. TEE drops to zero at hz ≈ 0.11 where a phase
transition between a topological phase and a trivial polarized phase
occurs.

gapped phase and drops to zero at the phase transition to the
trivial polarized phase.

Let us note that the determined phase boundary suffers
from the finite-size effects and more accurate results might be
obtained by performing the calculations on larger lattice sizes
using more powerful numerical arsenals. However, the nonzero
TEE for small magnetic fields and its transition to zero TEE
for hz > 0.11 is a clear signature of two topologically distinct
phases.
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