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In this paper, we investigate how nonlocal correlations affect, selectively, the physics of correlated electrons
over different energy scales, from the Fermi level to the band edges. This goal is achieved by applying a
diagrammatic extension of dynamical mean field theory (DMFT), the dynamical vertex approximation (D�A),
to study several spectral and thermodynamic properties of the unfrustrated Hubbard model in two and three
dimensions. Specifically, we focus first on the low-energy regime by computing the electronic scattering rate
and the quasiparticle mass renormalization for decreasing temperatures at a fixed interaction strength. This
way, we obtain a precise characterization of the several steps through which the Fermi-liquid physics is
progressively destroyed by nonlocal correlations. Our study is then extended to a broader energy range, by
analyzing the temperature behavior of the kinetic and potential energy, as well as of the corresponding energy
distribution functions. Our findings allow us to identify a smooth but definite evolution of the nature of nonlocal
correlations by increasing interaction: They either increase or decrease the kinetic energy w.r.t. DMFT depending
on the interaction strength being weak or strong, respectively. This reflects the corresponding evolution of the
ground state from a nesting-driven (Slater) to a superexchange-driven (Heisenberg) antiferromagnet (AF), whose
fingerprints are, thus, recognizable in the spatial correlations of the paramagnetic phase. Finally, a critical analysis
of our numerical results of the potential energy at the largest interaction allows us to identify possible procedures
to improve the ladder-based algorithms adopted in the dynamical vertex approximation.
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I. INTRODUCTION

The theoretical treatment of electronic correlations poses
one of the major challenges to contemporary condensed
matter physics. In fact, whenever the application of weak- or
strong-coupling perturbative expansions is not possible, there
are only a few situations for which rigorous analytical and/or
numerical approaches are available. These include the limiting
cases of one (1d) and infinite dimensions, where Bethe-
Ansatz solutions [1,2], density matrix renormalization group
(DMRG) [3,4]/matrix product states (MPS) [5] approaches,
and the dynamical mean field theory (DMFT) [6], respectively,
have been successfully applied in the last decades.

No comparably powerful scheme, however, is presently
available for treating the physically relevant cases of correlated
electrons in two and three dimensions. Here, the intrinsic geo-
metrical property of having more space directions at disposal
changes radically the physics w.r.t. the one-dimensional case,
preventing any straightforward generalization of the rigorous
approaches of 1d to higher dimensions. At the same time,
the limited (finite) connectivity of 2d and 3d lattices does not
justify any longer the application of mean-field approximations
in space (such as DMFT) and their complete neglect of
nonlocal spatial correlations.

The same physical ingredients making hard the pathway
towards a full theoretical understanding of electronic cor-
relations, however, are responsible for some of the most
exciting phenomena in solid state physics, such as, e.g.,
high-temperature superconductivity in cuprates [7–9], iron
pnictides, and chalchogenides [10] and quantum criticality in
transition metal oxides [11] and heavy fermion materials [12].
This explains the huge quest for the development of methods
in quantum many-body theory and the significant effort made

by several research groups for improving the description of
correlated electrons in two and three dimensions. Cutting edge
approaches often exploit or extend the schemes, which worked
successfully in different limiting situations. This is, for in-
stance, the case of projected entangled pair states (PEPS) [13]
methods, which aim at extending the rigorous MPS treatment
of the 1d physics to (at least) two-dimensional systems.

Here, however, we are interested in the opposite route
of exploiting the exact description of correlations in the
infinite dimensional limit (DMFT) as a starting point for
nonperturbative approximations to the (more realistic) physics
of interacting electrons confined in 3d solids or 2d layers.
This route is paved by the extensions of DMFT. Cluster ex-
tensions [14–16] allow for a rigorous treatment of short-range
spatial correlations within a finite cluster size. In situations
where long-range correlations prevail, however, diagrammatic
extensions [17–28] of DMFT are more suited as they treat
fluctuations on all length scales on equal footing. The latter
exploit the purely local two-particle vertex functions and the
(nonlocal) Green’s functions computed in DMFT as building
blocks for different Feynman-diagrammatic expansions. The
specific expansions chosen (typically finite order, ladder and/or
parquet resummations of diagrams) thus allow for the inclusion
of an important portion of long-range correlations neglected by
DMFT and its cluster extensions in two and three dimensions.

In this paper, by adopting one of the diagrammatic
extensions of DMFT, the dynamical vertex approximation
(D�A) [17,29], we present a thorough analysis of the mech-
anisms through which the purely local physics of DMFT gets
corrected by the nonlocal correlations of finite dimensions: We
will go beyond the results of previous applications of D�A and
other diagrammatic approaches, by investigating how spatial
correlations in 2d and 3d selectively operate over different
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energy scales, depending on the parameter (interaction
strength, temperature, dimension) region considered. In par-
ticular, as for the low-energy window, we will study how
the Fermi-liquid properties of correlated electrons (at weak
coupling) in 2d and 3d are progressively disfigured by
low-temperature antiferromagnetic fluctuations of increasing
strength and spatial extension. Further, we will expand our
study to the whole energy domain, by analyzing how such
fluctuations contribute to the internal energy of the electronic
system and, specifically, to its kinetic and potential counter-
parts. The latter results will be also resolved in terms of the
noninteracting dispersion of the system (εk), by studying the
evolution of the corresponding energy distribution functions
[n(ε)]. In fact, while the low-energy window analysis helps
to understand how the Fermi-liquid properties get altered by
spatial correlations, the latter study provides also insights on
how the Mott-Hubbard insulating physics is actually realized
in finite dimensions. Our numerical results of D�A will be also
supplemented by analytical expressions derived by extracting
the most relevant contributions of the corresponding D�A
equations in the limit of a large correlation length. This way,
we will be not only able to determine precisely the low-
temperature behavior displayed by our numerical data, but also
to compare it with that of complementary, semianalytic tech-
niques such as the two-particle self-consistent [30–32] (TPSC)
approach or the composite operator method [33–37] (COM).

Finally, we should also emphasize that the systematic study
of the two- and three-dimensional physics presented in this
paper is not only relevant for improving the understanding
of correlated electrons in 2d and 3d: It is also crucial to
test the reliability of the diagrammatic approach adopted
(here: the D�A) to capture the overall physics of nonlocal
correlations. In fact, diagrammatic schemes have been already
applied hitherto to important but specific problems, such as the
determination of the critical exponents in the Hubbard [38,39]
and the Falicov-Kimball model [40], the observation of a
pseudogap in two dimensions [24,41–45], or the onset of
competing superconducting instabilities [46]. However, while
the results of these selected applications have been quite
successful, the lack of almost any kind of exact solution
for the correlated physics in 2d and 3d, strongly calls for
an extensive benchmark of the overall physical description
emerging from these approaches. In particular, our systematic
study provides a comprehensive set of numerical data and
analytical trends in different coupling regimes: These can
be used for future comparisons against the results of alter-
native techniques (including other diagrammatic or cluster
extensions of DMFT, extrapolated lattice quantum Monte
Carlo [45,47,48], functional renormalization group [24,49],
etc.) in a similar spirit of the extensive benchmark review,
recently presented for the 2d Hubbard model in Ref. [50].
Even more important, our results can be also directly tested in
terms of the internal consistency of the overall picture they are
providing. This should fulfill, on its whole, specific physical
expectations such as, e.g., various sum rules. In fact, as we will
discuss in the final part of the paper, the critical cross-checked
analysis of our D�A results will be also suggestive of possible,
further algorithmic improvements for this approach.

The plan of the paper is the following: In Sec. II we
will present the D�A formalism (focusing on the most used

algorithm based on ladder diagrams resummations) and revisit
the D�A phase diagrams of the two- and three-dimensional
Hubbard model. In Sec. III the impact of nonlocal correlations
on Fermi liquid properties of the system is analyzed in detail.
Afterward, in Sec. IV, the investigation of the role of nonlocal
correlations is extended to all energy scales by analyzing ki-
netic and potential energies and energy distribution functions.
The critical analysis of the results of Sec. IV inspired us
to propose in Sec. V an improved scheme for future ladder
D�A calculations, which might be also of interest for other
diagrammatic approaches. Finally, in Sec. VI, we summarize
our results and put them in perspective of further progresses
in the nonperturbative treatment of electronic correlations in
finite dimensions.

II. NONLOCAL CORRELATIONS FROM LADDER D�A

The starting point of our study is the two- and three-
dimensional Hubbard model on a simple square (2d) and cubic
(3d) lattice, respectively

Ĥ = −t
∑
〈ij〉σ

ĉ
†
iσ ĉjσ + U

∑
i

n̂i↑n̂i↓, (1)

where t denotes the hopping amplitude between nearest
neighbors, U is the Coulomb interaction, and ĉ

†
iσ (ĉiσ ) creates

(annihilates) an electron with spin σ on site i; n̂iσ = ĉ
†
iσ ĉiσ .

We restrict ourselves to the paramagnetic phase with n = 1
electron/site (half filling) at finite temperatures T = 1/β >

TN , where TN is the transition temperature to the low-T antifer-
romagnetically ordered phase. For the sake of clarity, and in ac-
cordance with previous publications, we will define hereafter
our energies in terms of a typical energy scale D = 2

√
2d t ,

where d denotes the dimension of the system. This choice fixes
the standard deviation σ of the noninteracting density of states
(DOS) to 0.5 in all dimensions and, hence, allows for a better
comparability between results for different dimensions.

A brief remark is in order here about the conventions
adopted in the paper. As we will discuss derivations and
results for self-energies, spectral, and vertex functions on the
imaginary as well as on the real frequency axis we resort to
the following notation: iν and iν ′ will denote fermionic and
i� bosonic (imaginary) Matsubara frequencies. If used as an
argument in parenthesis, they are written in combination with
the imaginary unit i, e.g., �(iν). For the sake of readability
we omit such i when these frequencies are written in index
notation (mostly for the vertex functions), e.g., �νν ′�. A
lower case ω will always denote real frequencies. For a
detailed definition and an extensive discussion of the symmetry
properties of all relevant one- and two-particle Green’s and
vertex functions considered in this paper we refer the reader
to Ref. [51] and the supplementary material of Ref. [52].

All quantities which do not explicitly contain a momentum
argument are purely local and can be obtained from the
auxiliary Anderson impurity model (AIM) related to the
DMFT solution of model (1). For this task we have exploited
an exact diagonalization (ED) solver using Ns = 4 + 1 bath
and impurity site(s), respectively. By comparing the AIM’s
Green’s function with the local part of the corresponding
lattice Green’s function we have verified that the fitting
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procedure w.r.t. the ED discrete bath works accurately in the
considered (intermediate-T ) parameter regimes. Moreover, we
have already tested several times in previous works [23,51–53]
that, for the DMFT one- and two-particle Green’s functions,
the deviations observed between our ED calculations and
quantum Monte Carlo (QMC) results [both Hirsch-Fye and
continuous-time [54] (CT) QMC] are only marginal in the
low energy (frequency) regime. As for the high-frequency
asymptotic region of the Green’s and vertex functions, the ED
solver has the intrinsic advantage of avoiding any statistical
error compared to corresponding QMC methods. This is of
particular importance both for the numerical solution of the
D�A equations as well as for the analytic continuation of the
Matsubara self-energies by means of Padé fits.

A. D�A formalism

The D�A approach to the model (1) has been derived in
Refs. [17,55]. We briefly review here the principal equations,
focusing on the algorithmic aspects which are most relevant
for our work. The basic idea of D�A is to introduce nonlocal
correlations beyond the local ones of DMFT in the self-energy
�(iν,k) of the system. This is achieved by means of the
(Schwinger-Dyson) equation of motion (EOM)

�(iν,k) = Un

2
− U

β2

∑
ν ′�
k′q

Fνν ′�
↑↓,kk′qG(iν ′,k′)

×G(iν ′ + i�,k′ + q)G(iν + i�,k + q). (2)

In the full parquet-based version of D�A the vertex Fνν ′�
↑↓,kk′q

and the Green’s functions G(iν,k) are constructed from the
local fully irreducible vertex 
νν ′�

σσ ′ of DMFT [17]. This
requires the self-consistent solution of the numerically very
demanding parquet- and Bethe-Salpeter-equations in all scat-
tering channels [56–61]. The convergence of the full D�A al-
gorithm is made numerically very challenging also by possible
divergences [53,62,63] of the two-particle irreducible vertex
function 
νν ′�

σσ ′ in the intermediate-to-strong coupling regime.
However, if we know a priori which type of fluctuations

prevails in the system, we can restrict ourselves to the corre-
sponding Bethe-Salpeter equation in this channel, which cor-
responds to the ladder version of D�A. In this case the Green’s
function G(iν,k) in Eq. (2) is just the one obtained from
DMFT, i.e., G(iν,k) = [iν + μ − εk − �(iν)]−1. Here, μ is
the chemical potential of the system, εk = −2t

∑d
i=1 cos(ki)

denotes the bare dispersion for the square (cubic) lattice in
2(3) dimensions, and �(iν) is the purely local self-energy
calculated within DMFT from the auxiliary AIM. In the
ladder approximation the generalized susceptibility χνν ′�

r,q

(and from this of course the corresponding vertex Fνν ′�
r,q ) is

constructed by a ladder (i.e., a Bethe-Salpeter equation) in the
given channel(s) r . In the case of half filling particle-particle
fluctuations are suppressed and, hence, we restrict ourselves
to the two particle-hole channels r = (d) ensity and r = (m)
agnetic in which the generalized susceptibilities read

χνν ′�
r,q = βδνν ′χν�

0,q − 1

β
χν�

0,q

∑
ν1

�νν1�
r χν1ν

′�
r,q

= βδνν ′χν�
0,q − χν�

0,qFνν ′�
r,q χν ′�

0,q , (3)

where �νν ′�
r is the local irreducible vertex in the channel r =

d,m from DMFT and χν�
0,q = −∑

k G(iν,k)G(iν + i�,k +
q) is the bare susceptibility of DMFT. Inserting the vertex
Fνν ′�

r,q into the EOM [Eq. (2)] yields the ladder-D�A self-
energy �lad(iν,k).

It turns out that the self-energy calculated by means of plain
ladder D�A diagrams exhibits a violation of the asymptotic
behavior. This means the 1/iν-part of �lad(iν,k) would not
have the (correct) prefactor U 2 n

2 (1 − n
2 ), differently from the

exact and the DMFT solution. A more detailed discussion of
this issue is reported in Appendix A and Ref. [64]. Specifically,
there we demonstrate that the wrong asymptotics of �lad(iν,k)
is a direct consequence of a violation of the sum rules of the
physical susceptibilities χ�

r,q = 1
β2

∑
νν ′ χνν ′�

r,q .
In order to overcome this problem, following the Moriya

theory of itinerant magnetism [65], one should introduce a so-
called λ correction in the theory (see Refs. [38,55]). In practice,
this is performed by inserting one (or two) scalar parameter(s)
λm (and λd ) into our ladder D�A equations. For the practical
application of such a procedure, we have to consider two main
questions:

(i) What is the condition to fix the value(s) of λr?
One necessary condition is of course to restore the correct
asymptotic behavior of the ladder D�A self-energy. As shown
in Appendix A, this requirement is equivalent to the fulfillment
of the sum rule

1

β

∑
�q

χ�
↑↑,q ≡ 1

β

∑
�q

1

2

[
χ�

d,q + χ�
m,q

] ≡ n

2

(
1 − n

2

)
(4)

for the ↑↑ spin susceptibility. Let us stress that the above con-
dition is always fulfilled for the purely local susceptibilities of
DMFT, but will be in general violated by approximate theories
such as the ladder D�A. In this work we enforce condition (4)
by applying a λ correction only to χ�

m,q, i.e., we replace χ�
m,q

by χλ,�
m,q as defined in Eqs. (7) or (A5). The value of λ is then

fixed by the constraint [66]

1

β

∑
�q

1

2

[
χλ,�

m,q + χ�
d,q

] = n

2

(
1 − n

2

)
. (5)

The above procedure raises obviously the question whether a
similar correction should be applied to the charge susceptibility
of D�A as well. However, if we want to correct both the
charge- and the spin propagator by means of a λd and a λ =
λm, we need a second condition to fix both parameters. In a
previous work [45] the assumption that the sum rules for both
the charge- and the spin propagator coincide independently
with the corresponding local sum rules of DMFT has been
made, i.e.,

1

β

∑
�q

χλr ,�
r,q = 1

β

∑
�

χ�
r . (6)

Note that an analogous condition is exploited in the dual boson
approach [67,68]. As local DMFT correlation functions fulfill
all (local) sum rules the above condition indeed ensures the
correct particle number at the two-particle level [cf. Eq. (4)
and Appendix A]. A more formal justification of condition (6)
has been recently given in the context of the QUADRILEX
method [28] which, however, requires the solution of an
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FIG. 1. Phase diagrams of the half-filled Hubbard model on a simple square and cubic lattice in 3d (left panel) and 2d (right panel),
respectively. Data points of the main panels are reproduced from Refs. [38,39] (3d) and [45] (2d), respectively, except for the new D�A
estimate of TN at U = 4.0 in 3d . Right panel: The metal-to-insulator (MIT) transition marked in blue is the one observed in paramagnetic
DMFT calculations. Because of the strong nonlocal correlations captured by D�A calculations, in 2d the MIT is transformed into a sharp
crossover (red shaded area) which extends down to U = 0 at low T [45,69]. Inset: log [ξ ], computed in D�A for U = 0.75, as a function
of the inverse temperature β = 1/T for different sizes of the momentum grid (2Nq is the number of q points in one direction) used for the
determination of λ. The fit (orange line) has been performed in the low-T regime according to the exponential function in Eq. (14a).

AIM containing a (three-frequency dependent) dynamically
screened interaction.

The state-of-the-art λ correction schemes discussed here,
however, still present an intrinsic problem: They lead to am-
biguous results for the kinetic and potential energy of the sys-
tem within the ladder D�A scheme. Specifically, one obtains
different values for the potential and kinetic energy when cal-
culating these quantities from one- and two-particle propaga-
tors of the ladder D�A, respectively. This issue, which affects
also DMFT calculations for finite dimensional systems as re-
cently noted in Ref. [68], is discussed in more detail in Sec. V.

(ii) How can we introduce the parameters λr into the ladder
D�A equation? The most natural way of introducing the λ

corrections into the ladder D�A approach is by applying it
directly to the physical susceptibilities χ�

r,q. In practice this is
achieved by just correcting the masses of these propagators
with λr , which can be implemented by the following equation
(see Appendix A):

χλ,�
r,q = [(

χ�
r,q

)−1 + λr

]−1
. (7)

Hence, in order to include the λ corrections in the calculation
of the self-energy within the ladder-D�A approach, we have to
rewrite Eq. (2) in such a way that the physical susceptibilities
χ�

r,q appear explicitly. Following Ref. [55], this can be achieved
by separating the D�A ladders by a bare interaction vertex
Ur = +/ − U for r = d/m. Specifically, one defines the
ladder quantity �νν ′�

r,q by the Bethe-Salpeter-like equation

χνν ′�
r,q = �νν ′�

r,q − 1

β2

∑
ν1ν2

�νν1�
r,q Urχ

ν2ν
′�

r,q . (8)

From this one can derive the so-called three-legs vertex γ ν�
r,q

γ ν�
r,q = (

χν�
0,q

)−1 1

β

∑
ν ′

�νν ′�
r,q , (9)

which is the same as the three-legs irreducible vertex appearing
in the recently introduced TRILEX approach [26,27] (see
Appendix B). Expressing now Fνν ′�

r,q in terms of �νν ′�
r,q allows

us to rewrite the EOM in the case of ladder D�A in the
following form [38,55]:

�lad(iν,k) = Un

2
− U

β

∑
�q

[
1 + 1

2
γ ν�

d,q

(
1 − Uχ�

d,q

)
− 3

2
γ ν�

m,q

(
1 + Uχ�

m,q

) + 1

2β

∑
ν ′

χν ′�
0,q

×(
Fνν ′�

d − Fνν ′�
m

)]
G(iν + i�,k + q), (10)

where the term in the last line of this equations avoids the
double counting of local DMFT diagrams.

Eventually, the application of our λ-correction scheme to
the ladder D�A self-energy consists of replacing χ�

r,q by
the corresponding λ-corrected quantity χλ,�

r,q [see Eq. (7)] in
Eq. (10). Note that within this scheme the three-leg vertices
γ ν�

r,q remain uncorrected. The latter assumption is justified,
since γ ν�

r,q does not contain any physical susceptibilities and,
hence, is very little affected by nonlocal correlations as is
discussed in more detail in Appendix B.

B. Phase diagrams revisited

To place the results of this work in the context of the
previous D�A studies, let us briefly reconsider the D�A
phase diagrams for the half-filled Hubbard model in two and
three spatial dimensions as obtained in Refs. [38,45]. In the
three-dimensional half-filled Hubbard model we observe a
phase transition to an antiferromagnetically ordered phase at a
finite temperature. In the left panel of Fig. 1 the 3d transition
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temperature of D�A (red dots) is shown as a function of the
interaction parameter U and compared to recent dynamical
cluster approximation (DCA) [70] (pink diamonds), deter-
minantal diagrammatic Monte Carlo (DDMC) [71] (green
squares), and dual fermion (DF) [39] (brown triangles) results.
All methods show a clear reduction of TN compared to its
DMFT value (blue line). At weak coupling this reduction is
slightly stronger in D�A than in the other methods though
D�A results are rather close to the most recent DDMC
estimates. Possible origins of this discrepancy have been
discussed in detail in Ref. [38]. At stronger coupling (U = 4.0)
D�A data agree well with the transition temperature of the
corresponding Heisenberg model onto which the Hubbard
model can be mapped at large couplings, while DF results find
slightly higher transition temperatures. In this regime, where
only spin fluctuations survive, the ladder D�A estimate of TN

appears particularly accurate. We recall that in 3d nonlocal
correlations play an important role for one-particle (spectral)
properties in a relatively narrow temperature regime above
TN [38]. At higher temperatures, thermal fluctuations become
predominant, mitigating the D�A corrections to the local
physics of DMFT. A more refined study of how this effect
might occur differently for different physical observables will
be, however, addressed in the next sections.

In two spatial dimensions the situation changes drastically
as one can see from the corresponding phase diagram in the
right panel of Fig. 1: Due to the Mermin-Wagner theorem [72],
fulfilled in our D�A treatment, the antiferromagnetic phase
is restricted to T = 0. Previous D�A studies [45,55] have
shown that the long ranged antiferromagnetic fluctuations
responsible for the suppression of the magnetic order induce at
all values of U a crossover (red shaded area in the right panel
of Fig. 1) to a low-T insulating state. In fact, as discussed
in Ref. [45], for small U the crossover to an insulating state
takes place approximately in the temperature regime where the
rate of growth of the (AF) spin correlation length (ξ ) becomes
exponentially large. The low-T behavior of ξ (T ) ∼ ec/T is
explicitly shown in the inset of the right panel of Fig. 1, which
supports, refining them, the results of Ref. [45]: By plotting
log ξ as a function of the inverse temperature (β) and studying
the behavior as a function of increasingly denser momentum
grids (for the precise determination of the λ corrections), one
sees how, at U = 0.75, a direct proportionality sets in at an
inverse temperature of β ≈ 45, matching very well the onset
of the crossover region in the 2d phase diagram.

In the following sections, we still start from these general
D�A descriptions of the 2d and 3d physics, to analyze
more profoundly the microscopic mechanisms at work and,
in particular, how the underlying nonlocal correlations are
operating selectively for different energy scales in the various
cases considered.

III. D�A RESULTS NEAR THE FERMI SURFACE

Nonlocal correlations do not only affect two-particle
response functions such as the magnetic susceptibility χ�

m,q
and, hence, phase transitions and the associated critical
phenomena [38–40] described in the previous section. They
also have a crucial impact on one-particle properties such as
self-energies and spectral functions. At low energies (i.e., near

the Fermi surface) nonlocal correlations change the Fermi
liquid nature of the system described by DMFT, leading
eventually to a breakdown of the Fermi liquid behavior. The
way how this happens, however, is absolutely not trivial. In
fact, the temperature at which the Fermi liquid breakdown can
be observed in a specific physical observable is not necessarily
the same for all observables. Specifically, we will show in the
following that while the self-energies and spectral functions of
the half-filled Hubbard model itself exhibit a Fermi-liquid-like
structure down to moderately low temperatures above TN ,
the temperature dependence of the self-energy and—more
precisely—of the low-energy coefficients [for the definition
see Eqs. (12)] extracted from it already feature a non-
Fermi-liquid behavior at substantially higher temperatures.
This scenario emerges clearly from our D�A data and will
be discussed extensively in comparison with DMFT in the
following two sections.

A. Self-energies and spectral functions

We will start with an analysis of the retarded self-energy
on the real frequency axis and the corresponding spectral
functions in two dimensions at U = 0.75 obtained from DMFT
and D�A. To this end we have performed Padé fits (for details
see Appendix H) for our self-energy data on the Matsubara
axis for the two arguably most relevant k points on the Fermi
surface, i.e., the so-called nodal point kN = (π/2,π/2) and the
antinodal point kA = (π,0). For each of the two k points we
have conducted calculations at three different temperatures.
The results for the nodal point are shown in Fig. 2. In the case
of DMFT, one observes a Fermi-liquid-like structure of the
self-energy for all temperatures, as is expected for a small value
of the interaction: At low energies, the slope of the real part of
�(ω,kN ) is always negative leading to the typical quasiparticle
mass enhancement m → m∗ = (1 + αk)m [for the definition
of αk see Eq. (12a)]. Correspondingly, the imaginary part
always exhibits a maximum (i.e., a minimum in absolute value)
around ω = 0 indicating a minimal scattering rate for the
quasiparticles at the Fermi energy. These observations are well
reflected in the DMFT spectral functions where one observes
the typical Fermi liquid quasiparticle peak at ω = 0 for all
temperatures.

Nonlocal antiferromagnetic correlations taken into account
by D�A change the situation drastically: At the highest
temperature β = 35 these correlations are rather weak since
the system is far away from the T = 0 antiferromagnetic phase
transition. In this case, no qualitative difference to the DMFT
data is found (in fact, though not visible on the scale of the plot,
a very tiny maximum in the imaginary part of the self-energy at
ω = 0 is found in the data). This Fermi liquid behavior can be
also seen in the D�A spectral function, where a quasiparticle
peak—albeit strongly broadened compared to DMFT—is still
present. Our results, hence, indicate that nonlocal fluctuations
are still moderate at the considered temperature. This agrees
well with the fact that at β = 35 the system has not yet entered
the critical regime in the 2d phase diagram (see right panel
of Fig. 1) characterized by an exponential growth of the
correlation length with decreasing temperature [31,45] (see
Sec. II B). The situation changes remarkably at the lower
temperature β = 45, which is of the order of the crossover
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FIG. 2. Self-energies and spectral functions of the 2d Hubbard model at the nodal point [kN = (π/2,π/2)] for three (decreasing)
temperatures β = 35 (first row), β = 45 (second row), and β = 50 (third row). In the first column the Matsubara self-energy from DMFT (blue
squares) and D�A (purple pentagons) and their corresponding Padé fits (continuous lines) are shown as a function of the (fermionic) Matsubara
index 2n + 1 = νβ/π . In the second column the real and imaginary parts of the (retarded) self-energy are reported. The corresponding spectral
functions of DMFT and D�A, respectively, are plotted in the third column of the figure.

temperature in 2d: While the Matsubara self-energy (first
panel in the second line of Fig. 2) may still suggest a Fermi
liquid behavior, the Padé fit already displays a change in
curvature when approaching zero frequency, i.e., it bends down
slightly for ν → 0. This behavior is reflected in the real and
the imaginary parts of the (retarded) self-energy on the real
axis (second panel in the second line): Re�(ω,kN ) shows
already a positive—albeit very small—slope at ω = 0, while
Im�(ω,kN ) has a clear dip at the Fermi level. Both features
are definite hallmarks of the breakdown of the Fermi liquid
behavior of the system at the given temperature. Somewhat sur-
prisingly, this breakdown is not clearly visible in the spectral
function of the system, as it can be observed in the third panel
of the second row in Fig. 2: At ω = 0 we still see a “peak”—
albeit enormously broadened—suggesting the existence of
quasiparticles compatible with a Fermi liquid description of the
system.

The unexpected dichotomy can be, however, understood
by means of the following analytical considerations: The
necessary and sufficient condition for the existence of a
(non-Fermi-liquid/pseudogap) dip in the spectral function at
ω = 0 is that its second derivative is larger than zero. Hence,

expressing the spectral function in terms of the real and the
imaginary part of the self-energy, one gets the following
condition for the presence of a dip in the spectrum (for the
explicit derivation see Appendix C):[

d2

dω2
Im�(ω,k)

]
ω=0

> 2
1 − α2

k

γk
, (11)

where the coefficients αk and γk (mass renormalization and
scattering rate in the Fermi liquid regime) are defined in the
standard way as:

αk = −
[

d

dω
Re�(ω,k)

]
ω=0

(12a)

γk = −Im�(k,ω = 0). (12b)

Equation (11), however, can be violated also for a non-Fermi-
liquid self-energy (i.e., where the second derivative of the
imaginary part of the self-energy at ω = 0 is already larger
than 0). This may happen if αk is sufficiently small and, hence,
the right hand side of this inequality becomes considerably
large. In our numerical data at β = 45 we find indeed a very
small slope of the real part of the D�A self-energy (see second
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panel in the second row of Fig. 2) consistent with the peculiar
situation of the absence of a dip in the spectral function, as the
right hand side of Eq. (11) becomes pretty large [73].

On the other hand, in the standard case of a non-Fermi liquid
with (d2/dω2)Im�(ω = 0,k) > 0 and αk < −1 Eq. (11) is
always satisfied and, hence, the existence of a dip in the spectral
function is guaranteed. This more conventional situation can
be observed at the lowest considered temperature β = 50
(third line of Fig. 2): Here already the self-energy on the
Matsubara axis clearly indicates the non-Fermi-liquid behavior
of the system (first panel) by an abrupt change of curvature at
the lowest Matsubara frequency. This matches the positive
slope of the real part of the self-energy on the real axis
(corresponding to a negative value of αk) and the strong dip
of the corresponding imaginary part at ω = 0 (second panel).
Consistent with Eq. (11), thus, the non-Fermi-liquid dip in
A(ω) becomes clearly visible in the numerical data. This
demonstrates the full destruction of all Fermi liquid spectral
properties by nonlocal correlations at β = 50.

An analogous analysis has been performed for the self-
energies and spectral functions at the antinodal point. Because
of the overall similarity, the data are reported in Appendix C.
The only difference to be mentioned is that the appearance of
the non-Fermi-liquid behavior is shifted to somewhat higher
temperatures. The reason for this is that the physics at the
antinodal point is strongly affected by the van Hove singularity
of the 2d DOS and, hence, antiferromagnetic fluctuations are
strongly effective to scatter electrons with this momentum vec-
tor. In Fig. 13 (Appendix C) we indeed observe a breakdown
of the Fermi liquid behavior already at β = 30, while at kN

we found a Fermi liquid behavior for the self-energy down to
β = 35 as discussed before. This momentum differentiated
feature is sometimes referred to as “pseudogap” behavior.
It is intensely discussed in the literature, because it can be
indeed experimentally observed, e.g., in the high-temperature
superconducting cuprates [8,41,52,74–76].

For the three-dimensional half-filled Hubbard model the
self-energies and spectral functions exhibit at weak-to-
intermediate coupling always Fermi liquid behavior down to
TN . The corresponding spectral functions have already been
reported for U = 1.0 in Ref. [38] and always show a peak at
ω = 0 (see insets in Fig. 3 in this reference). In the same paper
it has been suggested that a gap and, hence, non-Fermi-liquid
spectral features, will always appear exponentially close to the
phase transition. This statement is supported by the analytical
(paramagnonlike) calculations presented, e.g., in Ref. [31].
According to these results, the quasiparticle scattering rate γk
should diverge at the phase transition. This effect is however
not visible in our numerical D�A results. This discrepancy
motivated us to perform a detailed study of the temperature
dependence of the scattering rate γk (and the low energy
coefficients of � in general), which will be presented in the
following section.

B. Low energy coefficients

1. Numerical results

In this subsection, we present our numerical D�A results
for the coefficients defining the low-frequency behavior of the
self-energy (γk and αk), defined in Eqs. (12b) and (12a), as a

FIG. 3. Temperature dependence of low-energy coefficients of
the self-energy for U = 0.75 in 2d . Upper panel: Scattering factors
γk(T ) [for the definition see Eq. (12b)] for D�A at the nodal
[kN = (π/2,π/2)] and the antinodal [kA = (π,0)] point compared to
the corresponding DMFT data; lower panel: (Negative) slope of the
real part of the self-energy at ω = 0, i.e., αk(T ) [Eq. (12a)] for D�A
at kN = (π/2,π/2) and kA = (π,0) compared to the corresponding
DMFT data. The continuous lines represent the fits of the data points
with the analytical function given in the plot (for the analytical
derivations see the main text).

function of T . The values for γk and αk have been extracted
from the Padé fits of our Matsubara data, where the stability of
these fits (and, hence, of the final results) has been thoroughly
checked by varying the set of Matsubara frequencies used for
the fitting procedure (for details, see Appendix H).

Let us start discussing the scattering factors γk(T ) in 2d,
which are shown in the upper panel of Fig. 3. In a perfect
Fermi liquid system, these scattering rates should decrease
with decreasing temperature and eventually vanish at T = 0
as γFL(T ) ∼ T 2. Within DMFT our model is a Fermi liquid at
U = 0.75 and, though hardly visible in the scale of the plot,
we have checked that γ (T ) (blue points) indeed follows a T 2

behavior (at higher temperatures corrected by the next term in
the Sommerfeld expansion, i.e., T 4). On the contrary, in D�A
we observe a (at lower temperatures very strong) increase
of the scattering rate with decreasing temperature, which
clearly signals the non-Fermi-liquid nature of the physics.
These enhanced scattering rates at low temperatures can be
attributed to an enhanced scattering of the electrons at nonlocal
spin fluctuations, whose spatial extension grows exponentially
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FIG. 4. Same as in Fig. 3 but in 3d for U = 1.25 with kN =
(π/2,π/2,π/2) and kA = (π,π/2,0). TN denotes the finite transition
temperature to the antiferromagnetic phase obtained in D�A
(see Ref. [38]).

with decreasing temperature. Remarkably, the non-Fermi-
liquid behavior develops already at temperatures where the
self-energies and spectral functions still exhibit a definite
Fermi-liquid-like structure. In particular, for the nodal point we
recognize an increase of γkN

(T ) with decreasing temperature
already at β = 35 (T = 0.029) while the corresponding self-
energies and spectral functions in the first row of Fig. 2
are clearly compatible with a Fermi liquid description. An
analogous behavior can be observed for the antinodal point
where, at the temperatures shown in the figure, γkA

(T ) always
increases with decreasing temperature.

Let us now consider the case of 3d (upper panel in
Fig. 4). In DMFT the situation is rather conventional: γ (T )
is reduced with decreasing temperature as it is anticipated for
a Fermi liquid. On the contrary, the D�A data clearly show
a nonmonotonous behavior: While at high T one observes
a decrease of γk(T ) with temperature, when approaching
the phase transition we find an increase of γk(T ): The
two regimes are connected by a well-defined minimum of
γk(T ). As for 2d, the enhanced scattering rate observed upon
decreasing T can be ascribed to an enhanced scattering of
the electrons at nonlocal spin fluctuations. This effect is
again more pronounced for the antinodal point but since in
3d no van Hove singularity is present in the noninteracting
DOS, the difference between k points at the Fermi surface

is less marked. As it is clear from the sign of αk(T ) (lower
panel of Fig. 4)—and already anticipated in the previous
section—D�A always exhibits a Fermi-liquid-like self-energy
and spectral function down to the transition temperature [38].
Furthermore, our data suggest that the scattering rate will stay
finite even at the phase transition, in contrast to the arguments
of Refs. [31,38]. The temperature dependence of the very same
observables, however, indicates a breakdown of Fermi liquid
behavior at significantly higher temperatures above TN . Some
consequences of these observations will be discussed in more
detail in Sec. III C.

2. Analytical results and interpretation

In the following, we aim at an analytical understanding
of the low-T dependence of the D�A coefficients γk and
αk, whose numerical results have been discussed in the
previous section. To this end, we single out the dominant
contributions to the D�A self-energy �lad(iν,k) of Eq. (10)
in the limit of a large (AF) correlation length (ξ → ∞). This
leads to the following simplifications, allowing us to derive
(semi)analytical results for the D�A (cf. Appendix D for
all details): (i) We restrict Eq. (10) to the dominant classical
spin fluctuations (represented by χ�=0

m,q ) around the AF wave
vector q = (π,π,(π )) in 2(3)d. χ�=0

m,q can then be parameter-
ized through the corresponding AF correlation length ξ (T ).
(ii) We take into account the DMFT self-energy only close to
the Fermi level where it can be described solely in terms of
the low-frequency coefficients and essentially by means of the
DMFT quasiparticle scattering rate �(T ) = γ (T )/[1 + α(T )].
Considering, moreover, that the frequency and temperature de-
pendence of the three-leg vertex is negligible (see Appendix D)
the above simplifications lead to the following approximate
expressions for the D�A self-energy Eq. (10) in 2d and 3d,
whose derivation is provided in full detail in Appendix D:

�lad(ω,k) ∼= Cω
k T

∫
ddq

1

q2 + ξ−2(T )

× 1

ω + vkqx + i�(T )
, if vk ≡ |vk| �= 0

(13a)

�lad(ω,k) ∼= Cω
k T

∫
ddq

1

q2 + ξ−2(T )

× 1

ω + (
q2

x − q2
y

)/
mk + i�(T )

, if vk = 0,

(13b)

where vk denotes the Fermi velocity and mk the effective
mass of the noninteracting electrons renormalized by the
quasiparticle weight of DMFT (for the explicit definitions
see Appendix D). The frequency dependence of the prefactor
Cω

k enters through the frequency dependence of the three-leg
vertex [defined in Eq. (9)]. In Appendix E we give the definition
of this prefactor explicitly and discuss the irrelevance of its
frequency dependence for the temperature behavior of γk and
αk in the critical regime of large ξ (T ).

We should stress that Eqs. (13) are equivalent to the
corresponding relations in the TPSC of Tremblay et al.
[Ref. [31], see, e.g., Eq. (55) therein] with the only significant
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difference being that the Green’s function is not the bare
one, but it contains the quasiparticle scattering rate of DMFT.
As we will see in the following, this qualitatively alters the
expressions for the temperature dependence of the γk(T ) and
αk(T ) w.r.t. the results of the TPSC.

In order to determine the explicit temperature dependence
of γk(T ) and αk(T ) from Eqs. (13) we must also specify
the temperature dependence of the correlation length—as
computed by D�A—in the critical regime, which is of course
different in two and three dimensions. In 3d we are dealing
with a second order phase transition at finite temperatures
and, thus, ξ (T ) diverges for T → TN according to a power
law [38,39], while in 2d the correlation length exhibits an
exponential increase [31,45] when approaching the phase
transition at T = 0.

Hence, we can parametrize the correlations lengths in two
and three dimensions in the following way:

ξ2d (T ) = c1e
c2/T (14a)

ξ3d (T ) = c3(T − TN )−ν, (14b)

where c1,c2, and c3 are positive real constants, TN is the 3d

transition temperature, and ν the critical exponent. For the 3d

system we will adopt in the following the values for c3,TN

and ν given in Ref. [38] while for 2d we will leave c1 and c2

as free fit-parameters appearing in the final equations for the
coefficients γk(T ) and αk(T ).

The integrals in Eqs. (13) can be now performed analyt-
ically. The detailed calculations are similar to those in the
TPSC [31] and will be given in Appendix E. Here, we will
just discuss the final results for the parameters γk and αk as
defined in Eqs. (12) in two and three dimensions for the two
relevant k points kN and kA on the Fermi surface. In this
way, we aim at improving our understanding how long-range
antiferromagnetic fluctuations, parametrized by the correlation
length ξ (T ), affect the one-particle spectral properties of the
system.

Two dimensions, nodal point k = kN : At the nodal point
the Fermi velocity vkN

is finite and, thus, we have to solve the
integral in Eq. (13a) in 2d and extract from it the coefficients
γkN

(T ) and αkN
(T ) according to Eqs. (12). The results

read:

γkN
(T ) = CkN

T ξ (T )
2√

b2
kN

(T ) − 1
log

(
bkN

(T ) +
√

b2
kN

(T ) − 1
) + Rγ (T ), (15a)

αkN
(T ) = −AkN

T ξ 2(T )

⎡⎣bkN
(T ) log

(
bkN

(T ) +
√

b2
kN

(T ) − 1
)

[
b2

kN
(T ) − 1

]3/2 − 1

b2
kN

(T ) − 1

⎤⎦ + Rα(T ), (15b)

where CkN
and AkN

are temperature independent constants
determined from Cω

k (see Appendix E) and Rγ (T ) and Rα(T )
denote the regular terms which do not diverge (or even go to
0) when T → 0. The quantity bkN

(T ) is given by

bkN
(T ) = �(T )ξ (T )

vkN

. (16)

Let us now analyze Eqs. (15) for two important limiting
cases of the parameter bkN

(T ): First, if �(T ) ≡ 0 and, hence,
bkN

(T ) ≡ 0, we obtain γkN
(T ) ∼ ξ (T ) and αkN

(T ) ∼ −ξ 2(T ),
i.e., an exponential growth of the coefficients with decreasing
temperature, since the correlation length ξ (T ) grows expo-
nentially when lowering T [see Eq. (14a)]. This corresponds
to the results obtained in TPSC in Ref. [31] [see Eq. (56)
therein]. In this case, the strong antiferromagnetic fluctuations
are completely “transferred” to the one-particle spectral prop-
erties without any “damping.” This leads to a corresponding
exponential decrease of spectral weight at the Fermi level
upon lowering the temperature. In our D�A equations, on
the other hand, we have to take into account a finite DMFT
quasiparticle scattering rate �(T ). Although this vanishes as
T 2 when approaching T = 0, the product ξ (T )�(T ) eventually
diverges in this limit, because the correlation length grows
much faster at low T . This means that for D�A, differently
from TPSC, we have to analyze the low-temperature limit of
bkN

(T ) � 1. Applying this limit to Eqs. (15) one observes that
the terms proportional to ξ (T ) and ξ 2(T ) in γkN

(T ) and αkN
(T ),

respectively, cancel out. The resulting expressions then
read:

γkN
(T ) ∼= C̃kN

T log
( 2�(T )ξ (T )

vkN

)
�(T )

= G1

T 2
+ G2

log(T )

T
+ G3

T
(17a)

αkN
(T ) ∼= −ÃkN

T
[

log
( 2�(T )ξ (T )

vkN

) − 1
]

�2(T )

= A1

T 4
+ A2

log(T )

T 3
+ A3

T 3
, (17b)

where the constants C̃kN
and ÃkN

are determined from CkN

and AkN
, respectively, when taking the limit bkN

(T ) � 1 in
Eqs. (15). We neglect here the regular parts, as they are not
relevant at low temperatures. In the second lines of Eqs. (17a)
and (17b) the explicit low-temperature dependence of γkN

(T )
and αkN

(T ) is obtained by inserting ξ (T ) [Eq. (14a)] and �(T )
[Eq. (D4)] into the corresponding first lines of these equations.
By hands of these analytical expressions, we could fit our D�A
data for γkN

(T ) and αkN
(T ) in Fig. 3: A very good agreement

is found between our D�A points and the corresponding fits
(dashed lines in the figures). This defines a clear-cut physical
interpretation of our numerical results for the 2d Hubbard
model at weak coupling: The strong antiferromagnetic fluctua-
tions, which are displayed by an exponentially large correlation
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length at low temperatures, lead to a destruction of the Fermi
liquid indicated by a strong enhancement of the corresponding
coefficients γkN

(T ) and the (negative) αkN
(T ) upon decreasing

temperature. The actual growth rate of these parameters is,
however, qualitatively reduced compared to the exponential
growth rate of the correlation length itself, being cut off
by local DMFT correlations via the scattering factor �(T ).
Specifically, instead of an exponential behavior, we obtain a
power-law divergence of γkN

(T ) ∼ 1/T 2 and αkN
(T ) ∼ 1/T 4.

Let us stress that this change of temperature behavior happens
for arbitrarily small values of the local scattering rates �(T )
and, hence, modifies the corresponding scenario derived within
the TPSC [31] also in the weak-to-intermediate coupling
regime.

Two dimensions, antinodal point k = kA: In the following
we perform the same investigation, but for the antinodal
point kA = (π,0). For this momentum vector the Fermi
velocity vanishes, and we must solve the integral (13b) instead
of (13a) for d = 2. This is more cumbersome, because in the
denominator of the second part of the integrand q2

x − q2
y rather

than just qx enters the equation. Hence, in the following we
will only present our calculations for γkA

(T ) in a very concise
way and refer the reader to Appendix E for more details. In
particular, we will focus here on highlighting the differences
to the results for the nodal point. By calculating the integral
in Eq. (13a) for γkA

(T ), one obtains the following expression
(we neglect again any regular parts):

γkA
(T ) ∼= CkA

T ξ 2(T )

⎡⎣ log
[
bkA

(T )
]√

b2
kA

(T ) + 1

− bkA
(T )

π

∫ π

0
dφ

log |cosϕ|
b2

kA
(T ) + cos2(ϕ)

⎤⎦, (18)

where bkA
(T ) is given as

bkA
(T ) = �(T )ξ 2(T )mkA

. (19)

Note that in contrast to the nodal point in Eq. (16) ξ (T )
appears squared in the corresponding definition for bkA

. Let
us again analyze the two different limiting cases for bkA

(T ):
First, if �(T ) ≡ 0 and, hence, bkA

(T ) = 0, we obtain an
exponential growth of γkA

(T ) proportional to ξ 2(T ) except
for a diverging logarithm log(0) [which will in general be
cut off by �(T )]. This coincides exactly with the results
found in TPSC [31]. Hence, when neglecting the DMFT
scattering factor, γkA

(T ) ∼ ξ 2(T ) diverges much faster than
γkN

(T ) ∼ ξ (T ) with decreasing temperature. On the contrary,
for �(T ) > 0 which implies bkA

(T ) � 1 at low temperatures,
we observe a cancellation of the contribution proportional
ξ 2(T ) in Eq. (18). The explicit evaluation of Eq. (18) for bkA

�
1 indeed shows that the result for temperature dependence
of γkA

(T ) is completely equivalent to the corresponding
expression for the nodal point in the second line of Eq. (17a),
except for a different prefactor. Thus, the very same fitting
expression can be exploited for γkN

(T ) and γkA
(T ). The upper

panel in Fig. 3 shows that this fitting function describes well
our numerical data for γkA

(T ). A corresponding analysis for
the much more complicated αkA

(T ) leads to the analogous
results, that its T dependence has the same form as for the

nodal point (for more details see Appendix E). Hence, we
draw the following conclusions: While for �(T ) = 0 there is
a qualitative difference in the temperature behavior of the low
energy coefficients γk(T ) and αk(T ) for different k points [31]
we find that the introduction of a finite �(T ) significantly
reduces this difference. This finding, which may be of interest
for future studies of the separability [77] of the temporal and
spatial correlations in low dimensions, is consistent with the
fact that, to some extent, local correlations reduce the nonlocal
features of the physics as it also happens, e.g., in the Mott
insulating phase observed at large values of the coupling U in
the Hubbard model.

Three dimensions: Let us finally discuss the results for
the coefficients γk(T ) and αk(T ) in terms of the analytical
expressions obtained from Eqs. (13) for the 3d Hubbard
model. We first note that, in this case, vk �= 0 for all k points
on the Fermi surface. Hence, we can stick to Eq. (13a) for
both of the two chosen points at the Fermi surface (kN and
kA, for the definition see the caption of Fig. 4). In fact,
the only difference between them is expressed in a slightly
changed Fermi velocity, i.e., vkA

= vkN
/
√

3. The explicit
evaluation of the integral in Eq. (13a) for 3d yields (see
Appendix E)

γk(T ) = CkT log

[
bk(T ) +

√
1 + [πξ (T )]2

bk(T ) + 1

]
+ Rγ (T ),

(20a)

αk(T ) = AkT ξ (T )

[
1

bk(T ) +
√

1 + [πξ (T )]2
− 1

bk(T ) + 1

]
+Rα(T ), (20b)

where bk(T ) is defined analogously to the 2d case in Eq. (16),
i.e., bk(T ) = �(T )ξ (T )

vk
, and Rγ (T ) and Rα(T ) denote the

regular parts of γk(T ) and αk(T ), respectively.
As in 2d, we will now analyze Eqs. (20) for two different

limiting cases: First, if we neglect the DMFT scattering
factor �(T ), we must evaluate these equations for bk(T ) ≡ 0.
Analogous to the situation in 2d, we observe also in 3d that
the critical fluctuations are directly “transferred” from the two-
particle susceptibility to the one-particle spectral properties.
Indeed, the corresponding Fermi liquid parameters grow
strongly when lowering the temperature as γk(T ) ∼ log[ξ (T )]
and αk(T ) ∼ ξ (T ), eventually diverging at the transition point.
Such a behavior has been also found in the TPSC [31]. On the
contrary, in our D�A calculations, we have a finite value for
�(T ). Hence, approaching the phase transition at T = TN the
quantity ξ (T )�(T ) ∼ ξ (T )T 2

N—and accordingly bk(T )—gets
strongly enhanced and eventually diverges at T = TN . In fact,
considering the limit bk(T ) � 1 in Eqs. (20) we find for the
leading contributions to γk(T ) and αk(T ):

γk(T ) ∼= C̃kT

[
log(π ) − log

(
�(T )

vk
+ ξ (T )−1

)]
(21a)

αk(T ) ∼= ÃkT

[
1

π
− 1

�(T )
vk

+ ξ (T )−1

]
, (21b)

125144-10



IMPACT OF NONLOCAL CORRELATIONS OVER . . . PHYSICAL REVIEW B 94, 125144 (2016)

where we neglected the corresponding regular contributions.
Note that in order to derive Eqs. (21) we have taken into
account [78] that (within DMFT) �(T ) � vk in Eqs. (20).

We have then fitted our numerical data points for γk(T ) and
αk(T ) in Fig. 4 to the functions given in Eqs. (21) (neglecting
the term containing just the momentum cutoff π ) and added
regular parts to the corresponding expressions, which have to
be taken into account for the moderately high temperatures
above TN . Specifically, for γk(T ) we consider a standard
Fermi liquid contribution Rγ (T ) ∼ K2T

2 which is certainly
originated from the regular (DMFT-like) contributions in
Eq. (10). On the other hand, for αk the corresponding regular
contribution is not known in general. However, since αk(T )
does not vanish at T = 0 [in contrast to γk(T )] we have
simply assumed a Sommerfeld-like functional form Rα(T ) ∼
K2T

2 + K3. The resulting fits are shown by dashed lines in
Fig. 4 where we have used the corresponding fit functions
for �(T ) and ξ (T ) given in Ref. [38]. Hence, also in the 3d

case, we find a satisfactory agreement between the numerical
data and the analytic estimate for αk(T ) and γk(T ), allowing
for a transparent interpretation of our D�A results: At high
T , the temperature behavior of γk(T ) is determined by its
regular Fermi liquid part, as in DMFT, because the argument
of the logarithm in Eq. (21a) is slightly smaller than 1,
i.e., �(T )/vk + ξ−1(T ) � 1. Upon decreasing temperature the
regular part of γk(T ) decreases as T 2. Since ξ−1(T ) → 0
for T → TN also the argument of the logarithm decreases
and, hence, becomes much lower than 1. Consequently,
the logarithmic contribution − log [�(T )/vk + ξ−1(T )] itself
increases upon lowering the temperature. This competition
between the regular part of γk(T ) (decreasing when lowering
T ), and the (increasing) logarithmic part of Eq. (21a) leads
to the emergence of a minimum of the scattering rate at a
given temperature T ∗ close to TN . This minimum is indeed
well visible for both k points in our numerical data in
Fig. 4. As such a nonmonotonous behavior of γk(T ) is
clearly not compatible with a Fermi liquid description of
the system we argue that antiferromagnetic fluctuations in
3d are strong enough to destroy the Fermi liquid properties
when approaching the phase transition, even if the (metallic)
quasiparticle peak remains visible in the spectra. As in 2d, the
effect of these nonlocal fluctuations is, however, damped by the
local scattering rate �(T ) of DMFT. While in 2d such a reduced
effect of fluctuations leads nevertheless to a non-Fermi-liquid
shape of the self-energies and the spectral function themselves,
we observe for 3d a Fermi liquid behavior for the frequency
dependence of the one-particle correlation functions for all
temperatures T > TN . This is consistent with the fact that αk
is always positive in 3d, where the contribution in Eq. (21b)
represents just a correction of the regular part leading to a
nonmonotonous behavior also for αk(T ).

From a physical perspective one could summarize our
findings as follows: In 3d the effect of the nonlocal fluctuations
caused by the (diverging) correlation length ξ (T ) on spectral
properties is cut off by local correlations leading to Fermi-
liquid-like self-energies and spectra for all T > TN . The
competition between high-temperature thermal fluctuations
(which decrease with decreasing temperature) and low-
temperature antiferromagnetic fluctuations (which increase
with decreasing temperature), on the other hand, leads to

nonmonotonous behavior of the temperature dependence of
γk(T ) and αk(T ) clearly indicating a breakdown of the Fermi
liquid at T = T ∗ > TN (cf. also Ref. [79]).

Let us finally remark that our findings of different effects
of correlations in different observables (such as here, the T

dependence of the scattering rate γ and the correlation length
ξ ) are of importance also beyond the specific calculations of
this paper. In fact, somewhat related differentiation effects
have been observed in the most recent transport experiments in
cuprates [80], where a universal (Fermi-liquid-like) scattering
rate is found at all (hole) dopings in spite of quite diverse T

behaviors of different response functions.

C. Continuity of spectral properties at the phase transition

The above discussions of the D�A results raise the inter-
esting question whether the one-particle spectral properties,
i.e., self-energies and spectral functions, are continuous when
crossing the (here: AF) phase transition. In the somehow
“extreme” case of two dimensions the magnetic phase tran-
sition occurs exactly at T = 0. At this temperature the system
exhibits, hence, a finite order parameter (i.e., a finite staggered
magnetization) which gives rise to a (full) finite gap in the
spectral function. For T > 0, in D�A we have found a
divergent 1/T 2 behavior for the electronic scattering rate
γk(T ). This leads to an opening of a perfect gap (i.e., with
zero spectral weight) for T → 0 indicating that the spectral
functions of the system are indeed continuous at the phase
transition. One can, thus, state that the antiferromagnetic
fluctuations in the paramagnetic phase above TN = 0 prevent
a discontinuity in the normal part of the one-particle Green’s
functions at the transition. This obviously does not hold
for the anomalous part of the one-particle Green’s function
whose (t,r) = 0 contribution corresponds to the (AF) order
parameter. The latter, because of the Mermin-Wagner theorem,
jumps abruptly from 0 in the paramagnetic phase for T > 0 to
a finite value at T = 0.

The situation is somewhat different in three dimensions,
where we are dealing with a second-order phase transition
at finite T . Here, one-particle quantities such as the order
parameter itself are—per definition—continuous at the tran-
sition temperature, as they are obtained from first derivatives
of the corresponding thermodynamic potential. Consequently,
we would reasonably expect that also the one-particle spectral
properties exhibit no discontinuity upon crossing TN . We
recall, however, that a static mean-field treatment of the
ordered phase (which corresponds to the infinite dimensional
limit for a classical model) leads to an abrupt opening of the
(full) gap right at the transition temperature, with a pointlike
jump of the spectral function at zero frequency (i.e., exactly at
the Fermi level). In fact, such a jump well matches the result
of a logarithmically divergent scattering rate γk(T → TN ) as
obtained, e.g., in the TPSC [31]. This agreement is consistent
with the fact that both approaches adopt a static two-particle
irreducible vertex and a noninteracting Green’s function for
calculating the magnetic susceptibilities. On the contrary, the
D�A is based on the dynamical, i.e., frequency-dependent,
irreducible self-energy and vertex functions of DMFT. In
particular, the former difference w.r.t. the static mean-field-like
approaches modifies the situation qualitatively, as it was

125144-11



G. ROHRINGER AND A. TOSCHI PHYSICAL REVIEW B 94, 125144 (2016)

demonstrated in the previous subsections: The divergences
of γk(T ) [and of αk(T )] at T = TN are cut off by the finite
scattering rate of DMFT, leading to a finite weight for the
spectral function at the Fermi level across the magnetic
transition. This physically more plausible behavior is actually
also consistent with DMFT calculations in the symmetry-
broken phase [81] where a finite spectral weight is found at
T = TN , while a full gap is predicted only for T = 0. These
findings suggest, partly different from the situation in 2d, a
continuous behavior of both the normal and the anomalous
part of the Green’s function across the phase transition in 3d.
As the 3d physics should lie in between the 2d and the d = ∞
one of DMFT, the observed continuity of the one-particle
spectral properties at T = TN , as suggested by D�A, looks
to be quite a convincing result. These findings highlight the
importance of including dynamical local correlations for an
accurate description of second order phase transitions, also at
finite temperature.

IV. D�A AT ALL ENERGY SCALES

In this section we extend the analysis of effects originating
from nonlocal fluctuations in the two- and three-dimensional
Hubbard model to all energy scales. Specifically, we will con-
sider thermodynamic observables, such as the kinetic (Ekin)
and the potential (Epot) energies, whose values incorporate
contributions from all energy scales in the system. Let us
remark that the calculation of these energies within a given
approximation scheme might become—to a certain extent—
ambiguous, as Ekin and Epot can be expressed either in terms
of one- or two-particle quantities. While in exact as well as in
approximate, but two-particle self-consistent, theories both re-
sults coincide, this is not the case for the approximate schemes
applied in this paper (DMFT and ladder D�A for finite d) due
to a lack of self-consistency at the two-particle level. Hence,
in principle, one is left with the problem of selecting which
expression for the kinetic and potential energy, respectively, is
more reliable to capture the physics of the system.

Let us here discuss how such ambiguities occur already in
DMFT when this is applied to finite d systems. To this end,
we first recall that for d = ∞ (where DMFT corresponds to
the exact solution of the system) the DMFT self-consistency
condition between the momentum-summed lattice Green’s
function and the impurity one [

∑
k G(iν,k) = G(iν)] implies

automatically the fulfillment of analogous relations at the two-
particle level, e.g., for the susceptibilities χ�

r,q, i.e.,
∑

q χ�
r,q =

χ�
r (for a detailed discussion see Ref. [6], Sec. IV A). In this

situation, provided that the numerical solution of the auxiliary
AIM is accurate, no ambiguity can be encountered as it is
expected for an exact theory. On the contrary, in finite spatial
dimensions, where DMFT represents an approximation, the
(one-particle) self-consistency condition of DMFT does not
guarantee any longer that the corresponding relation at the two-
particle level holds. In fact, the k-summed lattice susceptibili-
ties do in general not coincide anymore with the corresponding
local AIM susceptibilities. Such inconsistency between the
one- and the two-particle level leads to the occurrence of
ambiguities in the calculations of Ekin and Epot already at
the DMFT level. This important issue for the calculation
of thermodynamic observables within an approximate (not

two-particle self-consistent) theory, as well as its implications,
will be discussed in detail for both Ekin and Epot at the
beginning of the corresponding subsections.

A. Kinetic energy

The kinetic energy is given by the expectation value of the
noninteracting part of the (here: Hubbard) Hamiltonian, i.e.,
the first term on the right hand side of Eq. (1). Hence, in terms
of the one-particle Green’s function, it reads

Ekin = 2

β

∑
νk

εkG(iν,k), (22)

where the factor 2 in front of this equation is due to the
two different spin components of the system. Note that for
the D�A case the Green’s function obviously contains the
corresponding D�A self-energy as given in Eq. (10). At the
same time, Ekin can be also obtained through a two-particle
expression, exploiting the so-called f -sum rule [see Eq. (A25)
in Ref. [31] and Eq. (33) in Sec. V]. For an approximate theory
it is in general not guaranteed that both expressions of Ekin

yield the same result (i.e., that the f -sum rule holds), unless
they are conserving in the Baym-Kadanoff sense [82–84].

While a systematic numerical study of these discrepancies
is not the focus of this paper, their occurrence can inspire,
nonetheless, further improvements of the ladder D�A algo-
rithm, which will be presented in Sec. V. Here we argue that,
since the kinetic energy is originally defined as the expectation
value of a one-particle operator, its evaluation in terms of
one-particle Green’s functions should be the most natural
choice. Hence, as for the data presented in this section, our
calculations have been performed by means of Eq. (22), under
careful treatment of the high-frequency tails of the Green’s
functions in the corresponding frequency sum (see Appendix G
for details). We note that this is consistent with the usual
choice made in DMFT calculations for both model and realistic
systems (e.g., DFT+DMFT [85,86]).

In Fig. 5 we present our kinetic energy results for three (two)
different values of U ranging from weak- to strong-coupling
in two (three) dimensions. In the leftmost panel of Fig. 5
the temperature dependence of the kinetic energies is shown
for the weak-coupling U = 0.75. Starting with the 2d case
(main panel) we observe for DMFT an increase of |Ekin|(T )
with decreasing temperature. This is indeed compatible with
a typical Fermi liquid temperature behavior of the kinetic
energy, where the (maximal) T = 0 electronic mobility is
reduced by Sommerfeld-like T 2 corrections. In this light, it is
not surprising that the DMFT data (blue squares) for Ekin(T )
display the same trends as the noninteracting case, only visibly
renormalized by the local correlations. D�A (red circles) leads
to a further reduction of (the absolute value of) the kinetic
energy w.r.t. DMFT. In this case, however, the corresponding
T dependence is also qualitatively different from DMFT:
While at higher T the D�A curve exhibits still an increase of
|Ekin|(T ) upon lowering T , it saturates at T ∼ 0.025 which
corresponds roughly to the temperature where the system
enters the 2d “critical” regime with exponentially long-ranged
antiferromagnetic fluctuations (see previous sections and
Ref. [31]). Thus, the deviation from the corresponding DMFT
results grows upon decreasing temperature. An analogous
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FIG. 5. Kinetic energies for the noninteracting case (U = 0), DMFT, D�A, and the atomic limit (AL) as a function of temperature in two
(main panels) and three (insets) dimensions at half filling for different values of the interaction parameter U = 0.75 (left panel), U = 2.0
(middle panel), and U = 4.0 (right panel).

situation is observed in 3d (see inset in the leftmost panel
of Fig. 5) where |Ekin|(T ) is also systematically smaller in
D�A than in DMFT for all T and their difference grows
with decreasing temperature (becoming particularly large
when approaching the finite-temperature phase transition of
the 3d system). Hence, we conclude that, at weak-coupling,
antiferromagnetic correlations as described by D�A reduce
(the absolute value of) the kinetic energy compared to DMFT.
This directly reflects the properties of the antiferromagnetic
ground state of the system in this parameter regime, and is also
(qualitatively) consistent with the thermodynamical properties
of the underlying antiferromagnetic phase described by the
DMFT [87]: In fact, at small U , the antiferromagnetic phase
of DMFT is stabilized by a reduction of the potential energy in
the ordered phase, with a simultaneous increase of the kinetic
energy w.r.t. the normal paramagnetic phase. This defines
the Slater mechanism [88–91] for the antiferromagnetism of
the single band Hubbard model. Our D�A data demonstrate
that the Slater-like energetics becomes already well visible
in the corresponding antiferromagnetic fluctuations of the
paramagnetic phase, i.e., for temperatures above the actual
transition temperature, as it was just briefly mentioned in
Ref. [45] (cf. also the DCA results of Ref. [87]). Obviously,
this effect is visible for 2d in a much broader temperature
regime compared than in 3d, because in 2d the ordered phase is
restricted to T = 0, but strong antiferromagnetic correlations
affect a large temperature range of the phase diagram. In 3d,
instead, the major effects of antiferromagnetic fluctuations
are usually confined to a narrower temperature region [31,38]
above the (finite) TN .

At U = 2.0 (middle panel of Fig. 5) we observe a very
different situation. Here, the magnitude of Ekin in DMFT
and in D�A is reversed compared to the weak-coupling
regime: |Ekin|(T ) is larger in D�A than in DMFT for all T

considered, whereas both D�A and DMFT exhibit a significant
enhancement of the (absolute value of the) kinetic energy upon
decreasing temperature. Again an improved understanding of
this behavior is obtained relating these results to corresponding
DMFT data for the antiferromagnetically ordered phase
[87–91]: At intermediate values of U,|Ekin|(T ) gets enhanced
by the onset of a symmetry-broken phase in DMFT. Hence, for
such values of U , the kinetic energy starts helping to stabilize
the AF ordered phase, differently than at weak coupling: This

represents a first precursor of the Heisenberg mechanism for
stabilizing the AF phase, where the order is set among already
preformed local magnetic moments. Significantly, the change
in nature of the underlying AF state is well reflected by
our D�A data, where antiferromagnetic fluctuations in the
paramagnetic phase enhance |Ekin| compared to DMFT.

Let us point the attention to another very interesting feature
of the kinetic energies at U = 2.0: While for U = 0.75 and
U = 4.0 the difference between the DMFT and the D�A
results increases with decreasing temperature, the situation is
reversed for the U = 2.0, where such difference gets smaller.
This reversed trend actually reflects the intermediate coupling
nature of U = 2.0, where the DMFT low-T metallic increase of
|Ekin|(T ) coexists (and competes) with an already Heisenberg-
like increase driven by the nonlocal AF fluctuations in D�A.
The twofold aspect of the intermediate coupling fluctuations
will be discussed in more detail in Sec. IV B.

Finally, for U = 4.0 (right panel of Fig. 5) we observe a
typical strong coupling scenario: In 2d the kinetic energy of
DMFT is very small and almost temperature independent: In
the local moment regime almost no hopping of electrons occurs
at temperature scales smaller than the Hubbard interaction.
This is nicely exemplified by comparing the DMFT curve with
the one for the atomic limit U → ∞ (AL in Fig. 5) for which
in Eq. (22) the DMFT self-energy has been replaced by the
corresponding expression for the atomic limit (see next section
and Appendix F 1 for more details): In the AL, we observe a
very similar behavior as in DMFT except for even stronger
suppression of the electron mobility. The similarity between
the DMFT and the AL results, hence, indicates the almost
atomiclike nature of the system within DMFT. The D�A
data, instead, exhibit significantly larger values for |Ekin|(T )
than in DMFT at all considered temperatures. Moreover,
the corresponding difference is enhanced upon decreasing
temperature as antiferromagnetic fluctuations grow stronger.
This scenario is a hallmark of a pure Heisenberg-like nature of
the related antiferromagnetic phase at T = 0, which becomes,
once again, visible already in the corresponding fluctuations
in the paramagnetic phase. Similar conclusions can be drawn
in 3d (inset in the right panel of Fig. 5) although the effect
is—as expected—less pronounced compared to 2d, due to
the reduction of the impact of spatial fluctuations in higher
dimensions.
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B. Energy distribution function

An improved understanding of our results for the kinetic
energy can be gained by analyzing the energy distribution
function n(ε). This is defined as:

n(ε) =
∑

k

nkδ(ε − εk) = 2

β

∑
νk

δ(ε − εk)G(ν,k), (23)

where nk is the occupation of the single-particle momen-
tum eigenstate with the energy εk of the corresponding
noninteracting system and the factor 2 accounts for the
two spin projections. n(ε) fulfills of course the sum rule∫ +∞
−∞ dε n(ε) = n. Note that for the noninteracting case n(ε)

coincides with the k-integrated (and spin-summed) spectral
function n(ε) = 2f (ε)D(ε) where f (ε) = (1 + eβε)−1 is the
Fermi function and D(ε) = ∑

k δ(ε − εk) is the DOS of the
noninteracting system. We recall that this equivalence is
no longer true for interacting electrons: Here the spectral
function A(ω) describes the redistribution of the original single
particle excitation energies of the noninteracting system due
to electronic scattering. At strong coupling this leads, among
other features, to Hubbard bands at much higher energies
than the upper edge of the noninteracting DOS. n(ε), on the
other hand, describes the correlated state of the system for
U > 0 solely in terms of a redistribution of the occupation
of the original single-electron eigenstates εk. Hence, while
A(ω) can be directly measured in direct/inverse photoemission
experiments n(ε) can be only extracted from the latter by
means of Eq. (23). Nevertheless, n(ε) helps considerably in
gaining a more profound understanding of our kinetic energy
results, since the latter can be also written as

Ekin =
∫ +∞

−∞
dε ε n(ε). (24)

In this way n(ε) allows for an identification of the energy
scale(s) from which the differences between the kinetic
energies of D�A and DMFT originate and, hence, for a
transparent physical description of the energy-scale selective
effects of spatial correlations on the energetics of the correlated
electron system.

In the upper panel of Fig. 6 the energy distribution n(ε) for
2d,U = 0.75 and β = 80 obtained by D�A is compared to the
DMFT results, the noninteracting case U = 0 and the corre-
sponding DOS. First, we observe a spectral weight shift from
negative to positive energies around the Fermi level between
DMFT and the noninteracting case. The distribution function
n(ε) of DMFT, however, still exhibits a very pronounced
decrease (which will eventually turn into a discontinuity, i.e.,
a jump, at T = 0) at the Fermi level, consistent with the
presence of a well-defined Fermi surface [92] in the DMFT
data. The D�A results show an additional shift of weight in
n(ε) from negative to positive ε w.r.t. DMFT. At the small value
of U considered here, this shift affects only a small energy
region around the Fermi energy ε = 0 (see inset). Hence, the
reduction of the electronic mobility (i.e., |Ekin|) due to spatial
correlations (difference between DMFT and D�A) observed
at weak coupling is realized entirely through a shift of weight
in nD�A(ε) in a narrow energy window close to the Fermi level
(i.e., for |ε| � 1) w.r.t nDMFT(ε).

FIG. 6. Energy distributions n(ε) for the 2d Hubbard model at
three different values of the interaction parameter U for the lowest
considered temperature (β = 80). In the insets the difference �(ε)
between the energy distributions of DMFT and D�A as well as the
contribution ε�(ε) to the corresponding difference of the kinetic
energies are shown.

In the middle panel of Fig. 6 we perform a similar
comparison in the intermediate coupling regime, i.e., U = 2.0.
As expected for this value of the interaction, both the D�A and
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DMFT curves deviate significantly from the noninteracting
one. As for the difference between D�A and DMFT (inset),
we observe an interesting coexistence of opposite trends,
depending on the energy scale considered: (i) At large energies,
for |ε| � 0, a shift of weight in nD�A(ε) w.r.t. nDMFT(ε)
from positive to negative ε takes place. At the same time,
(ii) at the Fermi level, i.e., for low values of |ε| ∼ 0, an
opposite shift of weight from negative to positive energies
occurs. The latter trend is similar to the (weak-coupling)
one found at U = 0.75. This means that, at intermediate
coupling, the effect of nonlocal correlations has a twofold
nature: Spatial correlations simply reduce the mobility of the
electrons at the Fermi level, while—at the same time—they
induce an enhanced occupation of large-energy one-particle
states well inside the Fermi surface. The latter, broader energy
scales affected by the fluctuations might be associated to the
formation of coherent spin-polaron excitations [90,93] typical
of Heisenberg antiferromagnets, which involve electronic
states at all ε. In D�A, their presence can be detected,
indirectly, also in the paramagnetic phase. Hence, from the
opposite trends in the weight shifts in n(ε), a compensation
between overall gains and losses in the kinetic energy is
induced [94], when the energetics of spatial correlations in
D�A and/or the underlying long-range (antiferromagnetically)
ordered ground state are considered. We should also note that
for the highest temperature data presented in Fig. 7 the change
of n(ε) around ε = 0 disappears. This can be understood by
the fact that within DMFT at higher T the system enters in
the so-called crossover regime between the metallic and the
insulating phase, where the spectral weight at the Fermi level
is already strongly suppressed by purely local correlations.
Hence no particular kinetic energy loss of mobility can affect
the (already incoherent) Fermi-surface electrons.

In the strong coupling limit (U = 4.0, lowest panel in
Fig. 6) we observe the same situation as for U = 2.0,β = 31.4,
albeit the gain of n(ε) for −1 � ε < 0 in D�A w.r.t. DMFT
gets much more pronounced. This is the origin of the enhanced
|Ekin| of D�A w.r.t. DMFT, demonstrating the clear-cut
Heisenberg-type nature of the nonlocal antiferromagnetic fluc-
tuations in this regime. The above discussion also demonstrates

FIG. 7. Same as in the middle panel of Fig. 6, but for β = 31.4.

how n(ε) marks a fundamental difference between the low-T
antiferromagnetic gap at small U and the large-U Mott gap of
the 2d system.

In the former situation the spectral weight is suppressed by
nonlocal fluctuations only in a tiny region around the Fermi
energy. Indeed, at weak coupling, our D�A results for the
spectral functions exhibit sharp peaks at ω = εk for k vectors
away from the Fermi surface, while the ω = εkF

= 0 spectral
weight is clearly reduced by antiferromagnetic fluctuations
w.r.t. DMFT (see, e.g., third rows of Figs. 2 and 13). This
behavior is reflected in n(ε) which deviates between DMFT
and D�A only in a small region around ε = 0. Upon lowering
the temperature, we have verified by our D�A data that just the
depth of the dip in the spectral function, but not its extension
in the k space, increases. Consistently, only the difference
between nD�A(ε) and nDMFT(ε) [or nU=0(ε)] gets enhanced
for |ε| � 1 but not the ε region, where such a difference is
observed. This behavior can be further interpreted in terms
of a spin-fermion model [55], where the effective interaction
between the electrons is governed by the spin fluctuations, i.e.,
Uω

eff,q ∼ U 2γ νω
m,qχ

ω
m,q. As the effective interaction between the

particles is strongly q (and ω) dependent, with a maximum
at q equal to the nesting vector of the noninteracting Fermi
surface and ω = 0, the effect of Ueff will be particularly strong
only at the Fermi level.

On the contrary, the progressive suppression of coherent
spectral weight at strong coupling can be attributed to a strong
enhancement of the effective interaction Uω

eff ∼ U 2γ νω
m χω

m

which is (within DMFT) mainly governed by the purely
local spin-susceptibility χω

m . In fact, in this case, mainly
k-independent local fluctuations prevail, which are typically
well captured by the local self-energy of DMFT. Indeed, when
U becomes of the order of the bandwidth of the system, i.e.,
upon approaching the Mott transition of DMFT where χω=0

m

diverges (for T = 0), a spectral gap at ω = εk opens at all k
points in the Brillouin zone. This situation is well reflected
by the difference of n(ε) in DMFT and D�A w.r.t. to the
noninteracting case which appears at all values of ε in the
strong coupling regime (see lowest panel of Fig. 6).

Let us finally turn our attention to another pertinent
observation: For U = 4.0,n(ε) of both D�A and DMFT is
almost identical to the corresponding distribution function
obtained from the self-energy of the atomic limit (AL) which
reads (at half filling)

�(iν) = U 2

4iν
+ Un

2
. (25)

Moreover, nAL(ε) has a very similar shape as the noninteracting
DOS (lower panel of Fig. 6). A corresponding calculation can
be performed analytically (see Appendix F 1) and yields (for
T = 0):

nAL(ε) = D(ε)

[
1 − ε√

U 2 + ε2

]
, (26)

where D(ε) denotes the noninteracting DOS of the system.
Hence, for U → ∞ the energy distribution of the electrons
indeed coincides exactly with the DOS. This observation
allows for a “complementary” interpretation of the insulating
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Mott phase of the strong-coupling regime, in terms of the
occupation of the noninteracting single-particle energy levels.
For U = 0, we are dealing with a filled Fermi sea (for T = 0):
n(ε) = 2D(ε)θ (−ε), i.e., all single-particle energy states with
ε � 0 are doubly occupied (by one ↑ and one ↓ electron). Upon
increasing the interaction U , electrons are gradually shifted
from these negative energy states to corresponding eigenstates
with positive energies until at U = ∞ all possible original
one-particle states are occupied, consistent with n(ε) = D(ε).
This is reflected in a corresponding change of the degeneracy
(and, hence, the entropy) of the system: At U = 0 the ground
state is nondegenerate as all negative energy eigenstates are
doubly occupied by one ↑ and one ↓ electron. Upon shifting
electron to positive energy-states one has the freedom to shift
an ↑ or ↓ electron. Hence, the number of available states
for ε > 0 increases until n(ε) = D(ε). This corresponds to
the well-known (DMFT) entropy/site of log(2) in the Mott-
insulating phase of the system. Note that, while conventionally
this log(2) refers to the possible spin projections at a given
lattice site in real space, here we observe this degeneracy for the
different k states of the system. This degeneracy in k, however,
corresponds to the possibility of forming linear combinations
of (momentum) states that are localized in real space. Indeed,
for U � 0 the system forms linear combinations that avoid any
double occupations (e.g., resonating valence bond states [95])
while for U � 0 (attractive Hubbard model) the system would
build linear combinations of k states which comprise only
doubly or not occupied sites. These considerations provide
a somewhat alternative view on the Mott insulating phase,
from a k space rather than a real-space perspective, and are
perfectly reflected in our numerical (and analytical) results for
n(ε) at strong coupling. In such a perspective, this view could
be exploited as a basis to interpret the corrections of nonlocal
correlations to the purely local physics of DMFT at strong
coupling, as the latter provides an accurate, but not exact,
description of the Mott-Hubbard insulating state in terms of
high entropy ground states.

Let us finally mention that a similar analysis of the
energy distribution function has been also performed for
three dimensions. However, since the results are qualitatively
analogous to the corresponding two-dimensional ones we refer
the interested reader to Appendix F 2 for the corresponding
numerical data.

C. Potential energy

The potential energy of the system is given by the expecta-
tion value of the interacting part of the Hubbard Hamiltonian
[second term on the right hand side of Eq. (1)]. Hence, in
terms of two-particle Green’s functions—or, more precisely,
physical susceptibilities—it reads:

Epot = U

β

∑
�q

χ�
↑↓,q + U

(
n

2

)2

, (27)

where n denotes the number of particles and χ�
↑↓,q is the

physical susceptibility of the system in the ↑↓ spin sector. At
the same time, according to the EOM, Epot can be expressed

only by means of one-particle quantities as

Epot = 1

β

∑
νk

G(ν,k)�(ν,k), (28)

which gives rise to an analogous ambiguity as for the
calculation of the kinetic energy (cf. Sec. IV A).

For the kinetic energy we argued that as Ekin corresponds
to a one-particle operator, it is natural to calculate it from one-
rather than two-particle Green’s functions. Consistent with
this argument, one should evaluate the potential energy, which
corresponds to the expectation value of a two-particle operator,
from two-particle Green’s functions [68], i.e., from Eq. (27).
For DMFT, however, this leads to the following problem: The
↑↓ susceptibility can be expressed through the charge- and spin
susceptibilities, respectively, χ�

↑↓,q = 1/2(χ�
d,q − χ�

m,q) where
for DMFT χ�

d/m,q is obtained from the charge/spin ladder
(Bethe-Salpeter equation) in Eq. (3). The DMFT spin suscepti-
bility χ�

m,q, however, diverges at the (rather high) DMFT tran-
sition temperature to the antiferromagnetically ordered phase
and eventually becomes negative—and, hence, unphysical—
below that temperature. This renders a calculation of Epot via
Eq. (27) highly questionable in large parameter regions. Maybe
also for this reason, the typical evaluation of the potential
energy in DMFT, and DFT+DMFT [85,96], is performed by
means of the one-particle expression of Eq. (28). The latter is
algorithmically quite straightforward, because this expression,
within the DMFT self-consistency, formally coincides with the
double occupancy of the impurity site (multiplied by U ) in the
auxiliary AIM. As it was recently observed [68], on the other
hand, in situations (i.e., for T > TN ), where both procedures
for evaluating Epot in DMFT are applicable, the difference
between the corresponding results are physically significant.

In principle, for T < TN of DMFT, one could perform
antiferromagnetic DMFT calculations for determining the
potential energy by means of Eq. (27). This, however, makes
conceptually problematic a comparison with the correspond-
ing paramagnetic results of D�A, needed to identify the effect
of nonlocal antiferromagnetic fluctuations on the potential
energy in the paramagnetic phase. Hence, in the following, we
will exploit the standard “one-particle” expression, Eq. (28),
rather than Eq. (27), for the determination of the potential
energy. This allows for a paramagnetic calculation of Epot in
DMFT down to (the lower) TN of D�A. Obviously, we should
keep in mind the occurrence of possible inconsistencies [68],
whose importance and consequences we will address in more
detail at the end of this and in the next section.

In the leftmost panel of Fig. 8 we compare the potential
energies of DMFT and D�A for U = 0.75 for 2d (main
panel) and 3d (inset), respectively. First of all, one observes
that the potential energy of D�A is clearly reduced w.r.t.
the DMFT result. Moreover, for DMFT we observe the
typical Fermi-liquid-like increase of the potential energy with
decreasing temperature as the weakly coupled system gets
more coherent at lower temperatures. In D�A, on the other
hand, we see the opposite behavior, i.e., Epot decreases with
decreasing T enhancing, hence, the difference between Epot of
DMFT and D�A upon lowering T . This is indeed consistent
with the fact that the (underlying) antiferromagnetic phase
at weak coupling is stabilized by a decrease of potential
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FIG. 8. Potential energy of the half-filled Hubbard model computed in DMFT, D�A, and the atomic limit (AL) as a function of temperature
in two (main panels) and three (insets) dimensions for different values of the interaction parameter U = 0.75 (left panel), U = 2.0 (middle
panel), and U = 4.0 (right panel).

energy w.r.t. to the paramagnetic phase [88–90], while the
kinetic energy is enhanced in the symmetry broken regime
(see Sec. IV A). Let us stress that this (Slater-like) mechanism
is well reflected by our D�A data for Epot already above
the transition temperature, i.e., in the paramagnetic phase,
similarly as our results for Ekin in the same parameter regime.

At an intermediate coupling of U = 2.0 (middle panel of
Fig. 8) Epot of D�A is still lower than the corresponding
DMFT value for all temperatures. Taking into account the
enhanced |Ekin| in D�A w.r.t. DMFT (see Sec. IV A) this
is physically consistent with the fact that at this value of
U the ordered phase is stabilized by a decrease of both the
kinetic and the potential energy [88–91]. We emphasize, once
again, that the energy balance between paramagnetic and
antiferromagnetically ordered phase appears already encoded
in the corresponding nonlocal fluctuations above the transition
temperature as it is indicated by our D�A results. At the
same time, we also observe for D�A an increase of Epot with
decreasing temperature in contrast to the situation at weak
coupling (U = 0.75). This indicates that the corresponding
antiferromagnetic fluctuations are not any more purely Slater-
like (as also suggested by the increase of |Ekin| of D�A
w.r.t. to DMFT) but already display the first strong-coupling
(Heisenberg like) features at U = 2.0. Our D�A results,
hence, perfectly reflect the intermediate-coupling nature of
the Hubbard model at U = 2.0 in the paramagnetic phase.

According to the discussion above we would expect at the
higher value of U = 4.0 a typical strong coupling situation
where Epot of D�A is enhanced w.r.t. DMFT and increases
upon decreasing temperature. However, while for Ekin we
indeed observed the typical strong coupling behavior in our
D�A data (see Sec. IV A), D�A clearly shows the opposite
trend for Epot (see rightmost panel of Fig. 8): The potential
energy of D�A is reduced w.r.t. to DMFT and decreases
upon decreasing temperature. While the second unexpected
behavior at low T might be still due to numerical inaccuracies
related to the very small values of Epot at U = 4.0, we attribute
the first one to the ambiguities in the calculation of the potential
energy discussed at the beginning of this section.

As demonstrated in Ref. [68], the potential energy obtained
from Eq. (28) in DMFT becomes higher than the correspond-
ing one obtained with methods including nonlocal correlations
beyond DMFT in the strong-coupling regime. Hence, the
authors of Ref. [68] logically suggest that the comparison

should be better made with the corresponding DMFT double
occupancy obtained from Eq. (27), which yields the more
physically plausible results of an enhancement [79] of double
occupancies (in D�A) due to Heisenberg-like nonlocal AF
fluctuations.

While such considerations need certainly to be carefully
taken into account in all future DMFT and realistic/ab
initio DFT+DMFT [85,86] studies where the total energy
is computed (e.g., for structure optimization, determination
of competing phases, etc.) in our case, evidently, the option
of using Eq. (27) is not viable, because we are below the
transition temperature of DMFT, which renders—as discussed
above—the corresponding DMFT susceptibility unstable.

However, we want to point out here that even if we restricted
ourselves to temperatures above TN of DMFT, where Eq. (27)
is still applicable, we would get unphysical trends, although
in a different parameter regime. In fact, since above the TN

of DMFT χm of D�A is reduced w.r.t. the corresponding
DMFT value by the λ corrections, we would observe, at all
values of U , an enhanced potential energy in D�A compared
to DMFT. While this restores the physically correct trend at
strong coupling, unfortunately, the very same trend would be
now observed also at weak coupling, where it is not physically
consistent. In other words, the trends for Epot shown above
for the calculation with Eq. (28) would be just reversed if we
adopted Eq. (27) for the determination of the potential energy
in DMFT and D�A, moving the problematic comparison from
strong- to weak coupling.

These observations might actually suggest possible strate-
gies for future improvements of the algorithmic schemes
used. For the specific case of the ladder D�A with Moriya
λ corrections, the results for Epot may be improved, if we
take into account, in a fully two-particle consistent way, such
corrections also for the charge fluctuations, since they are
most likely underestimated by the DMFT ladder in Eq. (3).
This would lead, e.g., to a correction of the above mentioned
spurious “hierarchy” of the potential energies between DMFT
and D�A at weak coupling, when exploiting Eq. (27) for the
calculations. The algorithmic implementation of alternative
schemes goes evidently beyond the scope of this paper.
Nonetheless, in the next section we will sketch ideas for
improving the λ corrections of the ladder D�A, whose general
features might be of interest also for other diagrammatic
extensions of DMFT, based on ladder resummations.
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V. TOWARDS AN IMPROVED VERSION OF LADDER D�A

In this section, inspired by the inconsistencies in the
determination of the kinetic and the potential energy in DMFT
and its extensions (see previous section), we propose an
improvement of the state-of-the-art ladder D�A algorithm,
overcoming these ambiguities. In particular, a thorough analy-
sis of the intrinsic sources of inconsistencies in approximated
many-body treatments will naturally suggest the conditions
which need to be enforced. We stress here that while the
algorithmic modifications proposed in this section are thought
to be specifically applicable to future calculations within
the ladder D�A scheme, the underlying concepts might be
inspiring also for further developments of other quantum
many-body approaches based on DMFT and its extensions.
As for our specific case, we recall that the λ corrections of
ladder D�A have been originally introduced [55] in order to
correct the spurious 1/iν-asymptotic behavior of the ladder
D�A self-energy �lad(iν,k). As discussed in Sec. II and
Appendix A, this is equivalent to the fulfillment of the sum
rule

1

β

∑
�q

χ
λ=λm,�
↑↑,q = 1

β

∑
�q

1

2

[
χ�

d,q + χλm,�
m,q

] ≡ n

2

(
1 − n

2

)
,

(29)

for the ↑↑ susceptibility χ�
↑↑,q [see Eq. (A3)]. Let us stress

that Eq. (29) is always fulfilled for the purely local DMFT
susceptibilities (i.e., for those of the auxiliary AIM).

A corresponding summation over the ↑↓ susceptibility is
related to the double occupancy of the system [c.f. Eq. (27)],
i.e.,

1

β

∑
�q

χ
λ,�
↑↓,q = 1

β

∑
�q

1

2

[
χ�

d,q − χλm,�
m,q

] ≡ 〈n̂i↑n̂i↓〉1 − n2

4
.

(30)

As discussed in the previous section [see Eq. (28)], the double
occupancy of the system can be also calculated solely in terms
of one-particle quantities:

1

Uβ

∑
νk

G(iν,k)�(iν,k) = 〈n̂i↑n̂i↓〉2. (31)

In an exact theory the double occupations obtained in the two
different ways of course coincide, i.e., 〈n̂i↑n̂i↓〉1 ≡ 〈n̂i↑n̂i↓〉2.
While this relation also holds for the full (parquet-based) D�A,
it is in general not fulfilled in the ladder version of D�A.
In fact, taking into account renormalization effects only for
the spin susceptibility by adopting a single parameter λ = λm

allows only for fixing one sum rule. This is, in the case of the
state-of-the-art ladder-D�A, the one for χ↑↑ [see Eq. (29)],
which corresponds to fix the charge density at the two-particle
level. Hence, in order to render the double occupancies (and,
accordingly, the potential energies) calculated at the one- and
the two-particle level equal, we have to introduce another
degree of freedom. Since in ladder D�A also the charge
susceptibility is treated in a not (two-particle) self-consistent
way, it is reasonable to apply a λ correction also to this response
function in order to take into account corresponding nonlocal
renormalization effects beyond DMFT. A Moriya-corrections

parameter λd can be thus introduced to the corresponding
charge susceptibility in the same way as for the spin channel
[Eq. (A5)]. Taking into account, in addition, a chemical
potential μ to fix the charge density of the system at the
one-particle level, we eventually obtain the following system
of three equations for determining, unambiguously, λd,λm, and
μ:

1

β

∑
�q

1

2

(
χ

λd,�
d,q + χλm,�

m,q

) = n

2

(
1 − n

2

)
(32a)

1

Uβ

∑
νk

Gλ
μ(iν,k)�λ(iν,k) = 1

β

∑
�q

1

2

(
χ

λd,�
d,q − χλm,�

m,q

) + n2

4

(32b)

1

β

∑
νk

Gλ
μ(iν,k) = n, (32c)

where Gλ
μ(ν,k) = [iν + μ − εk − �λ(ν,k)]−1 and �λ denotes

the ladder D�A self-energy obtained from Eq. (10) where
both χd and χm are replaced by their λ-corrected counterparts.
Note that if the μ is strongly altered compared to its
DMFT value, an “outer” self-consistency likely needs to be
performed in our calculations, because the local AIM should
be readapted to the local part of the ladder D�A Green’s
function. It is obvious that the λ corrections introduced
by Eqs. (32) avoid—per construction—the ambiguity in the
calculation of Epot, since the accordance of this observable
calculated from one- and two-particle quantities is enforced by
Eq. (32b).

It is worth noticing that the proposed scheme follows, to
some extent, the ideas of the TPSC approach for the Hubbard
model [31,97]. There, RPA ladders have been constructed
with different values Ud and Um in the charge- and spin
channels, respectively. The free parameters Ud and Um of
the TPSC calculations are in fact determined by requiring
consistency between the one- and the two-particle level. In this
perspective, this theory might be seen as the limiting case of
the ladder D�A approach with the λ corrections introduced
above for irreducible vertices �νν ′ω

r → Ur and the DMFT
scattering factor � → 0. Hence, one would expect that both
theories lead to similar results in the weak-to-intermediate
coupling regime, while the D�A is applicable also at strong
coupling. However, despite the formal similarity, the proposed
λ-correction scheme for D�A will modify the results for
the one-particle spectral functions w.r.t. TPSC also in the
weak-coupling regime. This is due to the presence of a finite
quasiparticle scattering rate, as we have discussed in Sec. III B.

Let us finally address the problem of the consistent
treatment of the kinetic energy within D�A. As already
mentioned at the beginning of Sec. IV A, Ekin can be obtained
also from two-particle quantities by means of the so-called
f -sum rule [31]:

lim
η→0

1

β

∑
�

(ei�η − e−i�η)i� χ�
d/m,q

= 2

β

∑
νk

(εk+q + εk−q − 2εk)G(ν,k). (33)
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In fact, one can immediately see that summing Eq. (33) over
q yields twice the negative value of the kinetic energy on its
r.h.s. as the terms proportional to

∑
q εk±q vanish. This, hence,

allows us to calculate Ekin purely from either the charge- or the
spin susceptibility by just summing the left hand side of this
equation over q. In general, this will yield a different result for
the kinetic energy as that obtained from Eq. (22) in Sec. IV A
for D�A. We may be actually able to sidestep this ambiguity
by introducing q-dependent λ corrections λq, determined by
the fulfillment of the f -sum rule in Eq. (33). Specifically, we
can introduce parameters λd,q and λm,q into χ�

d,q and χ�
m,q [see

Eq. (A5)] and determine their values (for each single q) by
Eq. (33). Let us note that this modification would lead to a
strongly coupled set of nonlinear self-consistent equations for
λd,q and λm,q. In fact, the self-energy �λq (ν,k), which enters
in the Green’s function on the r.h.s. of Eq. (33), would depend
on the values of the λ’s at all momenta q, since it should be
calculated from the D�A Eq. (10) including, in turn, a q sum
over the λq-corrected susceptibilities χ

λd,q,�

d,q and χ
λm,q,�
m,q . Let

us finally recall that the f -sum rule is automatically fulfilled in
any conserving [82,83] approximation in the Baym-Kadanoff
sense.

A crucial question would be now whether it is possible to
enforce Eqs. (32) and (33) at the same time, or if—within the
ladder D�A—one should, instead, stick to a self-consistent
treatment of either the potential or the kinetic energy. In this
respect, we note that the contribution of χ�

d/m,q to the frequency
sum on the left hand side of Eq. (33) vanishes for � ≡ 0.
Hence, one can modify the values of λd/m,q only for � = 0
by adding a corresponding q-independent constant λd/m as
in Eqs. (32) without violating the validity of the sum rule.
This would yield eventually an �- and q-dependent Moriya λ

correction:

λ�
r,q = λr,q + δ�0λr, (34)

where r = d,m. The parameters λ�
r,q can now be determined

by the Eqs. (32) and (33) which indeed render both the
kinetic and the potential energy consistent at the one- and
the two-particle level. From a physical perspective the ansatz
for the λ-correction scheme in Eq. (34) is well justified for
T > 0 where classical (� = 0) fluctuations are dominating.
Hence, the discontinuity of λ�

r,q reflects to some extent the
corresponding sharp increase of the physical observables, i.e.,
in the physical susceptibilities at � = 0. To which extent,
however, these improved schemes are applicable for describing
quantum fluctuations at T = 0 remains an open question.

We should also note that the above introduced momentum-
dependent λ-correction scheme is in some sense comple-
mentary to the dual boson method, where the local retarded
interaction (
�) can be interpreted as a frequency-dependent
λ correction of the corresponding bosonic propagator [67]. Let
us, however, stress that in the latter approach the quantity 
� is
determined by relating the susceptibility to the corresponding
one of an auxiliary AIM [see Eq. (36) in Ref. [67]], while in
our case it could be fixed by using only consistency conditions
between one- and two-particle observables of the physical
system.

We should point out that the above defined q-dependent
λ-correction scheme might also overcome the problem of the

analyticity violation of the imaginary part of the ladder-D�A
self-energy for k points far away from the Fermi surface which
has been recently reported in Ref. [59]. In fact, as it has
been argued there, that the state-of-the-art (q-independent)
λ corrections work more accurately for k points at the Fermi
surface, corresponding (in our case) to the q = � contribution
of the susceptibilities, but are too large for k vectors far away
from the Fermi surface (related to q ∼ �/2).

Let us finally state that the above introduced λ corrections
allow also for a correction of the anomalous critical exponent η
within the ladder D�A scheme, which was previously frozen to
its mean-field value (η = 0). In fact, while the q-independent
part of λ�

r,q accounts for the modification of the mean field
value of the critical exponent ν (or γ , see Appendix A) the
q-dependent part can modify the functional form of the q
dependence of Eq. (D1) and, thus, the critical exponent η.

VI. CONCLUSIONS AND OUTLOOK

In this paper we have analyzed by means of the dynamical
vertex approximation (and its comparison with DMFT) how
nonlocal correlations selectively affect the physics of the
two- and three-dimensional (unfrustrated) Hubbard model
on different energy scales, over the whole phase diagram.
Specifically, we found that, at low energies close to the
Fermi level, antiferromagnetic fluctuations give rise to a
strong suppression of spectral weight, reflected in an enhanced
D�A quasiparticle scattering rate w.r.t. DMFT. This effect
disfigures the typical Fermi-liquid temperature dependencies
of the physical quantities in a much broader T regime than the
one where coherent quasiparticle excitations are eventually
destroyed by the nonlocal correlations.

At the same time, the low-temperature enhancement of the
D�A scattering rates, though significant, is weaker than that
predicted by theories based on bare Green’s functions and
frequency-independent (static) vertices, such as TPSC, where,
e.g., in 2d the scattering rate grows directly proportional to the
correlation length of the system: In the D�A all temperature
dependencies, are—to some extent—mitigated by local cor-
relation effects, i.e., by the finite quasiparticle scattering rate
of DMFT. Such corrections yield more physically plausible
results, which look consistent with an overall continuity of
the temperature evolution of the (normal part of the) spectral
functions across the AF phase transition, both in 3d and 2d.

Our findings are also of potential interest for the inter-
pretation of the most recent transport experiments [80] on
the superconducting cuprates, in that we have shown how
the very same physical mechanism (here: AF correlations
with extended correlation length) can manifest itself quite
differently in different physical observables and at different
energy scales.

In the second part of the paper, we have extended our
analysis to all energy scales by calculating the energetics
of the system, resolved in its kinetic and potential counter-
parts. In D�A, we found a reduction/enhancement of the
electronic mobility w.r.t. DMFT due to nonlocal correlations
at weak/strong coupling, consistent with the corresponding
stabilization mechanism of the low-temperature magnetic
phase (Slater vs Heisenberg). A detailed study of the energy-
distribution functions has allowed us to identify the origin of
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this difference as a loss of kinetic energy in D�A w.r.t. DMFT
around the Fermi level at weak coupling, and a corresponding
gain at large energies, away from the Fermi level, at strong
coupling. These trends have been, thus, interpreted in terms of
a progressive destruction of low-energy coherent excitations
induced by extended AF fluctuations at weak coupling, and of
the emergence of coherent high-energy magnetic excitations
from the Mott insulating phase at strong coupling, respectively.

However, by performing the corresponding analysis for the
potential energy (which should display a perfectly specular
behavior within this scenario) deviations from the expected
trends have been found at strong coupling. After a critical
analysis of our results and of the energy expressions commonly
used in quantum many-body algorithms, we attributed this
(likely) spurious behavior of Epot to the intrinsic ambiguity of
the corresponding energy expressions. In fact, the latter—both
for the kinetic and the potential terms—can be obtained, com-
plementarily, from one- and two-particle Green’s functions.

The emergence of possible inconsistencies, recently re-
ported [68] exclusively for the potential energy part, may
have relevant implications for all many-body approximated
algorithms which require the calculation of the total energy
of the system (such as lattice optimization within realistic
DFT+DMFT calculations). The general discussion of such
implications goes obviously beyond the scope of this paper.
Nonetheless, the observation of these inconsistencies in the
specific case of our ladder D�A calculations has been
already inspiring for formulating suggestions of possible
improvements in the state-of-the-art D�A algorithms: These
suggestions exploit a more consistent enforcing of the physical
sum rules at the one- and two-particle levels. Such ideas might
be also of interest for several quantum many-body schemes
built on ladder resummations beyond the weak-coupling
regime, like, e.g., for all the diagrammatic extensions of
DMFT.
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APPENDIX A: LAMBDA CORRECTIONS
FOR THE SELF-ENERGY

In this section we will first discuss the 1
iν

-asymptotic
behavior of the self-energy �(iν,k) obtained by means of
the EOM (2) in the general case and then discuss the specific
situation of ladder D�A. In order to keep the notation simple
we will adopt here a four-vector notation for Matsubara
frequencies and momenta: k = (iν,k) for the fermionic case
and q = (i�,q) for the bosonic case, respectively. Let us
start with analyzing the single contributions to the self-energy
according to Eq. (2) with respect to their ν dependence:

FIG. 9. Diagrams for F
kk′q
↑↓ that do not depend on ν (and k).

Note that the four-vector notation k=̂(iν,k) and q=̂(i�,q) has been
adopted here.

(i) G(k + q) =ν→∞−→ 1
iν

+ O[ 1
(iν)2 ]: Since G(k + q) exhibits

already a contribution 1
iν

, we have to single out terms which are
constant with respect to ν in all the remaining parts of Eq. (2)
in order to get the 1

iν
asymptotics of the entire expression.

(ii) F
kk′q
↑↓ : The ν-independent contributions to the vertex

function are given by the diagrams shown in Fig. 9 (see also
Refs. [51,64]). Analytically, these terms can be written as:

F
kk′q
↑↓ ∼ U

β

∑
k1

[
G(k1)G(k1 + q)Fk1k

′q
↓↓ + βδk1k′

]
= −U

β

1

G(k′)G(k′ + q)

∑
k1

χ
k1k

′q
↓↓ + O

[
1

iν

]
, (A1)

where the definition of the three-frequency and three-
momentum susceptibility is analogous to the second line of
Eq. (3). Inserting this result into Eq. (2) for the self-energy
leads, at the order 1

iν
, to:

�(k) = Un

2
+ 1

iν

U 2

β3

∑
k1k′q

χ
k1k

′q
↓↓ + O

[
1

(iν)2

]
. (A2)

For the exact χ
k1k

′q
↓↓ of the Hubbard model (or a related AIM),

the sum in Eq. (A2) can be evaluated analytically and yields:

1

β3

∑
k1k′q

χ
k1k

′q
↓↓ = 〈n↓n↓〉 − 〈n↓〉〈n↓〉 = n

2

(
1 − n

2

)
, (A3)

where SU(2) symmetry (〈n̂↑〉 = 〈n̂↓〉 = n/2) has been used.
Equations (A2) and (A3) yield the well-known expression
for the 1

iν
-asymptotic behavior of self-energy of the Hubbard

model [98]:

�(k) = Un

2
+ U 2 n

2

(
1 − n

2

)
1

iν
+ O

[
1

(iν)2

]
. (A4)

In a plain-vanilla ladder version of D�A, we directly obtain
the susceptibility χ

kk′q
r = χνν ′ω

r,q from a ladder consisting of

local irreducible vertices �νν ′ω
r and DMFT Green’s functions

G(iν,k) [see Eq. (3)], which actually corresponds [6] to
the definition of the momentum-dependent susceptibility of
DMFT. It turns out that, in finite dimensions, where the
DMFT self-consistency is guaranteed only at the one-particle
level, this susceptibility violates the sum rule (A3). This is
reflected in a corresponding violation of the 1

iν
-asymptotic

behavior of the ladder D�A self-energy. A solution for this
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problem has been successfully achieved within the ladder
D�A approach [29,55] through the introduction of a so-
called Moriyasque λ correction [65]. This works as follows:
The sum rule in Eq. (A3) is restored by appropriately
correcting χ

kk′q
↑↑ . Obviously, it is desirable to apply effective

corrections to physical observable quantities rather than to
intermediate-step objects such as the generalized susceptibil-
ity. To this end, one considers the physical susceptibilities
χ�

r,q = (1/β2)
∑

kk′ χ
kk′q
r rather than the generalized ones (see

also Sec. II). Here, r can in principle refer to the spin (r = m),
charge (r = d), and particle-particle (r = pp) channel. In its
original version, which has been used for all calculations in
the present paper, the λ-correction χ�

r,q → χλr ,�
r,q is performed

only for the dominating channel, which is the spin channel
in the case of the half-filled Hubbard model on a bipartite
lattice in 2d and 3d. In Sec. V however, an improved
scheme of λ corrections, taking into account also the charge
channel in a self-consistent way is proposed. In a plain-vanilla
ladder version of D�A, we directly obtain the susceptibility
χ

kk′q
r = χνν ′ω

r,q from a ladder consisting of local irreducible

vertices �νν ′ω
r and DMFT Green’s functions G(iν,k) [see

Eq. (3)], which actually corresponds [6] to the definition of
the momentum-dependent susceptibility of DMFT. It turns out
that, in finite dimensions, where the DMFT self-consistency
is guaranteed only at the one-particle level, this susceptibility
violates the sum rule (A3). This is reflected in a corresponding
violation of the 1

iν
-asymptotic behavior of the ladder D�A

self-energy. A solution for this problem has been successfully
achieved within the ladder D�A approach [29,55] through
the introduction of a so-called Moriyasque λ correction [65].
This works as follows: The sum rule in Eq. (A3) is restored
by appropriately correcting χ

kk′q
↑↑ . Obviously, it is desirable

to apply effective corrections to physical observable quantities
rather than to intermediate-step objects such as the generalized
susceptibility. To this end, one considers the physical suscep-
tibilities χ�

r,q = (1/β2)
∑

kk′ χ
kk′q
r rather than the generalized

ones (see also Sec. II). Here, r can in principle refer to the
spin (r = m), charge (r = d), and particle-particle (r = pp)
channel. In its original version, which has been used for all
calculations in the present paper, the λ correction χ�

r,q → χλr ,�
r,q

is performed only for the dominating channel, which is the
spin channel in the case of the half-filled Hubbard model on a
bipartite lattice in 2d and 3d. In Sec. V however, an improved
scheme of λ corrections, taking into account also the charge
channel in a self-consistent way is proposed.

The explicit transformation χ�
r,q → χλr ,�

r,q is given
by [55,65]:[

χ�
r,q

]−1 → [
χ�

r,q

]−1 + λr = [
χλr ,�

r,q

]−1
, (A5)

where χ�
r,q denotes the susceptibility obtained from the ladder

calculation in Eq. (3). Note that, in principle, the above
relation can be made exact by considering a frequency- and
momentum-dependent λ�

r,q. In practice, as the exact expression
of λ�

r,q is unknown, approximations are needed. For instance,
in the dual boson approach [67,68,99] the propagators χ�

r,q are
indeed corrected by a frequency-dependent λ�. A static, i.e.,
frequency- and momentum-independent, λ correction, on the
other hand, allows for a transparent physical interpretation:

Considering the Ornstein-Zernike form for the physical (in
our case spin) propagator [see Eq. (D1)] it is obvious that
the λ correction as described in Eq. (A5) corresponds just
to a renormalization of the correlation length of the system
as ξ → ξλ = (ξ−2 + Aλ)−1/2 (hereafter, we just consider the
spin channel r = m and suppress the corresponding index). In
fact, for a positive value of λ Eq. (A5) describes an effective
reduction of the magnetic correlation length. This corrects
appropriately the overestimation of TN by DMFT.

Moreover, the λ correction renders the susceptibility χ�=0
q

positive in a temperature region where DMFT has already
become thermodynamically unstable, marked by a negative
value of χ�=0

q . In this respect, the procedure of λ corrections
makes ladder D�A applicable down to temperatures where a
value of λ can be found so that χλ,�

q is larger than 0 and at the
same time Eq. (A3) is fulfilled. In 2d this can be achieved
down to T = 0 in accordance with the Mermin-Wagner
theorem [72], while in three dimensions the Moriya corrected
ladder D�A still finds a finite temperature phase transition
albeit with a reduced transition temperature compared to
DMFT.

APPENDIX B: THE PHYSICAL MEANING
OF THE THREE-LEG VERTEX

In this Appendix, we want to study more explicitly the di-
agrammatic and physical content of the three-legs vertex γ ν�

r,q ,
as defined in Eq. (9). Let us stress that this object coincides
exactly with the three-legs vertex which is naturally obtained in
the TRILEX approach from a functional perspective [26,27].
Hence, an improved understanding of the general properties
of this quantity is highly interesting.

It is straightforward to demonstrate that γ ν�
r,q , as defined by

Eqs. (8) and (9), can be equivalently expressed in the following
way:

γ ν�
r,q =

[
χν�

0,q

]−1 1
β

∑
ν ′ χνν ′�

r,q

1 − Urχ�
r,q

=
1 − 1

β

∑
ν ′ Fνν ′�

r,q χν ′�
0,q

1 − Urχ�
r,q

, (B1)

which reproduces exactly the expression obtained in the
TRILEX method [26,27]. In the following we will decompose
γ ν�

r,q into different classes of diagrams, in order to get a better
insight into the physical content of this vertex function. To
this end we will decompose the full vertex Fνν ′�

r,q , which is

contained in the generalized susceptibility χνν ′�
r,q as indicated

in the second line of Eq. (3), into three distinct diagrammatic
contributions.

The first class a of diagrams for Fνν ′�
r,q is illustrated in

Fig. 10. As one can see, the leftmost part of all such diagrams
collapses to the bare interaction Ur . This renders all diagrams
of class a ν independent and, hence, determines the asymptotic
behavior of γ ν�

r,q with respect to ν, similar as for the self-energy

obtained from Fνν ′�
r,q via the EOM [see Eq. (A2)]. Analytically,

the contribution of this diagram class, which will be denoted
as Aνν ′�

r,q in the following, reads

Aνν ′�
r,q = Ur − Ur

β

∑
ν1

χ
ν1�
0,q Fν1ν

′�
r,q . (B2)

The second class of diagrams (b) is depicted in Fig. 11.
The defining property of this class is that the corresponding
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FIG. 10. All Feynman diagrams for F νν′�
r,q of class a. Note that

this contribution to the full vertex is independent of the fermionic
frequency ν.

diagrams are “irreducible in the interaction Ur ,” i.e., they
cannot be split into two parts by removing a bare interaction Ur

from a diagram. Furthermore, we exclude all diagrams which
are already in class a, i.e., all diagrams whose leftmost part
collapses to the bare interaction Ur . It is clear that the sum of
all such diagrams (explicitly: Bνν ′�

r,q ) decays with the fermionic
Matsubara frequency ν and, hence, does not contribute to the
constant asymptotics of the three-leg vertex γ .

The third class of diagrams (c) contains all diagrams which
are not yet considered in class a or b. Hence, these contributions
are “reducible in the interaction Ur ,” and their leftmost part
does not collapse to the bare interaction. Similar to the concept
of reducibility in terms of Green’s functions [38] such a class
of diagrams Cνν ′�

r,q can be expressed via the irreducible vertex

Bνν ′�
r,q and the full vertex Fνν ′�

r,q by means of a Bethe-Salpeter-
like equation. This equation is depicted diagrammatically in
Fig. 12. Formally this term reads

Cνν ′�
r,q = Ur

β2

∑
ν1ν2

Bνν1�
r,q

[−βχ
ν1�
0,q + χ

ν1�
0,q χ

ν2ν
′�

0,q Fν2ν
′�

r,q

]
. (B3)

We can now proceed by inserting the three contributions
a, b, and c to the full vertex Fνν ′�

r,q into Eq. (B1) for the
three-leg vertex γ ν�

r,q . Considering that 1
β2

∑
νν ′ βχν�

0,qδνν ′ −
χν�

0,qFνν ′�
r,q χν ′�

0,q = 1
β2

∑
ν1ν2

χνν ′�
r,q ≡ χ�

r,q one observes that the
denominator in Eq. (B1) is canceled. Thus, the following
expression for γ ν�

r,q remains:

γ ν�
r,q = 1︸︷︷︸

a

− 1

β

∑
ν ′

Bνν ′�
r,q︸ ︷︷ ︸

b+c

. (B4)

From this equation one can infer interesting interpretations.
First of all, it is clear that the three-leg vertex approaches
1 as ν → ∞ as it has been already empirically observed
in the numerical results of Ref. [55]. Let us emphasize that
this behavior can be found in the exact solution as well as
in the γ ν�

r,q constructed within the ladder approximation of

FIG. 11. Examples for diagrams of class b.

FIG. 12. Bethe-Salpeter-like equation for constructing diagrams
of type c.

the D�A. Moreover, the above considerations show that the
three-legs vertex does not contain any physical susceptibility
χ�

r,q: This happens because Bνν ′�
r,q is constructed as the set

of diagrams which do not collapse to a bare Ur . Instead,
the physical susceptibilities are built from precisely such
collapsing diagrams.

This inspires the following considerations: Since the largest
nonlocal contributions to the self-energy from ladder D�A are
due to the susceptibilities χ�

r,q (in our case in particular the
spin susceptibility χ�

m,q), it can be expected that the influence
of nonlocal correlations on γ ν�

r,q is rather moderate. For this
reason, and due to the already correct asymptotics of γ ν�

r,q ,
we think that it is justified to perform λ corrections for
the physical susceptibilities only while the three-leg vertex
remains unchanged. Finally, the same argument can provide
support of the approximation made in TRIXLEX, i.e., to
entirely neglect the momentum dependence of the three-legs
vertex γ .

APPENDIX C: CONDITION FOR THE EXISTENCE
OF A DIP IN THE SPECTRAL FUNCTION

In this section we provide some details about the derivation
of inequality (11) of the main text. To this end we start from
the explicit expression of the spectral function A(ω,k) in terms
of the retarded self-energy �(ω,k) of the system:

A(ω,k) = − 1

π

N (ω,k)

D(ω,k)
, (C1)

where

N (ω,k) = Im�(ω,k), (C2a)

D(ω,k) = [ω + μ − εk − Re�(ω,k)]2 + [Im�(ω,k)]2.

(C2b)

Expanding �(ω,k) around ω = 0 yields for the half-filled
system (μ = U/2) for k points on the Fermi surface (εk = 0):

−μ + Re�(ω = 0,k) = 0 Im�(ω = 0,k) = −γk (C3a)[
∂Re�

∂ω

]
ω=0

= −αk

[
∂Im�

∂ω

]
ω=0

= 0. (C3b)

Differentiating expression (C1) once with respect to ω at ω = 0
yields 0 when considering Eqs. (C2) and (C3). Hence, A(ω,k)
has an extremum at ω = 0. The condition that this extremum
is a minimum requires the second derivative of the spectral
function being positive. A straightforward differentiation of
Eq. (C1) under consideration of Eqs. (C2) and (C3) yields
relation (11).

For the spectral function at the antinodal point kA shown
in Fig. 13 this dip condition is fulfilled for β = 40 while
it is violated at β = 35. Hence, similar as for the nodal
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FIG. 13. Self-energies and spectral functions for the antinodal point of the 2d Hubbard model at half filling [kA = (π,0)]. The conventions
adopted are the same as those of Fig. 2 in Sec. III A.

point discussed in Sec. III A, in the latter case we observe
a situation where the self-energy already exhibits non-Fermi-
liquid behavior while the spectrum displays still a peak at the
Fermi level.

APPENDIX D: ANALYTICAL APPROXIMATION
FOR D�A SELF-ENERGY

In this Appendix we outline explicitly the approximation
steps which have been applied to the ladder-D�A self-energy
in Eq. (10) in order to obtain the corresponding simplified
expressions in Eqs. (13):

(i) First of all, we neglect the part of the equation describing
charge fluctuations. This is justified since, at half-filling, spin
fluctuations dominate the physics.

(ii) The three-leg vertex γ ν�
m,q can be replaced by a constant,

as it does not contain any spin ladders and, hence, will not
be enhanced when approaching the AF phase transition upon
lowering the temperature. This issue and the three-leg vertex
itself have been discussed in more detail in Appendix B.

(iii) We will consider χ�
m,q only at its maximal value, which

is assumed for � = 0 and at q = �, with � = (π,π ) in 2d and
� = (π,π,π ) in 3d, respectively. This corresponds to taking
into account only classical (� = 0) spin fluctuations around
the predominant antiferromagnetic wave vector. This way χ�

m,q
can be represented analytically by a simple Ornstein-Zernike-

like form:

χ�=0
m,q = A

(q − �)2 + ξ−2(T )
, (D1)

where ξ (T ) is the correlation length of the system and
A is a constant assumed to be approximately temperature
independent in the following. Moreover, we will perform for
convenience a shift of the integration variable q as q → q + �

in Eq. (10), i.e., in the new coordinate system the most relevant
contributions due to antiferromagnetic correlations correspond
to q ≡ 0.

(iv) In order to perform analytical calculations, we simplify
also the DMFT Green’s function G(iν + i�,k + q + �) in
the D�A equation (10). As for the magnetic susceptibility,
we will of course restrict ourselves to the contribution � = 0.
Moreover, as we are interested in the D�A self-energy on the
real axis, we perform the analytic continuation iν → ω + iδ

and expand the DMFT self-energy in real frequencies ω around
ω = 0:

�(ω) = −iγ − αω + O(ω2). (D2)

Here, we have taken into account only terms up to the first
order in ω, as we are interested in the D�A low-energy
coefficients αk(T ) and γk(T ). Accordingly, G(ω,k + q + �)
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can be written as

G(ω,k + q + �) ∝ 1

ω − ε̃k+q+� + i�
, (D3)

where � = γ /(1 + α) is the renormalized quasiparticle scat-
tering factor (or inverse quasiparticle lifetime) of DMFT and
ε̃k = εk/(1 + α) is the renormalized dispersion. Let us recall
that � decreases with small temperatures as T 2, i.e.,

�(T ) ≡ γ (T )

1 + α(T )
= CT 2 + O(T 4), (D4)

since γ ∼ T 2 for low temperatures, while the renormalization
factor 0 < (1 + α)−1 < 1 remains finite even at T = 0 and can
be, hence, approximated as constant at low temperatures.

(v) A final approximation is applicable to the (renormal-
ized) dispersion ε̃k+q+�. As discussed above, the most relevant
contribution to the q integral in Eq. (10) originates from the
wave vector q = 0 (after the before mentioned shift of q by
�). Hence, we perform a Taylor series expansion of ε̃k+q+�

around this point:

ε̃k+�+q ∼ ε̃k+� + ∂ε̃

∂k
(k + �)︸ ︷︷ ︸
−vk

q + 1

2
q

∂ 2̃ε

∂k2
(k + �)︸ ︷︷ ︸

−2/mk

q, (D5)

where the last term is taken into account only when the second
one, i.e., the Fermi velocity, vanishes (which is indeed the
case for the antinodal point in 2d). The first term on the right
hand side of Eq. (D5) is always 0 for k vectors located on the
(perfectly nested) Fermi surface. As the (simplified) magnetic
susceptibility given in Eq. (D1) is rotational invariant with
respect to q, we can rotate the coordinate system in the q-
integral of Eq. (10) in such a way that the Fermi velocity (if it
is not 0) points into the qx direction. The second derivative of
the renormalized dispersion in Eq. (D5) is given by a diagonal
matrix with the entries 1 and −1 and, hence, the last term in
this equation can be written as (q2

x − q2
y )/mk with mk being the

mass of the quasiparticle excitations renormalized by DMFT.
Considering now the simplifications (i)–(v) for Eq. (10) leads
straightforwardly to Eqs. (13) in the main text of the paper.

Let us finally point out that the above approximations for the
integrands of the q integral determining the D�A self-energy
via Eq. (10) are in principle valid only in a tiny region around
q = (0,0,0) (corresponding to the antiferromagnetic vector
q = � before the shift of integration variables). However, in
the parameter regime where the most relevant contribution
to these integrals stems from critical antiferromagnetic fluc-
tuations, the leading order terms in the low-T behavior of
γk(T ) and αk(T ) will not depend qualitatively on the limits
of the integrals in Eqs. (13) which can be, hence, chosen for
convenience.

APPENDIX E: INTEGRALS FOR CALCULATING
FERMI LIQUID PARAMETERS

In this section, we provide some further details concerning
the evaluation of the integrals (13a) and (13b) for calculating
the low energy coefficients of the self-energy γk(T ) and αk(T ).
The actual calculations follow those of Ref. [31]. We first
define explicitly the prefactor Cω

k . From the D�A equation (10)

it follows that

Cω
k = 1

(2π )2

3

2
U 2Aγ ω,�=0

m,q∗ , (E1)

where A is a constant defined by the spin susceptibility in
Eq. (D1), and γ ω,�=0

m,q∗ is the (analytically continued) three-leg
vertex defined in Eq. (9), evaluated for the bosonic Matsubara
frequency � = 0 and a momentum q∗ in the Brillouin zone
which is determined by applying the mean-value theorem of
integral calculus to the q integral in Eq. (10). Note that we
have also included the 2d normalization factor 1/(2π )2 in
this prefactor. Hence, for 3d another factor 1/(2π ) has to be
considered explicitly in the calculation.

1. 2d, Nodal point

In order to evaluate Eq. (13a) for d = 2 we first perform
the integral over qy . As for integration extremes, we consider
[−π,π ], i.e., we perform the integration over the Brillouin
zone in the y direction. As discussed at the end of Appendix D
the choice of the extremes of the integral does not alter
qualitatively the results, because the integrals are mainly
controlled by the singularity of the integrand at q = (0,0).
The result of this integration, thus, yields:∫ π

−π

dqy

1

q2
y + q2

x + ξ−2
=

2 arctan
[

π√
q2

x+ξ−2

]
√

q2
x + ξ−2

. (E2)

This result can be then used in the qx integral of Eq. (13a) where
we perform the change of variables x = ξqx . Considering
the arctan in Eq. (E2) we note that arctan(πξ/

√
1 + x2) =

π/2 − arctan[
√

1 + x2/(πξ )]. As the second term vanishes
when ξ → ∞, we can neglect this contribution in the previous
relation and keep only the term π/2. Finally, the limits of the
x integral are given by [−πξ,πξ ], which can be extended to
∞ as discussed before. The remaining x integral hence reads

�(ω,kN ) ∼= πCω
k

vkN

T ξ

∫ +∞

−∞
dx

1√
1 + x2

1

x + Bω
kN

, (E3)

where

Bω
kN

= ξ

vkN

(ω + i�), (E4)

i.e., Bω=0
kN

= ibkN
where the latter quantity is defined in

Eq. (16). Integral (E3) is convergent and can be performed
explicitly. The final result for �(ω,kN ) is then given by

�(ω,kN ) = 2πCω
k

vkN

T ξ
1√(

Bω
kN

)2 + 1

× log
[−i

(
Bω

kN
+

√(
Bω

kN

)2 + 1
)]

. (E5)

Evaluating this expression for ω = 0 and extracting its negative
imaginary part yields the expression for γkN

as given in
Eq. (15a), when considering the definition 2πCω=0

k /vkN
≡

CkN
. As for the calculation of αkN

we have to differentiate
Eq. (E5) with respect to ω. In principle, we would have to
consider a contribution from the ω derivative of Cω

kN
. This

can be neglected, since the remaining part is purely imaginary
and, hence, does not contribute to αkN

. Interestingly, as the
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remaining part of the self-energy depends on ω only via
Bω

kN
,αkN

can be calculated for the nodal point directly from
γkN

as

αkN
= ∂

∂�
γkN

. (E6)

2. 2d, Antinodal point

For the antinodal point we have to evaluate the integral
in Eq. (13b) for d = 2. This is more complicated than the
corresponding calculation for the nodal case as both qx and
qy appear squared in both parts of the integrand. On the other
hand, this allows us to extend the domain of integration to the
entire two-dimensional k-space and perform the integration
in polar coordinates. The integration over q = |q| can be
thus easily done analytically and—after rearranging of the
ϕ-integral—yields

�(ω,kA) = 2Cω
k mkA

T ξ 2
∫ π

0
dϕ

log
[ Bω

kA

cos ϕ

]
Bω

kA
− cos ϕ

, (E7)

where Bω
kA

is defined as

Bω
kA

= mkA
ξ 2(ω + i�), (E8)

i.e., Bω=0
kA

= ibkA
as defined in Eq. (19). One can clearly see

that the integral in Eq. (E7) becomes divergent for � ≡ 0.
This illustrates the importance of the quasiparticle damping
factor of DMFT for k points at the van Hove singularity. After
splitting up the logarithm in Eq. (E7) as log(Bω

k / cos ϕ) =
log(Bω

k ) − log(cos ϕ) the first integral can be solved exactly.
Hence, we obtain

�(ω,kA) = 2Cω
k πmkT ξ 2

×
[

log
(
Bω

k

)√(
Bω

k

)2 − 1
− 1

π

∫ π

0
dϕ

log(cos ϕ)

Bω
k − cos ϕ

]
.

(E9)

Evaluating Eq. (E9) for ω = 0 and extracting its negative
imaginary part yields the expression for γkA

as given in
Eq. (18), when considering the definition 2πmkA

Cω=0
k ≡ CkA

.
Finally, αkA

can be obtained from Eq. (E9) by differentiating
its negative real part with respect to ω at ω = 0.

3. 3d

For the three-dimensional system we have to evaluate
the integral in Eq. (13a) for d = 3. First, we perform the
integration of qy and qz in polar coordinates where we cut
off the radial integral at q = |q| = π (corresponding to the
border of the Brillouin zone). The result is∫

dqydqz

1

q2 + ξ−2
= π log

[
π2 + ξ−2 + q2

x

ξ−2 + q2
x

]
. (E10)

The remaining qx integral is then extended to qx = ±∞ by
adding an infinitesimal convergence factor. This enables us to
perform the integral by means of the residue theorem consid-
ering that log(q2

x + C2) = log(qx + iC) + log(qx − iC) for an
arbitrary number C: We can then close the integration path in

the complex half-plane where no logarithmic singularity is
present. The result is

�(ω,k) = −i
πCω

k

vk
T log

[√
1 + (πξ )2 − iBω

k

1 − iBω
k

]
, (E11)

where Bω
k is the same as in Eq. (E4). Evaluating Eq. (E11)

and its first derivative w.r.t. ω at ω = 0 and considering
πCω=0

k /vk ≡ Ck yields the results for γk and αk, respectively,
which are presented in Eqs. (20) of the main text.

APPENDIX F: ENERGY DISTRIBUTIONS—ANALYTIC
DERIVATIONS AND FURTHER RESULTS

1. Energy distribution for the AL self-energy

In this section we report the analytical results for n(ε)
obtained by assuming the AL self-energy given in Eq. (25)
in the calculation:

nAL(ε) = 2

β

∑
νk

δ(ε − εk)
1

iν − εk − U 2

4iν

. (F1)

Note that this corresponds to an approximation where just the
self-energy of the system is replaced by the corresponding
atomic limit one rather than taking the atomic limit t → 0
itself. As for U = 4.0 this self-energy is, however, a good
approximation for the corresponding DMFT self-energy (as
we have verified for our numerical data), Eq. (F1) represents
indeed a reasonable approximation for n(ε) at such large values
of U .

By exploiting the definition of the DOS [
∑

k δ(ε − εk) =
D(ε)] we can rewrite Eq. (F1) as

nAL(ε) = 2D(ε)
1

β

∑
ν

1

iν − ε − U 2

4iν

. (F2)

The ν sum in Eq. (F2) can be now performed explicitly by
means of standard techniques [100] yielding:

nAL(ε) = 2D(ε)
1√

ε2 + U 2
[X+(ε)f (X+(ε))

−X−(ε)f (X−(ε))], (F3)

where f (x) = (1 + eβx)−1 denotes the Fermi function and

X±(ε) = 1
2 (ε ±

√
ε2 + U 2). (F4)

As X−(ε) < 0 and X+(ε) > 0, at T = 0 we can replace the
corresponding Fermi functions by 1 and 0, respectively, which
leads exactly to the result given in Eq. (26).

2. Further numerical results for n(ε)

In Fig. 14, we present our data for n(ε) in 3d for U = 0,
DMFT, D�A, and the corresponding 3d DOS. The situation is
completely analogous to the 2d case in Sec. IV B, except for
an (expected) weakening of nonlocal correlation effects in 3d.

In Fig. 15 we show n(ε) for the 2d Hubbard model in
the coexistence region of DMFT, i.e., where a metallic and
a Mott-insulating phase coexist. Here, one observes the same
gain of weight at large negative energies in D�A w.r.t. to
DMFT whereas—as expected—this strong coupling feature
becomes more pronounced in the insulating case (right panel).
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FIG. 14. Energy distributions n(ε) for the three-dimensional Hubbard model at two different values of the interaction parameter U for
temperatures slightly above the D�A phase transition to the antiferromagnetically ordered phase. In the inset the difference �(ε) between the
energy distributions of DMFT and D�A as well as the contribution ε�(ε) to the corresponding difference of the kinetic energies are shown.

APPENDIX G: CALCULATION OF KINETIC
AND POTENTIAL ENERGIES

In this section we will give computational details about the
calculation of the kinetic and potential energies.

1. Kinetic energy

The general expressions for the calculation of the kinetic
energy of the system used in this paper is given in Eq. (22). For
a practical evaluation of the frequency sum one has, of course,
to single out the 1/iν contribution of the summand, which in
our case is given by

2
∑

k

εk. (G1)

In the situation considered in this paper this term is zero due to
the symmetry properties of the dispersion relation. From a nu-

merical point of view, it is also convenient to single out the con-
tribution ∝1/(iν)2 in order to achieve a better convergence of
the numerical sum over the Matsubara frequencies. This term,
which is proportional to the second moment of the Green’s
function, reads (in the general case of arbitrary filling n)

2
∑

k

εk

[
εk + Un

2
− μ

]
. (G2)

Hence, we can rewrite Eq. (22) in the following way

Ekin = 2
1

β

∑
νk

[
εkG(iν,k) − εk

iν
− εk

(
εk + Un

2 − μ
)

(iν)2

]

+ 2
∑

k

εk − β

2

∑
k

εk

(
εk + Un

2
− μ

)
, (G3)

FIG. 15. Energy distributions n(ε) for the two-dimensional Hubbard model at U = 2.375 for β = 80 corresponding to the coexistence
region between an metallic and an insulating state in DMFT. In the inset the difference �(ε) between the energy distributions of DMFT and
D�A as well as the contribution ε�(ε) to the corresponding difference of the kinetic energies are shown.
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where we have used that 1
β

∑
ν

e−iν0+

iν
= 1

2 and
1
β

∑
ν

1
(iν)2 = − β

4 . Since
∑

ν
1

(iν)3 ≡ 0 it immediately
follows that the error due to the finite frequency summation
on the r.h.s. in Eq. (G3) is of the order 1

(iν̄)3 , where ν̄ denotes
the frequency up to which the sum in Eq. (G3) is performed.

2. Potential energy

The expression for calculating the potential energy used
in this paper is given in Eq. (28). Similar as for the
kinetic energy, in order to ensure/improve convergence of the
frequency sum in this equation, we subtract the 1/(iν) and
1/(iν)2 contributions from the summand. Evaluating the latter
analytically yields

Epot = 1

β

∑
νk

[
G(ν,k)�(ν,k) − Un

2

1

iν
− Un

2

U + εk − μ

(iν)2

]

+ Un

4
− Unβ

8

∑
k

[U + εk − μ]. (G4)

3. Frequency extrapolation

In addition to the above discussed treatment of the asymp-
totic behavior of G(ν,k) and �(ν,k) in the calculation of Ekin

[see Eqs. (22) and (G3)] and Epot [see Eqs. (28) and (G4)]
we have performed a frequency extrapolation in order to
check/improve the quality of our numerical results. This has
been achieved by calculating the frequency sums for the
evaluation of Ekin and Epot for different cutoff frequencies
ν̄ which defines, in turn, a function E(ν̄) where E denotes
either Ekin or Epot. From a typical high-frequency expansion
of G(ν,k) and �(ν,k) it follows that a similar expansion hold
for E(ν̄):

Efit(ν̄) =
∞∑
i=0

ai

(iν̄)i
. (G5)

Confining the sum in Eq. (G5) to a finite value of i = I yields
the asymptotic behavior of E(ν̄), which allows us to fit our
numerical data to this function. Obviously, the corresponding
fit parameter a0 will then represent our extrapolated result for
the energy for ν̄ → ∞. We have, hence, performed a least-
square fit of our numerical data for E(ν̄) to the fit function
Efit(ν̄) in an asymptotic interval [n̄min,n̄max] by minimizing

n̄max∑
n̄=n̄min

(
En̄ −

I∑
i=0

ai

in̄

)2

, (G6)

where En̄ ≡ E(ν̄) with n̄ being the index of the Matsubara
frequency ν̄ = π/β(2n̄ + 1). n̄min and n̄max define the (asymp-
totic) frequency interval in which the function E(ν̄) is fitted and
I represents the maximal fitting order according to Eq. (G5).
The minimization of (G6) w.r.t. the fitting parameters ai can
be performed analytically as Eq. (G6) depends linearly on ai

and yields the following linear equation for ai :

I∑
i=0

(
n̄max∑

n̄=n̄min

1

n̄l

1

n̄i

)
︸ ︷︷ ︸

Mli

ai =
n̄max∑

n̄=n̄min

En̄

n̄l
. (G7)

In order to solve this system for the fitting parameters ai we
have to invert Mli which might be challenging as this I × I

matrix is rather ill conditioned. However, since Mli does not
depend on our numerical data En̄ we can perform the inversion
analytically for I � 10, which yields

ai =
n̄max∑

n̄=n̄min

(
I∑

l=0

M−1
il

1

n̄l

)
︸ ︷︷ ︸

win̄

En̄, (G8)

where we have exchanged the n̄ and l sum. Note that win̄ does
not depend on the numerical data En and can be precomputed
analytically avoiding any numerical instabilities. Hence, the
extrapolated value for the energy E is eventually given by

E(ν̄ → ∞) = a0 =
n̄max∑

n̄=n̄min

w0n̄En̄. (G9)

Throughout this paper, we have extrapolated the results for
the kinetic and potential energies by means of Eq. (G9)
subtracting only the 1/iν contribution in the summand and
verifying that this indeed compares well with a corresponding
calculation where also the 1/(iν)2 term has been subtracted in
the summand. An extrapolation of the latter results yields—as
expected—only very small corrections for E w.r.t. to E(ν̄max).

APPENDIX H: TECHNICAL DETAILS ABOUT PADÉ FITS

In this section we provide some technical details about
the Padé approximation we have adopted for the analytical
continuation of our Matsubara frequency data of the DMFT
and D�A self-energies presented in Figs. 2 and 13. The
continuation has been performed by means of a “plain” Padé
fit, as it is described, e.g., in Refs. [101,102]. Concretely,
we have fitted a rational function f (z) = p(z)

q(z) ,z ∈ C, with
N fit parameters against N self-energy data points [(zn =
iνn,�(zn)),n = 1 . . . N ] on the Matsubara axis such that
f (zn) = �(zn). For even N , the functions p(z) and q(z) are
(complex) polynomials of degree N/2 − 1 and N/2, respec-
tively, whereupon the coefficient of zN/2 in the denominator
polynomial q(z) can be set to 1 w.l.o.g., as the denominator
and the numerator can be always divided by this factor. In
order to verify the reliability of the continuation, for sets of
data presented in the paper, we have (i) carefully checked the
stability of our fits by varying the set of Matsubara frequencies
used for the fit. Moreover, we have (ii) explicitly verified that
our Padé approximants satisfy the correct 1/iν asymptotic
behavior for the self-energy on the Matsubara axis. Finally,
we have (iii) analyzed the pole structure of our Padé fit in
order to make sure that no spurious poles appear in the upper
complex half-plane.

Note that by adopting ED as impurity solver our Matsub-
ara data are not afflicted with any statistical error. Hence,
numerical inaccuracies are due to the finite precision of
the double precision floating point numbers used for the
evaluation of the Padé fit by means of our Fortran code.
However, this problem might become relevant only in sit-
uations where the continued self-energies exhibit poles on
the real frequency axis [101]. As this is not the case for the
finite coupling/finite temperature regime considered in the
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paper (where the one-particle self-energy always displays a
sizable imaginary part), our algorithmic treatment should not
require further extensions, in agreement with the discussions of
Ref. [101].

One comment is in order regarding the analytic continuation
of DMFT(ED) data. In principle, ED provides the exact
solution of the (finite) system and, hence, the corresponding
Green’s function and the self-energy of the associated impurity
problem could be evaluated directly on the real axis avoiding
any analytical continuation procedure. Such an approach is,
however, problematic for two reasons: (i) The corresponding
spectral function consists of a finite collection of (δ-like)
peaks which have typically no physical meaning (at least

in the paramagnetic phase). In fact, in most of the cases
where peak-shaped excitations are not present in the local
spectral function, the DMFT(ED) self-energy on the Mat-
subara axis must be considered just as an approximation of
the “exact” DMFT result, which can be obtained, e.g., by
means of a high statistic QMC calculation (for exceptions,
see Refs. [90,93]). (ii) For the D�A exact results on the
real frequency axis are—in any case—not available. Thus,
for an unbiased comparison between the two methods, the
corresponding analytic continuations should be calculated
on the same footing, which explains the necessity of per-
forming a Padé analytic continuation also for the DMFT
data.
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[48] P. Pudleiner, T. Schäfer, D. Rost, G. Li, K. Held, and N. Blumer,

Phys. Rev. B 93, 195134 (2016).
[49] A. Eberlein, Phys. Rev. B 92, 235146 (2015).
[50] J. LeBlanc, J. P. F. LeBlanc, A. E. Antipov, F. Becca, I. W.

Bulik, GarnetKin-Lic Chan, C. M. Chung, Y. Deng, M. Ferrero,
T. M. Henderson, C. A. Jimenez-Hoyos, E. Kozik, X. W. Liu,

125144-28

http://dx.doi.org/10.1007/BF01341708
http://dx.doi.org/10.1007/BF01341708
http://dx.doi.org/10.1007/BF01341708
http://dx.doi.org/10.1007/BF01341708
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dl.acm.org/citation.cfm?id=2011832.2011833
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.66.763
http://dx.doi.org/10.1103/RevModPhys.66.763
http://dx.doi.org/10.1103/RevModPhys.66.763
http://dx.doi.org/10.1103/RevModPhys.66.763
http://dx.doi.org/10.1088/0034-4885/62/1/002
http://dx.doi.org/10.1088/0034-4885/62/1/002
http://dx.doi.org/10.1088/0034-4885/62/1/002
http://dx.doi.org/10.1088/0034-4885/62/1/002
http://dx.doi.org/10.1103/RevModPhys.78.17
http://dx.doi.org/10.1103/RevModPhys.78.17
http://dx.doi.org/10.1103/RevModPhys.78.17
http://dx.doi.org/10.1103/RevModPhys.78.17
http://dx.doi.org/10.1103/RevModPhys.87.855
http://dx.doi.org/10.1103/RevModPhys.87.855
http://dx.doi.org/10.1103/RevModPhys.87.855
http://dx.doi.org/10.1103/RevModPhys.87.855
http://dx.doi.org/10.1007/s10909-010-0200-9
http://dx.doi.org/10.1007/s10909-010-0200-9
http://dx.doi.org/10.1007/s10909-010-0200-9
http://dx.doi.org/10.1007/s10909-010-0200-9
http://dx.doi.org/10.1038/nphys892
http://dx.doi.org/10.1038/nphys892
http://dx.doi.org/10.1038/nphys892
http://dx.doi.org/10.1038/nphys892
http://dx.doi.org/10.1016/j.aop.2014.06.013
http://dx.doi.org/10.1016/j.aop.2014.06.013
http://dx.doi.org/10.1016/j.aop.2014.06.013
http://dx.doi.org/10.1016/j.aop.2014.06.013
http://dx.doi.org/10.1103/PhysRevLett.87.186401
http://dx.doi.org/10.1103/PhysRevLett.87.186401
http://dx.doi.org/10.1103/PhysRevLett.87.186401
http://dx.doi.org/10.1103/PhysRevLett.87.186401
http://dx.doi.org/10.1103/PhysRevB.62.R9283
http://dx.doi.org/10.1103/PhysRevB.62.R9283
http://dx.doi.org/10.1103/PhysRevB.62.R9283
http://dx.doi.org/10.1103/PhysRevB.62.R9283
http://dx.doi.org/10.1103/RevModPhys.77.1027
http://dx.doi.org/10.1103/RevModPhys.77.1027
http://dx.doi.org/10.1103/RevModPhys.77.1027
http://dx.doi.org/10.1103/RevModPhys.77.1027
http://dx.doi.org/10.1103/PhysRevB.75.045118
http://dx.doi.org/10.1103/PhysRevB.75.045118
http://dx.doi.org/10.1103/PhysRevB.75.045118
http://dx.doi.org/10.1103/PhysRevB.75.045118
http://dx.doi.org/10.1143/JPSJ.75.054713
http://dx.doi.org/10.1143/JPSJ.75.054713
http://dx.doi.org/10.1143/JPSJ.75.054713
http://dx.doi.org/10.1143/JPSJ.75.054713
http://dx.doi.org/10.1103/PhysRevB.77.033101
http://dx.doi.org/10.1103/PhysRevB.77.033101
http://dx.doi.org/10.1103/PhysRevB.77.033101
http://dx.doi.org/10.1103/PhysRevB.77.033101
http://dx.doi.org/10.1088/0953-8984/21/43/435604
http://dx.doi.org/10.1088/0953-8984/21/43/435604
http://dx.doi.org/10.1088/0953-8984/21/43/435604
http://dx.doi.org/10.1088/0953-8984/21/43/435604
http://dx.doi.org/10.1103/PhysRevLett.104.246402
http://dx.doi.org/10.1103/PhysRevLett.104.246402
http://dx.doi.org/10.1103/PhysRevLett.104.246402
http://dx.doi.org/10.1103/PhysRevLett.104.246402
http://dx.doi.org/10.1002/andp.201100036
http://dx.doi.org/10.1002/andp.201100036
http://dx.doi.org/10.1002/andp.201100036
http://dx.doi.org/10.1002/andp.201100036
http://dx.doi.org/10.1103/PhysRevB.88.115112
http://dx.doi.org/10.1103/PhysRevB.88.115112
http://dx.doi.org/10.1103/PhysRevB.88.115112
http://dx.doi.org/10.1103/PhysRevB.88.115112
http://dx.doi.org/10.1103/PhysRevLett.112.196402
http://dx.doi.org/10.1103/PhysRevLett.112.196402
http://dx.doi.org/10.1103/PhysRevLett.112.196402
http://dx.doi.org/10.1103/PhysRevLett.112.196402
http://dx.doi.org/10.1103/PhysRevB.91.045120
http://dx.doi.org/10.1103/PhysRevB.91.045120
http://dx.doi.org/10.1103/PhysRevB.91.045120
http://dx.doi.org/10.1103/PhysRevB.91.045120
http://dx.doi.org/10.1103/PhysRevB.92.115109
http://dx.doi.org/10.1103/PhysRevB.92.115109
http://dx.doi.org/10.1103/PhysRevB.92.115109
http://dx.doi.org/10.1103/PhysRevB.92.115109
http://dx.doi.org/10.1103/PhysRevB.93.235124
http://dx.doi.org/10.1103/PhysRevB.93.235124
http://dx.doi.org/10.1103/PhysRevB.93.235124
http://dx.doi.org/10.1103/PhysRevB.93.235124
http://dx.doi.org/10.1103/PhysRevB.94.075159
http://dx.doi.org/10.1103/PhysRevB.94.075159
http://dx.doi.org/10.1103/PhysRevB.94.075159
http://dx.doi.org/10.1103/PhysRevB.94.075159
http://dx.doi.org/10.1143/PTPS.176.117
http://dx.doi.org/10.1143/PTPS.176.117
http://dx.doi.org/10.1143/PTPS.176.117
http://dx.doi.org/10.1143/PTPS.176.117
http://dx.doi.org/10.1016/0921-4534(94)92339-6
http://dx.doi.org/10.1016/0921-4534(94)92339-6
http://dx.doi.org/10.1016/0921-4534(94)92339-6
http://dx.doi.org/10.1016/0921-4534(94)92339-6
http://dx.doi.org/10.1051/jp1:1997135
http://dx.doi.org/10.1051/jp1:1997135
http://dx.doi.org/10.1051/jp1:1997135
http://dx.doi.org/10.1051/jp1:1997135
http://dx.doi.org/10.1103/PhysRevB.46.3009
http://dx.doi.org/10.1103/PhysRevB.46.3009
http://dx.doi.org/10.1103/PhysRevB.46.3009
http://dx.doi.org/10.1103/PhysRevB.46.3009
http://dx.doi.org/10.1140/epjb/e2003-00315-0
http://dx.doi.org/10.1140/epjb/e2003-00315-0
http://dx.doi.org/10.1140/epjb/e2003-00315-0
http://dx.doi.org/10.1140/epjb/e2003-00315-0
http://dx.doi.org/10.1080/00018730412331303722
http://dx.doi.org/10.1080/00018730412331303722
http://dx.doi.org/10.1080/00018730412331303722
http://dx.doi.org/10.1080/00018730412331303722
http://dx.doi.org/10.1103/PhysRevB.75.134518
http://dx.doi.org/10.1103/PhysRevB.75.134518
http://dx.doi.org/10.1103/PhysRevB.75.134518
http://dx.doi.org/10.1103/PhysRevB.75.134518
http://dx.doi.org/10.1155/2014/515698
http://dx.doi.org/10.1155/2014/515698
http://dx.doi.org/10.1155/2014/515698
http://dx.doi.org/10.1155/2014/515698
http://dx.doi.org/10.1103/PhysRevLett.107.256402
http://dx.doi.org/10.1103/PhysRevLett.107.256402
http://dx.doi.org/10.1103/PhysRevLett.107.256402
http://dx.doi.org/10.1103/PhysRevLett.107.256402
http://dx.doi.org/10.1103/PhysRevB.92.144409
http://dx.doi.org/10.1103/PhysRevB.92.144409
http://dx.doi.org/10.1103/PhysRevB.92.144409
http://dx.doi.org/10.1103/PhysRevB.92.144409
http://dx.doi.org/10.1103/PhysRevLett.112.226401
http://dx.doi.org/10.1103/PhysRevLett.112.226401
http://dx.doi.org/10.1103/PhysRevLett.112.226401
http://dx.doi.org/10.1103/PhysRevLett.112.226401
http://dx.doi.org/10.1103/PhysRevLett.86.139
http://dx.doi.org/10.1103/PhysRevLett.86.139
http://dx.doi.org/10.1103/PhysRevLett.86.139
http://dx.doi.org/10.1103/PhysRevLett.86.139
http://dx.doi.org/10.1103/PhysRevLett.87.167010
http://dx.doi.org/10.1103/PhysRevLett.87.167010
http://dx.doi.org/10.1103/PhysRevLett.87.167010
http://dx.doi.org/10.1103/PhysRevLett.87.167010
http://dx.doi.org/10.1209/epl/i2001-00557-x
http://dx.doi.org/10.1209/epl/i2001-00557-x
http://dx.doi.org/10.1209/epl/i2001-00557-x
http://dx.doi.org/10.1209/epl/i2001-00557-x
http://dx.doi.org/10.1103/PhysRevLett.102.206401
http://dx.doi.org/10.1103/PhysRevLett.102.206401
http://dx.doi.org/10.1103/PhysRevLett.102.206401
http://dx.doi.org/10.1103/PhysRevLett.102.206401
http://dx.doi.org/10.1103/PhysRevB.91.125109
http://dx.doi.org/10.1103/PhysRevB.91.125109
http://dx.doi.org/10.1103/PhysRevB.91.125109
http://dx.doi.org/10.1103/PhysRevB.91.125109
http://dx.doi.org/10.1103/PhysRevLett.115.036404
http://dx.doi.org/10.1103/PhysRevLett.115.036404
http://dx.doi.org/10.1103/PhysRevLett.115.036404
http://dx.doi.org/10.1103/PhysRevLett.115.036404
http://dx.doi.org/10.1103/PhysRevD.24.2278
http://dx.doi.org/10.1103/PhysRevD.24.2278
http://dx.doi.org/10.1103/PhysRevD.24.2278
http://dx.doi.org/10.1103/PhysRevD.24.2278
http://dx.doi.org/10.1103/PhysRevB.93.195134
http://dx.doi.org/10.1103/PhysRevB.93.195134
http://dx.doi.org/10.1103/PhysRevB.93.195134
http://dx.doi.org/10.1103/PhysRevB.93.195134
http://dx.doi.org/10.1103/PhysRevB.92.235146
http://dx.doi.org/10.1103/PhysRevB.92.235146
http://dx.doi.org/10.1103/PhysRevB.92.235146
http://dx.doi.org/10.1103/PhysRevB.92.235146


IMPACT OF NONLOCAL CORRELATIONS OVER . . . PHYSICAL REVIEW B 94, 125144 (2016)

A. J. Millis, N. V. Prokofev, M. Qin, G. E. Scuseria, H. Shi,
B. V. Svistunov, L. F. Tocchio, I. S. Tupitsyn, S. R. White,
S. Zhang, B. X. Zheng, Z. Zhu, and E. Gull, others (Simons
Collaboration on the Many-Electron Problem), Phys. Rev. X
5, 041041 (2015).

[51] G. Rohringer, A. Valli, and A. Toschi, Phys. Rev. B 86, 125114
(2012).
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[53] O. Gunnarsson, T. Schäfer, J. P. F. LeBlanc, J. Merino, G.
Sangiovanni, G. Rohringer, and A. Toschi, Phys. Rev. B 93,
245102 (2016).

[54] E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M.
Troyer, and P. Werner, Rev. Mod. Phys. 83, 349 (2011).

[55] A. A. Katanin, A. Toschi, and K. Held, Phys. Rev. B 80, 075104
(2009).

[56] C.-X. Chen and N. E. Bickers, Solid State Commun. 82, 311
(1992).

[57] S.-X. Yang, H. Fotso, J. Liu, T. A. Maier, K. Tomko, E. F.
DAzevedo, R. T. Scalettar, T. Pruschke, and M. Jarrell,
Phys. Rev. E 80, 046706 (2009).

[58] K.-M. Tam, H. Fotso, S.-X. Yang, T.-W. Lee, J. Moreno,
J. Ramanujam, and M. Jarrell, Phys. Rev. E 87, 013311
(2013).
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enhancement of |Ekin| for D�A compared to DMFT (see
middle panel in Fig. 5). At low T (corresponding to β = 80)
on the other hand, we observe an additional inverse shift
at lower energies around the Fermi level, which partially
compensates the gain of |Ekin| in D�A w.r.t. DMFT which
is well reflected in the smaller difference between these two
values at lower T as can be observed in the middle panel of
Fig. 5.
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