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Chemical potential asymmetry and quantum oscillations in insulators
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We present a theory of quantum oscillations in insulators that are particle-hole symmetric and nontopological
but with arbitrary band dispersion, at both zero and nonzero temperature. At temperatures T less than or
comparable to the gap, the dependence of oscillations on T is markedly different from that in metals and depends
crucially on the position of the chemical potential μ in the gap. If μ is in the middle of the gap, oscillations do
not change with T ; however, if μ is asymmetrically positioned in the gap, surprisingly, oscillations go to zero
at a critical value of the inverse field determined by T and μ and then change their phase by π and grow again.
Additionally, the temperature dependence is different for quantities derived from the grand canonical potential,
such as magnetization and susceptibility, and those derived from the density of states, such as resistivity. However,
the nontrivial features arising from asymmetric μ are present in both.
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I. INTRODUCTION

Quantum oscillations provide one of the most commonly
used experimental tools to study metallic band structures, in
both weakly and strongly correlated systems [1–5]. They arise
from Landau levels (LLs) crossing the Fermi level periodically
as a function of the magnetic field. Such oscillations, therefore,
are expected only in metallic systems with a Fermi surface.

Recently, this canonical understanding has been challenged
by the observation [6] of quantum oscillations in SmB6, which
is believed to be a topological Kondo insulator [7–11]. While
the exact origin of the oscillations is still being debated
[12,13], it raises the questions: can quantum oscillations arise
in insulators? If yes, how are they different from oscillations in
metals? Two recent works have addressed these questions for
specific models. Reference [14] considered a model—inspired
by the experiment in Ref. [6]—of a flat band hybridized with
a dispersive band leading to a gap, and found oscillations
in the magnetization with a temperature dependence that is
nonmonotonic. However, it is not clear to what extent such
findings depend on the enhanced density of states due to the
flat band and the resulting strong particle-hole asymmetry.
In contrast, Ref. [15] considered a model of a topological
insulator and found multiple phase changes in oscillations
in density of states (DOS) accompanied by a nonmonotonic
temperature dependence. These features, however, are entirely
a consequence of the topological properties of the model
and are not expected in an ordinary insulator. A theory—and
general understanding—of oscillations in insulators is missing.

In this paper, we present a theory of quantum oscillations
in insulators, at both zero and nonzero temperature. We
construct our theory for a class of systems that are particle-
hole symmetric and nontopological, but with arbitrary band
dispersion. The motivation for adopting such a model is not to
simply contrast our results with those of Refs. [14] and [15]:
realistic systems with narrow gap and inverted bands where
oscillations could be observed (reasons for such requirements
are discussed later), such as bilayer graphene at certain rotation
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angles [16–18], materials at the onset of spin/charge density
wave [19,20], gapped nodal-line semimetals [21,22], etc., are,
in fact, well described by the above model. In spite of the
simplicity of our model, we find oscillations that do not
follow the Lifshitz-Kosevich (LK) formula valid for metals,
with features different from those reported in previous works
[14,15]. The gap provides a new scale in the problem leading to
new features when the temperature T is less than or comparable
to this scale. Our main finding is that, in addition, the gap
also provides a new degree of freedom not found in metals:
the position of the chemical potential μ inside the gap. If
μ is in the middle of the gap, i.e., μ = 0, oscillations do not
change with temperature leading to a plateau in the temperature
dependence; however, if it is asymmetrically positioned in the
gap, i.e., μ �= 0 (but still in the gap), surprisingly, oscillations
go to zero at a critical value of the inverse field determined by
T and μ and then change their phase by π and grow again,
mimicking properties of a topological insulator in an ordinary
insulator! Additionally, oscillations behave differently for
physical observables that are derived from the grand canonical
potential and those that are related to the DOS; however, the
nontrivial features arising from μ �= 0 are present in both
families of observables.

II. MODEL

Consider two identical overlapping bands with opposite
curvature hybridized by some parameter. In band space, the
Hamiltonian can be written as (� = kB = 1)

Hk =
(

εk − � ζ

ζ −εk + �

)
, (1)

where εk and 2� denote the band dispersion (assumed
nontopological) and band overlap in the absence of the gap,
respectively, and ζ > 0 is a parameter that opens a gap (we
assume εk=0 = 0 is an extremum and � has the appropriate
sign to ensure band overlap at ζ = 0). The LLs for the
Hamiltonian in Eq. (1) are given by

E±
n = ±

√
(εn − �)2 + ζ 2, (2)
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PAL, PIÉCHON, FUCHS, GOERBIG, AND MONTAMBAUX PHYSICAL REVIEW B 94, 125140 (2016)

(a) (b)

−

+

− e − h

+ h

0

+ e

(c)

FIG. 1. Alternative ways of viewing overlapping bands: in terms
of (a) electron (blue, solid) and hole (red, dashed) levels and (b)
occupied (red, dashed) and unoccupied (blue, solid) levels. (c)
The latter picture easily extends to the case when a gap opens
(gap exaggerated for clarity): ± are band indices and e/h refer to
electron/holelike parts. In the presence of a magnetic field, LLs are
formed. The arrows show the direction in which they move as field is
increased.

where εn denotes the LLs corresponding to εk. In the ungapped
case, the customary way to understand quantum oscillations is
in terms of electron and hole levels in the two bands crossing
the Fermi level μ at the intersection of the bands in opposite
directions as a function of the magnetic field [Fig. 1(a)]. An
alternative way is to think only in terms of occupied levels in
the two bands. The LLs from the electron band, on reaching
the Fermi level, just “rolls over” to the hole band [arrows
in Fig. 1(b)]. As seen in Fig. 1(c), even when the system
is gapped, one can still separate the lower filled band into
electronlike and holelike parts. The band edge Ev = −ζ now
plays a role similar to the Fermi level in the ungapped case,
giving rise to oscillations [15].

III. ZERO TEMPERATURE

Consider a 2D system described by the Hamiltonian in (1).
In the presence of a magnetic field B, the grand canonical
potential at T = 0 reads � = D

∑
E−

n �Ev
[E−

n − Ev], where
D = geB/2π is the degeneracy factor in 2D (g denotes
any extra degeneracy from internal degrees of freedom) [1].
Following our previous discussion, we decompose the sum
into two parts:

�(B)

D
=

Nv∑
n=0

(
E−,e

n − Ev

) +
�∑

Nv+1

(
E−,h

n − Ev

)

= �−,e

D
+ �−,h

D
, (3)

where E
−,e/h
n denote the electronlike and holelike parts of

the lower filled band, respectively, Nv is the highest LL
with energy smaller than Ev in the electronlike part of the
spectrum, and � is a cutoff for the holelike part of the band
(E−

� ∼ bandwidth).1

1One can argue that the presence of the artificial cutoff � can give
rise to spurious oscillations [15]. However, as mentioned before, the
decomposition in Eq. (3) can as well be applied to the ungapped case
when ζ = 0, where we are guaranteed to have no oscillations other
than the ones arising from the Fermi level, i.e., the results do not
depend on the cutoff. In the case of ζ �= 0, we formally choose the
same cutoff, and avoid the problem of spurious oscillations.
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FIG. 2. (a) �−,e
osc for ζ/ωc = 0.1 (blue, solid) and ζ/ωc = 1.2

(blue, dashed) compared with the case of ζ = 0 (black, dotted).
(b) �−,e

osc (blue, dashed), �−,h
osc (red, dot-dashed), and (�−,e

osc + �−,h
osc )/2

(purple, solid) for ζ/ωc = 0.1. Here, δ is a quantity that measures
how far the last LL Nv is from the lower edge of the gap in −,e

band (for an exact definition refer to the text); thus, δ = 0 and δ = 1
signify the crossing of two consecutive LLs across the gap edge,
and corresponds to one period of oscillation. The pattern is repeated
giving rise to quantum oscillations.

To compute the discrete sums in Eq. (3), we use the
Euler-MacLaurin formula. This gives for each of the terms
�−,e/h a part that varies smoothly with the field and a part
that oscillates with the inverse of the field. The behavior is
decided by two energy scales: the gap parameter ζ and the
cyclotron frequency of the unhybridized bands, ωc = eB/m,
where m is the cyclotron mass of the unhybridized bands. In the
limits ζ/ωc � 1 and ζ/ωc � 1, the oscillating terms �

−,e/h
osc

can be calculated exactly, but they are cumbersome—see
Ref. [23]. Instead, in Fig. 2(a), we plot �−,e

osc as a function
of δ in the two limits. Here, δ = (l2

B/2π )[S(Ev) − S(ENv
)],

where lB = 1/
√

eB is the magnetic length and S(E) is the
k-space area occupied at energy E by an orbit, governing the
semiclassical quantization condition S(En)l2

B = 2π (n + γ ),
with γ being a phase [1]. To understand the meaning of δ,
consider the simple case of parabolic bands: δ reduces to
�/ωc − (Nv + 1/2); thus, it is a measure of how far the last LL
is from Ev in the −,e band. Clearly, 0 � δ < 1, with the limits
denoting the crossing of two consecutive LLs across Ev , and
a plot of �−,e

osc versus δ gives one period of oscillations—the
pattern must be repeated. Compared to the ungapped case, we
find two features as a result of the gap: a reduction in amplitude
and a phase offset, with both becoming more pronounced as
ζ/ωc increases. Also, in Fig. 2(b), we compare �−,e

osc with �−,h
osc

along with the total, �osc = �−,e
osc + �−,h

osc . The phases in �−,e
osc

and �−,h
osc differ by a sign, resulting in a further reduction in

amplitude in the total. With this insight, we approximate the
curves by their leading Fourier components,

�
−,e/h
osc (B)

D
∼ ωcf

(
ζ

ωc

)
cos

[
S(Ev)l2

B − 2πγ ± φ

(
ζ

ωc

)]
,

(4)
with ± referring to e/h parts, respectively, and f = 1 and
φ = 0 at ζ = 0. Note that the area at the band edge in the
gapped case is same as the area at the intersection of the two
bands in the ungapped case, i.e., S(Ev) = S(0)|ζ=0. Denoting
this area by S0 and adding the e/h contributions in Eq. (4), we
get

�osc(B)

D
∼ ωcf

(
ζ

ωc

)
cos

[
φ

(
ζ

ωc

)]
cos

[
S0l

2
B − 2πγ

]
. (5)
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FIG. 3. Numerical calculations on a lattice model mimicking (1)
with two square lattices hybridized to open a gap at quarter filling
(see Ref. [23] for details). Here, ζ = 0.1t , where t is the hopping
parameter. (a) Oscillations at T = 0: frequency of oscillations does
not change with the introduction of the gap; (b) Dependence of
amplitude A on T for μ = 0: a plateau appears at T < ζ in the
gapped case (both curves are normalized with their respective T = 0
values); (c) Oscillations at two different temperatures for μ = −0.09t

(i.e., |μ|/ζ = 0.9). The beatlike pattern with change of phase by π

accompanied by an increase in amplitude emerges when temperature
is increased. (d) Dependence of oscillations on T at two different
field values marked P and Q in (c), normalized with their respective
T = 0 values.

In the limit ζ/ωc � 1, we find f (ζ/ωc) ∝ 1/(ζ/ωc) and
φ(ζ/ωc) → π/2. Thus, on opening a gap, the system shows
quantum oscillations with a frequency equal to that in the un-
gapped case, but with an amplitude that decays as the product
of the functions f and cos[φ]. This is verified by numerical
calculations on a lattice—see Fig. 3(a). Numerically, we find
that the oscillations decay rapidly, becoming inappreciable at
ζ � ωc. As an estimate, at field ∼10 T, and mass equal to 0.01
time the bare electronic mass, gaps <100 meV are expected
to show oscillations; thus, bands with light masses and narrow
gap are required. The main result of the T = 0 study is the
factorization of the amplitude into two terms, and in particular
the appearance of the term cos[φ]. This is unanticipated, and
leads to novel effects at nonzero temperature, as shown below.
All quantities derived from � by taking appropriate derivatives
with respect to the field (magnetization, susceptibility), will
inherit oscillations with the same characteristics as well.

IV. NONZERO TEMPERATURE

We now consider the effects of temperature which is
included by averaging �osc at different energies at zero
temperature, appropriately weighted by the derivative of the
Fermi-Dirac function f0:

�osc(μ,T ) =
∫ ∞

−∞

−∂f0(E − μ)

∂E
�osc(E,0)dE. (6)

Although oscillations at T = 0 do not depend on the exact
value of μ as long as μ lies in the gap, the behavior at T �= 0
is dependent on the position of μ inside the gap (via f0). This
extra degree of freedom is a unique feature of insulators not
found in metallic systems.

Consider first the case when μ is exactly in the middle
of the gap, i.e., μ = 0. It is important to note that, while
�osc(E,0) varies with energy inside the bands, inside the
gap it is independent of energy and nonzero—it is simply
equal to the value at the gap edge, i.e., �

gap
osc is given by

Eq. (5). At low temperatures, T/ζ � 1, since the integral
in Eq. (6) gets its dominant contribution from the gap, it
implies �osc is independent of T resulting in a plateau–
a departure from conventional behavior and supported by
numerical calculations [Fig. 3(b)]. This should be compared to
the behavior found in Ref. [14] in the same regime: instead of
a plateau the dependence was found to be nonmonotonic with
a maximum. This implies that the behavior found in Ref. [14]
is a result of the extreme particle-hole asymmetry arising
from the flat band in their model and is not a generic feature
of an insulator. In the other limit, T/ζ � 1, the dominant
contribution to the integral comes from the two bands and the
gap can be neglected. One then recovers the exponential decay
due to dephasing typical of metals, provided by LK formalism.

Next, we consider μ �= 0 with |μ| < ζ , i.e., the system re-
mains an insulator but μ lies asymmetrically in the gap. Such a
situation can arise due to impurities (extrinsic semiconductors)
or can be imposed by an external gate in experiments. The be-
havior for T � ζ − |μ| and T � ζ is similar to that in the case
μ = 0. However, in the intermediate regime, ζ − |μ| � T �
ζ , the new scale |μ| introduces surprising new features. The
effect of temperature is no longer restricted to the overall am-
plitude. Instead, as seen in Fig. 3(c) obtained numerically, os-
cillations go to zero at a critical value of the inverse field, 1/ω∗

c ,
and then change their phase by π and grow again. With increase
in temperature, 1/ω∗

c moves to the left with increase in ampli-
tude to its right and decrease in amplitude to its left [Fig. 3(d)].
In the limit of strong asymmetry in μ, i.e, ζ − |μ| � ζ ,
such a behavior can be explained analytically. When μ = 0,
oscillations arising from +E and −E get equal thermal weight
while computing the average in Eq. (6). This particle-hole
symmetry in the averaging is lost when μ �= 0, even though
the bands are still particle-hole symmetric. One can show that
(see Ref. [23]) this leads to an extra phase in Eq. (4) on top
of the overall prefactor: the zero temperature result is mod-
ified into �

e/h
osc (T )/D ∼ ωcA(T )f (ζ/ωc)cos[S0l

2
B − 2πγ ±

φ(ζ/ωc) ± ψ(T )]. Adding the two contributions, we have

�osc(T )

D
∼ ωcA

(
T

ωc

,
T

ζ
,
|μ|
ζ

)
f

(
ζ

ωc

)
cos

(
S0l

2
B − 2πγ

)

× cos

[
φ

(
ζ

ωc

)
+ ψ

(
T

ωc

,
T

ζ
,
|μ|
ζ

)]
. (7)

Whereas A(T ) is a decreasing function as in the case of μ =
0,ψ(T ) increases with T and reaches a maximum determined
by |μ|, before going to zero. Equation (7) leads to an unusual
beatlike (but not exactly a beat) pattern driven by temperature
that matches Fig. 3(c). This arises from a competition between
φ and ψ in the second cosine function in Eq. (7). Recall,
φ → π/2 as 1/ωc → ∞. In the presence of ψ, φ + ψ reaches
π/2 at a finite value of 1/ωc. This is where oscillations go to
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FIG. 4. Amplitude of oscillations A (arbitrary units) vs T for
the density of states in the gapped case obtained from numerical
calculations on a lattice (same as in Fig. 3) with ζ = 0.1t for (a)
μ = 0 and (b) μ = −0.09t [P and Q correspond to two field values
given in Fig. 3(c)]. The figures should be compared to Figs. 3(b)
and 3(d), respectively. The behavior for T � ζ is clearly different.
Note, however, the extra nontrivial features in the case μ �= 0 found
in Fig. 3(d) persist in Fig. 4(b) as well.

zero and is the origin of the critical field. The sign of the cosine
function is opposite on either side of 1/ω∗

c leading to a phase
change by π . Note the crucial role φ, arising in the T = 0
theory, plays here: it forces the effect of T �= 0 to be no longer
separable from the T = 0 contribution, and is at the heart of
the unusual behavior. The π phase shift here is temperature
driven and not topological in origin, unlike in metals where
it originates due to Berry phase [15,24]. Also, without proper
insight, the pattern could easily be misconstrued as resulting
from two Fermi surface pockets in metallic systems.

V. GRAND CANONICAL POTENTIAL VERSUS
DENSITY OF STATES

It is usually thought that quantum oscillations in all physical
observables have the same temperature dependence [1,25]. In
an insulator, however, this is no longer true. Unlike quantities
that are derived from the grand canonical potential, such as
magnetization and susceptibility, quantities that depend on
the DOS, such as resistivity and quantum capacitance, will
obviously vanish in the gap at T = 0. This implies that the
averaging in Eq. (6) at T �= 0 is different: it is still governed
by an equation similar to Eq. (6) (with � replaced by DOS ρ),
except that now the integral gets no contribution from the gap.
This results in a temperature dependence that is nonmonotonic,
arising from a competition between thermal activation and
dephasing. Numerical calculations on the lattice also confirm
this behavior—see Fig. 4. Note, however, that the nontrivial
features for μ �= 0 survive: oscillations show a similar pattern
as in Fig. 3(c) changing their phase by π at a critical field with
an unusual temperature dependence as shown in Fig. 4(b).

It is a remarkable coincidence that the nontirival features in
the case of μ �= 0 discussed above also arise from a different
physical mechanism, viz., nontrivial topology in topological
insulators [15]. The question then arises, how to distinguish in
an experiment which physical mechanism is at play. We point
out two key differences between the two scenarios: first, in a
topological insulator the gap is a function of the field, and the
critical field marks the point when the Landau levels overlap
in the gap making the system metallic. Thus, at T = 0, the
DOS is zero on the insulating side but nonzero on the metallic
side. In the case considered here, the system stays gapped at all

FIG. 5. The two shaded regions differ by a phase π in oscillations.
The separatrix is a schematic variation of the critical field with
temperature. (Inset) The separatrix moves to the left as |μ| increases.
Numerical calculations on a lattice confirm this behavior—see
Ref. [23].

fields; therefore, the DOS is zero at T = 0 on both sides of the
critical field. Consequently, while both curves in Fig. 4(b) in
our case start from zero at T = 0, one of the curves start from a
nonzero value at T = 0 in the case of topological insulators (cf.
Figs. 4(c) and 5(c) in Ref. [15]). Second and more importantly,
the critical field in a topological insulator is a function of the
band parameters only, and is independent of temperature. In
our case, it is a function of both T and |μ|. Thus, with increase
in temperature, not only will oscillations behave differently
on either sides of the critical field, the critical point itself will
move to the left on 1/ωc axis—see Fig. 5. This should be
compared with Figs. 4(d) and 5(d) in Ref. [15].

VI. CONCLUDING REMARKS

To summarize, we have presented a theory of quantum
oscillations in insulators that are particle-hole symmetric and
nontopological, but with arbitrary band dispersion, at both zero
and nonzero temperature. The dependence of oscillations on
temperature is found to be surprisingly rich, depending cru-
cially on the position of the chemical potential in the gap. It is
important to note that not all types of insulators will show quan-
tum oscillations. If we change the sign of � in Eq. (1) so that
there is no band inversion, it is obvious that such a model will
show no oscillations. Thus, in addition to having a narrow gap,
band inversion, which leads to a closed loop at the band edge, is
needed. Although our results are derived for a 2D system, they
apply as well to 3D systems, as long as the system is described
by Eq. (1): as in metals, oscillations will arise from extremal
orbits, but with properties modified due to the gap in a manner
described above. Quantum oscillations, traditionally used to
study metallic systems, could soon become a useful experi-
mental tool to study narrow-gap systems with inverted bands.
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