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The interplay of electronic band structures and electron-electron interactions is known to develop new phases
in condensed matter. In this paper, we investigate the thermodynamic phases and corresponding electronic
structures of a Weyl semimetal in a strong on-site Coulomb interaction limit. Based on a minimum model of a
Weyl semimetal with two linear Weyl nodes, it is shown that generically the Weyl semimetal becomes magnetic
in the presence of interactions. In particular, it is shown that the Dzyaloshinskii-Moriya exchange interaction is
generally induced so that the A-type antiferromagnetic (A-AFM) phase and the spiral spin density wave (SSDW)
states are two generic phases. Furthermore, we find that Weyl nodes proliferate and it is possible to doubly enhance
the unusual properties of noninteracting Weyl semimetals through the realization of double-Weyl nodes in a strong
correlation limit. Specifically, it is shown that in the SSDW phase, linear Weyl nodes are tuned into double-Weyl
nodes with the corresponding charges being ±2. As the spin-orbit coupling increases, a quantum phase transition
occurs with the SSDW phase being turned into an A-AFM phase and, at the same time, double-Weyl nodes are
disintegrated into two pairs of linear Weyl nodes. Our results reveal the unusual interplay between the topology
of electronic structures and magnetism in strongly correlated phases of Weyl semimetals.
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I. INTRODUCTION

Since the discovery of the time-reversal (TR) invariant
topological insulator (TI) in two dimensions (2D) and three
dimensions (3D) [1,2], the topological aspects of the electronic
band structures have become important benchmarks to char-
acterize electronic phases in condensed matter physics. The
unique feature of TIs lies in their properties being insulating in
the bulk, and yet their surfaces are metallic due to the existence
of surface states. The surface states result from the nontrivial
topology of the bulk band structure and are robust against
perturbations that respect the symmetries of the system. More
recently, it is further realized that even if the band structures
of the materials are gapless, nontrivial topology of the gapless
points (nodal points) may also result in topologically protected
surface states [3].

Among the class of topological gapless materials, the Dirac
semimetal and the Weyl semimetal are the simplest types,
characterized by the presence of nodal points at which two
distinct bands touch [4–9]. For the Dirac semimetal, the
low-energy Hamiltonian near the isolated Dirac nodes can
be described by the Dirac equation with both time-reversal
symmetry and inversion symmetry being preserved, and it can
be realized in both 2D and 3D systems, such as graphene
(2D) [8] and Na3Bi (3D) [10]. In contrast, the time-reversal
symmetry or inversion symmetry is explicitly broken in the
Weyl semimetal, and the Hamiltonian around the Weyl nodes
is described by the Weyl Hamiltonian given by H = ±vF σ ·k,
with σ the Pauli matrices and k the momentum deviation from
the Weyl point, and ± denotes the chirality. The absence of
time-reversal symmetry or inversion symmetry results in the
separation of Weyl nodes either in momentum or in energy.
In addition, it results in nontrivial topology (chirality) carried
by the Weyl nodes, which is characterized by the monopole

charges Q defined as the integral of the Berry curvature �(k)
over the surface enclosing the node, Q = (1/2π )

∮
dSk · �(k)

[11]. Due to the topological nature of Q, Weyl fermions in
these materials are robust to small perturbations [12,13]. For
large perturbations, it is known that localized states may arise
near the point defects [14] and Weyl points can even appear
or disappear in pairs with opposite monopole charges. In the
simple Weyl semimetals, each Weyl point carries Q = 1 or
Q = −1, which has been first realized experimentally in TaAs
[15]. The possibility of multiple Weyl nodes with |Q| > 1
has also been recently proposed [16–18]. Instead of being the
usual linear Weyl nodes carrying a ±1 monopole charge, the
multiple Weyl nodes, protected by C4 or C6 rotation symmetry,
have a nonlinear dispersion and higher monopole charge. The
lowest nontrivial example is the double-Weyl semimetal with
Q = ±2, which is suggested to be realized in the 3D semimetal
HgCr2Se4 [17]. The double-Weyl nodes possess quadratic
dispersions in two directions, e.g., the xy plane and linear
dispersion in the third direction. Furthermore, it is known that
due to the presence of larger chiral charges Q, the unusual
phenomena (such as quantum anomalous Hall conductivity,
chiral anomaly, and the number of Fermi arcs) associated with
the linear Weyl nodes are doubly enhanced [18–20].

While the above-mentioned properties are valid for nonin-
teracting Weyl semimetals, it is known that nontrivial topology
in an electronic structure is driven by a spin-orbit interaction,
which inevitably involves heavy elements. Correlation effects
due to the interactions are therefore present and it is necessary
to examine the effects of the interactions on the properties
of Weyl semimetals. For topological insulators, the Coulomb
interaction is usually screened and becomes short ranged.
Studies indicate that topological transitions may be induced
so that nontrivial topological phases may be broken into
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topologically trivial phases by a sufficiently strong short-range
correlation [9,21–24]. On the other hand, for Dirac/Weyl
semimetals, the long-range Coulomb interaction is shown to
be marginally irrelevant and induces logarithmic corrections
in the response functions [9,18,20,25]. In the strong-coupling
limit, however, the semimetals could be turned into either a
Mott insulator if the nodal point is anisotropic [26] or a charge
density wave (CDW) state [27]. Since in typical materials
that realize Dirac/Weyl semimetals, localized electronic orbits,
such as the d orbits in Ta of TaAs, are often involved, the on-site
Coulomb energy in the materials usually dominates. Therefore,
it would be interesting and necessary to investigate the effects
of short-ranged Coulomb interactions on Weyl semimetals.

In this paper, we examine the phases of a Weyl semimetal
in the presence of an on-site Coulomb interaction in a
Hubbard model. Similar to the effects of disorders [12],
in the weak interacting regime, it is found that the Weyl
semimetal is paramagnetic without magnetic orders. The
electronic structure is similar to that of noninteracting Weyl
fermions with the parameters being renormalized. As the
on-site interaction increases and is strong enough, the Weyl
semimetal becomes magnetic. In the strong interaction limit
of a Hubbard model, we find that the A-type antiferromagnetic
(A-AFM) phase and the spin density wave (SSDW) phase are
two generic phases. In the SSDW phase, each Weyl node is
turned into a double-Weyl node with the corresponding charge
being ±2. As the spin-orbit coupling increases, a first-order
phase transition occurs with the SSDW phase being turned
into an A-AFM phase and, at the same time, double-Weyl
nodes disintegrate into two pairs of linear Weyl nodes. Our
results reveal the unusual interplay between the topology of the
electronic structures and magnetism in the strongly correlated
phases of Weyl semimetals and pave a way for realizing a
double-Weyl semimetal based on linear Weyl semimetals.

The rest of the paper is organized as follows. In Sec. II,
the model of a Weyl semimetal with a Hubbard interaction
is introduced. By using a canonical transformation, we
derive the effective low-energy Hamiltonian for the strong-
coupling limit of the Hubbard model. Under the Gutzwiller
approximation, a renormalized mean-field Hamiltonian is
constructed. In Sec. III, magnetic phases in the strong Coulomb
interaction limit are solved numerically. It is shown that the

corresponding electronic structures possess nontrivial nodal
structures. Finally, in Sec. IV, we conclude and discuss. How
our results change from the weak interaction regime to the
strong-coupling regime is presented and discussed. A possible
connection of our results to experimental observations is also
presented.

II. THEORETICAL MODEL OF WEYL SEMIMETAL

We start with a minimum model of a 3D Weyl semimetal on
a simple cubic lattice [28] with an on-site Hubbard repulsion
interaction U . The model has a minimum number of two Weyl
points. Since the on-site Hubbard U interaction is rotationally
invariant, two Weyl points can be chosen to be along the z axis
so that the Hamiltonian is given by

H =
∑
k,α,β

C†
α(k)H0,αβ (k)Cβ(k) + U

∑
i

n̂i↑n̂i↓, (1)

with H0 being a 2 × 2 matrix,

H0(k) = (t1 cos kz − μ)σ0 + t2(m + 2 − cos kx − cos ky)σz

+ tso sin k · σ . (2)

Here, α and β take ↑ or ↓ that represent the spin up or spin
down, and C†

α creates an electron with spin up or spin down.
Also, sin k · σ is shorthand notation for σx sin kx + σy sin ky +
σz sin kz. t1 and t2 represent the hopping amplitudes along the z

direction and in the xy plane, respectively. tso is the strength of
the spin-orbit coupling and m is the exchange parameter that
controls the degree of time-reversal symmetry breaking. m will
be set to zero in most of the following computations. μ is the
chemical potential, and σ0 is the 2 × 2 identity matrix. Finally,
U describes the on-site Hubbard repulsion interaction. The
model, Eq. (2), is an extension of the Qi-Wu-Zhang (QWZ)
model in the study of the 2D quantum anomalous Hall effect
[29] and it has only two Weyl nodes at the ground state with
U = 0 and m = 0 [28].

In the case of U = 0, the system has a C4 rotation symmetry,
and the nonzero t1 would break the space inversion symmetry
with respect to the x-y plane, while the t2 term breaks the
time-reversal symmetry. The energies of the two bands can be
solved and are given by

E±(k) = t1 cos kz ±
√

t2
so(sin2 kx + sin2 ky) + [tso sin kz + t2(m + 2 − cos kx − cos ky)]2. (3)

The ground state of this minimum model has been well studied
in Ref. [28]. By tuning the values of m and tso, the ground state
of the two-band model could be either in a topological trivial
phase or the Weyl semimetal phase.

When U is switched on and is small, the free-energy
gain due to magnetic orders is also small. One thus expects
that the Weyl semimetal is paramagnetic without magnetic
orders. Hence the electronic structure is similar to that of
noninteracting Weyl fermions with the parameters being just
renormalized. As U increases, the free-energy gain due to
magnetic orders also increases. As a result, only when U is
strong enough does the Weyl semimetal start to become mag-

netic. Therefore, we shall first consider the strong interaction
limit when U is large. The connection of the strong-U limit to
the weak-U limit will be discussed later.

In the strong interaction limit when U is large, the
band structure resulting from Eq. (1) can be very different
from that for U = 0. In the large-U limit, the Hilbert
space is energetically decomposed into singly occupied and
doubly occupied spaces so that the electron operator can
be decomposed as C

†
iσ = C

†
iσ (1 − ni,−σ ) + C

†
iσ ni,−σ . Since

only the kinetic energy, T ≡ ∑
i,j C

†
i H0,ijCj , mixes singly

occupied and doubly occupied spaces, we first perform a
canonical transformation on the Hamiltonian H to eliminate
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the mixing term. If the canonical transformation is generated
by S, the transformed Hamiltonian H ′ is given by

H ′ = eiSHe−iS = H + [iS,H ] + [iS,[iS,H ]] + · · · . (4)

The mixing terms in the kinetic energy can be written as a
summation of T+1 and T−1 with

T+1 =
∑

i,j,α,β

C
†
i,αni,−αH0,ij,α,βCj,β(1 − ni,−β ),

T−1 =
∑

i,j,α,β

C
†
i,α(1 − ni,−α)H0,ij,α,βCj,βni,−β. (5)

By requiring T+1 + T−1 + [iS,HU ] = 0, one can eliminate the
mixing term to first order in U . Here, HU = U

∑
i n̂i↑n̂i↓, and

we find

iS = 1

U
(T+1 − T−1). (6)

Substituting iS in Eq. (6) back to Eq. (4) and keeping the
lowest-order terms, after some algebra, we find that the low-
energy Hamiltonian is an extended t-J model which can be
generally expressed as Heff = Ht + HJ with [30] Ht and HJ

given by

Ht =
∑
iδz,σ

t1C̃
+
i,σ C̃i+δzσ +

∑
iδx (y),σ

σ t2C̃
+
i,σ C̃i+δx(y)σ

− i

2
tso

∑
ij,σσ ′

σC̃+
i,σ C̃jσ ′ + H.c. (7)

and

HJ =
∑
i,δx(y)

(
− JbS

x
i Sx

i+δx(y)
− JaS

y

i S
y

i+δx(y)
+ JbS

z
i S

z
i+δx(y)

− 1

4
J1nini+δx(y)

)

+
∑
i,δz

[
J 1

z

(
Sx

i Sx
i+δz

+ S
y

i S
y

i+δz

) + J 2
z

(
Sz

i S
z
i+δz

− 1

4
nini+δz

)
+ J2δz · Si × Si+δz

]
. (8)

Here, Ht and HJ represent the hopping and exchange magnetic
interactions of the Hamiltonian. Sα

i = ∑
σσ ′ C̃

+
iσ σαC̃iσ ′ (α =

x,y,z) is the spin operator on site i, and δα = (rj − ri)α
(α = x,y,z) represents the vector connecting the sites in the
nearest neighbors, with ri being the position of the lattice
site i. C̃iσ = (1 − ni,−σ )Ciσ satisfies the no-double-occupancy
constraint for electrons. In terms of the on-site Hubbard
U , the strengths of the exchange magnetic interactions are
given by Ja = (t2

2 + t2
so)/U , Jb = (t2

2 − t2
so)/U , J1 = t2

2 /U ,
J 1

z = (t2
1 − t2

so)/U , J 2
z = (t2

1 + t2
so)/U , and J2 = t2

so/U , with
J2 being the Dzyaloshinskii-Moriya (DM) interaction and the
rest of the exchanges are the summation of the Heisenberg
interaction and the spin dipole-dipole interaction.

From Eq. (8), it is clear that the DM interaction only appears
along the z direction. Since the DM interaction tends to induce
a magnetic spiral phase and the value of J 2

z is always larger
than J 1

z , there should be competition between the spiral phase
and the AFM/FM phase along the z direction. On the other
hand, in the xy plane, the magnetic phase should be AFM
or FM, since there are only Heisenberg interactions between
nearest-neighbor sites. The value of Ja is always larger than
Jb, therefore, FM holds the advantage in the xy plane.

To satisfy the no-double-occupancy constraint, Gutzwiller
approximations are adopted by using the renormalized pa-
rameters [31]. In this approximation, the strength of the spin
interaction remains the same as in the low-doping regime, and
the operator C̃iσ is replaced by Ciσ . Therefore, the hopping
Hamiltonian becomes

H ′
t =

∑
iδz,α

t ′1C
+
i,αCi+δzα +

∑
iδx (y),α

αt ′2C
+
i,αCi+δx(y)α

− i

2
t ′so

∑
ij,αβ

σC+
i,αCiβ + H.c., (9)

where t ′1 = gt t1, t ′2 = gt t2, and t ′so = gt tso with gt =
1−n

1−2ni↑ni↓/n
, n is the number of particles on site i (i.e., density

of the particle number), and ni↑ and ni↓ are the numbers of
particles for spin up and spin down electrons, respectively.

We shall compute the magnetic phase and electronic
structures in a mean approximation with

Sα
i S

β

j ≈ Sα
i

〈
S

β

j

〉 + S
β

j

〈
Sα

i

〉 − 〈
Sα

i

〉〈
S

β

j

〉
. (10)

Here, the mean-field value of the magnetization on the i site,
〈Si〉, is taken as a classical vector

〈Si〉 = R cos(Q · ri) + I sin(Q · ri), (11)

with R = (Rx,Ry,Rz) and I = (I x,I y,I z) the mean-field
parameters and Q = (Qx,Qy,Qz) the magnetic wave vector.
After performing the mean-field approximation and substitut-
ing Eq. (11) in the mean-field Hamiltonian, a discrete Fourier
transformation

Ckσ = 1√
N

∑
i

exp (ik · ri) (12)

is performed, and the mean-field Hamiltonian becomes

HMF =
∑
k,σ

H ′
t (k) + H MF

J . (13)

Here, the hopping Hamiltonian is

H ′
t (k) = [(t ′1 cos kz − μ)σ0 + t ′2(m + 2 − cos kx − cos ky)σz

+ t ′so sin k · σ ]σ,σ ′C+
kσCkσ ′

+ {[t ′1 cos(kz + Qz) − μ]σ0 + t ′2[m + 2

− cos (kx + Qx) − cos (ky + Qy)]σz

+ t ′so sin (k + Q) · σ }σ,σ ′C+
k+QσCk+Qσ ′, (14)
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FIG. 1. (a) Band energies and (b) the Chern number Ckz
as a function of kz with U = 0, m = 0, t1 = 1, t2 = 1, and tso = 1, and

kx = ky in (a).

and the magnetic interaction is given by

H MF
J = χ1C

+
k+Q↑Ck↓ + χ2C

+
k+Q↓Ck↑

+χ3(C+
k+Q↑Ck↑ − C+

k+Q↓Ck↓) + H.c. + E0
MF, (15)

where the parameters are

χ1 = 1
2 (A+

1 cos Qx+A+
2 cos Qy+A−

3 cos Qz + A−
4 sin Qz),

χ2 = 1
2 (A−

1 cos Qx+A−
2 cos Qy+A+

3 cos Qz + A+
4 sin Qz),

χ3 = 1
2 [A5(cos Qx + cos Qy) + A6 cos Qz], (16)

with A±
1 = ±Ja(iRy+I y) − Jb(Rx − iI x), A±

2 =
−Ja(Rx−iI x) ± Jb(iRy + I y), A±

3 = J 1
z [(Rx − iI x ±

(iRy + I y)], A±
4 = J2[±(Rx − iRy) + (iI x + I y)],

A5 = Jb(Rz − iI z), and A6 = J 2
z (Rz − iI z). The constant

mean-field energy is

E0
MF = 1

2 [(Jb cos Qx + Ja cos Qy)�x

+ (Ja cos Qx + Jb cos Qy)�y

− Jb(cos Qx + cos Qy)�z]

− 1
2

[
J 1

z (�x + �y) + J 2
z �z

]
cos Qz

− J2(RxIy − RyI
x) sin Qz, (17)

with �α = (Rα)2 + (Iα)2, α = x,y,z.
The mean-field Hamiltonian can be generally expressed as

HMF =
∑
k,σ

ψ†(k)hMF(k)ψ(k), (18)

with hMF a 4 × 4 matrix and ψ(k) =
(Ck↑,Ck↓,Ck+Q↑,Ck+Q↓)T . From a given hMF, 〈C+

kσCkσ ′ 〉
and 〈C+

k+QσCkσ ′ 〉 are determined. The effective R, I, and
Q are then self-consistent with the following self-consistent
equations,

1

N

∑
kσ

〈C+
kσCkσ + C+

k+QσCk+Qσ 〉 = n (19)

and

Rα = Re
(〈
Sα

Q

〉)
, I α = Im

(〈
Sα

Q

〉)
, (20)

where

Sx
Q = 1

2

∑
k

(C+
k↑Ck+Q↓ + C+

k↓Ck+Q↑),

S
y

Q = 1

2i

∑
k

(C+
k↑Ck+Q↓ − C+

k↓Ck+Q↑), (21)

Sz
Q = 1

2

∑
k

(C+
k↑Ck+Q↑ − C+

k↓Ck+Q↓).

Here, n is the density of the electron number. By minimizing
the free energy, the optimal values of R, I, and Q are finally
obtained.

III. MAGNETIC PHASE DIAGRAM AND TOPOLOGICAL
ELECTRONIC STRUCTURES

In this section, we examine the magnetic phases that are
allowed in the mean-field theory. For simplicity, we shall set
m = 0. For the case of U = 0, two linear Weyl nodes are
located at k = (0,0,0) and k = (0,0,π ). The chirality of the
Weyl node k = (0,0,0) is +1, since the effective Hamiltonian
around which it can be written is H = t1 + tsok · σ , while the
chirality of k = (0,0,π ) is −1. The band structure of U = 0
and m = 0 is shown in Fig. 1(a). It is clear that two Weyl points
are separated in energy space due to the absence of inversion
symmetry. If one fixes kz, the Hamiltonian Hkz

(kx,ky) can be
viewed as a 2D system, which is gapped when kz 
= 0,π . In
this case, the Chern number Ckz

for a fixed kz is well defined
and can be computed as

Ckz
= 1

2π

∫
BZ


(n)
xy (k)dkxdky, (22)

where the Berry curvature is given by


(n)
xy (k) = −Im

⎡
⎣∑

n′ 
=n

〈ψn(k)
∣∣ ∂Ek

∂kx

∣∣ψn′ (k)〉〈ψn′ (k)
∣∣ ∂Ek

∂ky

∣∣ψn(k)〉
[En′(k) − En(k)]2

− kx ↔ ky

⎤
⎦. (23)
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FIG. 2. (a) Magnetic phases of the Weyl semimetal in the strong
correlation limit and the corresponding spin structures of (b) Q =
[0,0,π ] (A-AFM phase)and (c) Q = [0,0,Qz] (SSDW phase) with
m = 0 and t1 = t2 = 1. These magnetic phases are generic with the
A-type AFM phase being expanded if the electron doping density
increases.

Here, En(k) and ψn(k) are the nth eigenenergy and corre-
sponding eigenstate for a given k in the Brillouin zone. Since
the Weyl node is a magnetic monopole of the Berry curvature,
the value of Ckz

jumps when one goes across Weyl nodes,
and the Chern number of the Chern insulator equals the net
monopole charge between the 2D system defining the trivial
and Chern insulator. As shown in Fig. 1(b), Ckz

= 0 when
kz ∈ (0,π ), and Ckz

= 1 when kz ∈ (−π,0).
The magnetic phases in the strong correlation limit with

m = 0 are shown in Fig. 2(a). We find that there are two
distinct magnetic phases depending on the values of tso and
J2 in the strong correlation limit. In the upper blue region,
the magnetic wave vector Q is [0,0,π ]. This is the A-AFM
phase with the magnetic order between the nearest neighbors
being FM in the xy plane and AFM between layers. In this
phase, the spin orientation is along the [0,0,1] direction, and
the spin structure is shown in Fig. 2(b). Meanwhile, in the red
region below, the magnetic wave vector Q is [0,0,Qz], with
Qz being a value that is incommensurate with the lattice and is
along the [0,0,1] direction. In this phase, spins are noncollinear
and are in the SSDW phase, in which the spin orientation is
in the xy plane and the direction of the spiral along the z

axis is as shown in Fig. 2(c). The A-AFM and SSDW phases
are two generic phases. When the electron doping density
changes, both phases persist with one magnetic wave vector
being fixed at Q = [0,0,π ] and the other one at Q = [0,0,Qz]
with a slightly different Qz. However, as the electron numbers
increase, the A-AFM phase expands.

A. Topological electronic structures of the A-AFM phase

We now examine the band structure of the A-AFM phase.
Since the spin orientation is always along the z direction in
the A-AFM phase, the mean-field parameters in the x and
y directions vanish, Rx = I x = Ry = I y = 0. In the basis of
ψ† = (C†

k↑,C
†
k↓,C

†
k+Q↑,C

†
k+Q↓), the magnetic interaction of

Γ X M R Γ X1

E
/t'

1

-4

-2

0

2

4

Γ X
-0.08

-0.05

Γ X1
-0.08

-0.05

FIG. 3. Electronic structure of the A-AFM phase with tso = 2
and J2 = 1, displayed along the path: � → X: (0,0,π ) → M:
(0,π,π ) → R: (π,π,π ) → � → X1: (0,0, − π ). The electronic
structures around the four Weyl points k = (0,0,0), (0,0,π ), and
(0,0, ± 1

2 π ) are shown in the insets.

the Hamiltonian Eq. (13) becomes

H MF
J = A(C+

k↑CK+Q↑ − C+
k↓CK+Q↓) + H.c. + E0

MF, (24)

where A = Rz(J 2
z + 2Jb)/2 is independent of k. In this case,

it is easy to see that two eigenvalues of the Hamiltonian matrix
HMF are around the value of A + E0

MF and the other two are
around the value of −A + E0

MF. Since A is much greater than
t ′1, t ′2, and t ′so for the A-AFM phase, we find that the system is
fully gapped with the lower two and upper two bands being
separated by a gap of around 2A.

In Fig. 3, we illustrate the structure of the lower two
bands in the A-AFM phase with tso = 2 and J2 = 1. There
are four touching points between the lower two bands,
which are located at k = [0,0,0], [0,0,π ], and [0,0, ± π/2].
These touching points are still the linear Weyl points with
the monopole charge ±1. To illustrate this, we plot the
Chern number Ckz

in Fig. 4. It is seen that as kz changes,
whenever the energy bands touch, the corresponding Chern
number also changes. Effectively, band inversion occurs as kz

changes. In the region −π < kz < −π/2 and 0 < kz < π/2,
the Hall conductance is quantized with σxy(kz) = e2/�Ckz

.
The changes in the Chern numbers crossing the Weyl points
are always ±1, which demonstrates that the monopole charges
of Weyl nodes are ±1.

In this phase, the magnetic ordering is similar to
the proposed model of a magnetically doped multilayer

k
z
/π

-1 -0.5 0 0.5 1

C
kz

0

0.2

0.4

0.6

0.8

1

FIG. 4. Chern number Ckz of the A-AFM phase.
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heterostructure composed of layers of normal and topological
insulators [4]. However, different from the proposed model,
the magnetic ordering between different layers is AFM for the
A-AFM phase. Since the folding of the Brillouin zone occurs
in the A-AFM phase, the interaction between the original Weyl
nodes located at k = (0,0,0) and (0,0,π ) can lead to new Weyl
nodes.

B. Topological electronic structures of the [0,0, Qz] phase

In the SSDW phase, we have the mean-field parameters
Rz = I z = 0 and RxIy + RyIx = 0. As a result, the magnetic
interaction of the mean-field Hamiltonian in the basis of
† = [C†

k↑,C
†
k↓,C

†
k+Q↑,C

†
k+Q↓] becomes

H MF
J = BC+

k↓Ck+Q↑ + H.c. + E0
MF, (25)

where B = [J 1
z cos Qz − J2 sin Qz − (Ja + Jb)]Rx is inde-

pendent of k.
The eigenvalues of the Hamiltonian Eq. (25) can be

approximately derived as

E1
k ≈ t ′1 cos kz + t ′so sin kz + t ′2(2 − cos kx − cos ky) + E0

MF,

E2
k ≈ t ′1 cos (kz + Qz) + t ′so sin (kz + Qz)

+ t ′2(2 − cos kx − cos ky) + E0
MF,

E3
k ≈ B + 1

2 [t ′1 cos kz + t ′1 cos (kz + Qz) (26)

− t ′so sin kz + t ′so sin (kz + Qz)] + E0
MF,

E4
k ≈ −B + 1

2 [t ′1 cos kz + t ′1 cos (kz + Qz)

− t ′so sin kz + t ′so sin (kz + Qz)] + E0
MF.

Therefore, in the SSDW phase, two electronic bands of the
Weyl semimetal are around ±B and the middle two bands are
around the chemical potential. Since B is much greater than
t ′1, t ′2, and t ′so in the SSDW phase, the two energy bands around
±B + E0

MF are fully gapped, and the band touching points
occur only between the two energy bands around the chemical
potential. In Fig. 5, we show the electronic structures of the
middle two bands near the chemical potential for tso = 0.8 and
J2 = 1. It is clear that two energy bands touch at two points
along the z axis with k = [0,0,k1] and k = [0,0,k1 + π ]. Here,
by using Eqs. (26), the nodal momentum k1 is related to the

Γ X M R Γ X1

E
/t'

1

54

57

60

k=(0,0,k
1
)k=(0,0,k

1
+π)

FIG. 5. Electronic structure of the SSDW phase, displayed along
the path: � → X: (0,0,π ) → M: (0,π,π ) → R: (π,π,π ) → � →
X1: (0,0, − π ). Here, the optimal Q is [0,0,0.55π ], and k1 =
−0.275π .

magnetic wave vector as

k1 = tan−1 cos Qz − 1

sin Qz

. (27)

Around the band touching points, an effective 2 × 2
Hamiltonian can be found by taking only two bands near
the Fermi energy. For this purpose, it is convenient to
combine the magnetic mean-field Hamiltonian, Eq. (25),
with the hopping Hamiltonian, Eq. (14). In the bias of
+ = [C+

k↑,C+
k+Q↓,C+

k+Q↑,C+
k↓], around the Weyl node of

k = (0,0,k1), the Hamiltonian matrix hMF can be written as

hMF =
(

H1 V

V H2

)
, (28)

with

H1 = [t ′1(cos k1 − qz sin k1) + t ′so(sin k1 + qz cos k1)]σ+
z

+ [t ′1(cos kQ1−qz sin kQ1)−t ′so(sin kQ1+qz cos kQ1)]σ−
z ,

H2 = [t ′1(cos kQ1 − qz sin kQ1) + t ′so(sin kQ1+qz cos kQ1)]σ+
z

+ [t ′1(cos k1−qz sin k1)−t ′so(sin k1+qz cos k1)]σ−
z +Bσx,

V = kxσx + kyσy. (29)

Here, σ±
z = 1

2 (σ0 ± σz), qz = kz − k1, and kQ1 = k1 + Qz.
In Eq. (29), the dominant term is H1. By treating V as
the perturbation, in the second-order perturbation theory, the
effective Hamiltonian around k = (0,0,k1) is obtained as

Heff = H1 − V H−1
2 V

= − t ′2so

B
(q2

−σ+ + q2
+σ−) + qz(−t ′1 sin k1 + t ′so cos k1)σz

+ (t ′1 cos k1 + t ′so sin k1)σ0, (30)

where q± = kx ± iky and σ± = 1
2 (σx ± σy). Similarly, follow-

ing the same procedure, the effective Hamiltonian around the
other Weyl node k = (0,0,k1 + π ) can be also obtained in the
same way.

As pointed in Ref. [16], the effective Hamiltonian, Eq. (30),
describes a Weyl node carrying a monopole charge of −2,
which is protected by C6 symmetry. Indeed, as shown in Fig. 6,
we plot the Chern number Ckz

. It is seen that as kz changes,
whenever the energy bands touch, the corresponding Chern
number also changes. Effectively, band inversion occurs as

k
z
/π

-1 -0.5 0 0.5 1

C
kz

0

0.5

1

1.5

2

k
z
/π=-0.275 k

z
/π=0.725

FIG. 6. Chern number Ckz as a function of kz for the SSDW phase.
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kz changes. In the region −π < kz < −k1 and k1 < kz < π ,
the Hall conductance is quantized with σxy(kz) = 2e2/h. The
changes in the Chern numbers crossing the Weyl points are
always ±2, which demonstrates that monopole charges of the
Weyl nodes are ±2. Hence the pair of Weyl nodes are double-
split Weyl nodes. In this SSDW phase, the spin ordering
cannot break the C4 rotation symmetry, which means such
double-Weyl nodes are not protected by rotation symmetry.
Therefore, as the spin-orbit interaction increases, a magnetic
transition occurs with the magnetic order being turned into
the A-AFM order, which breaks the rotational symmetry
of the SSDW phase. As a result, the double-Weyl nodes
at (0,0, ± k1) are no longer stable [16] and are split into
four single-Weyl nodes, located at (0,0,0), (0,0, ± π/2), and
(0,0,π ).

IV. DISCUSSION AND CONCLUSION

In conclusion, we have explored the magnetic phase and
the corresponding topological electric structures of the Weyl
semimetal in the strong on-site Hubbard U limit. For the
minimum model of a Weyl semimetal that possesses two linear
Weyl nodes, the magnetic phases in the small-U regime can
be also analyzed in the mean-field approximation. In this case,
the order parameters at site i are defined as 〈S+

i 〉 = 〈C†
i↑Ci↓〉,

〈S−
i 〉 = 〈C†

i↓Ci↑〉, and 〈Sz
i 〉 = 〈(ni↑ − ni↓)/2〉. The mean-field

Hamiltonian is given by

HM = E0
HF +

∑
k,α,β

C†
α(k)H0,αβ (k)Cβ(k)

− 1

3
U

∑
k

[γ1C
+
k+Q↓Ck↑ + γ2C

+
k↓CK+Q↑

+ γ3C
+
k+Q↑Ck↑ − γ3C

+
k+Q↓CK↓ + H.c.]. (31)

Here, E0
MF = nU/2 + (�2

x + �2
y + 2�2

z)/6, γ1 = Rx + Iy +
iRy − iIx , γ2 = Rx − Iy + iRy + iIx , γ3 = Rz − iIz, and H0

is given by Eq. (2) with Rα and Iα as in Eq. (11) and
�α = (Rα)2 + (Iα)2. Figure 7 illustrates a possible phase in
the weak on-site interaction regime. It is seen that when U/t1
is smaller than 3.5, the Weyl semimetal is in the paramagnetic
(PM) phase. In the PM phase, the topological properties of
the band structure are unchanged. When U/t1 is larger than
3.5 and tso is small, the A-AFM phase emerges. However, the
A-AFM phase is different from the A-AFM phase in the strong
correlation limit. The staggered magnetization lies in the xy

plane for the A-AFM phase in the weak interacting regime
and is denoted as the A-AFM xy phase. Hence it is clear
that when the on-site U is turned on, the Weyl semimetal
is paramagnetic without magnetic orders. The electronic
structure is similar to that of the noninteracting Weyl fermions
with the parameters being just renormalized. As U increases
and is strong enough, the Weyl semimetal starts to become
magnetic. The increase of U tends to first stabilize the A-AFM
xy phase due to its commensurate nature. As U becomes large,
the Dzyaloshinskii-Moriya interaction is induced so that the
spiral spin density wave (SSDW) state starts to emerge. Only
in the strong on-site U limit are both the SSDW state and
A-AFM phases stabilized.

0 1 2 3 4 5 6 7

0.5

1

1.5

2

U/t
1

t so
/t 1

PM

A−AFM xy

FIG. 7. Magnetic phases of the Weyl semimetal at half filling
(n = 1) in the weak on-site interaction regime. Here, the blue region
is the paramagnetic phase. The red region is the A-AFM phase with
staggered magnetization in the xy plane.

In the strong-U limit, we have derived an extended t-J
model. The mean-field phase diagram in the large-U limit of
the Hubbard model is established. We show that due to the
Dzyaloshinskii-Moriya interaction induced by the spin-orbit
interaction, the A-AFM phase and the SSDW phase are two
generic magnetic phases. As the spin-orbit coupling increases,
a quantum phase transition occurs with the SSDW phase
turning into an A-AFM phase. In addition, it is shown that the
topology of the electronic structure also undergoes changes
as the magnetic phase changes. In the A-AFM phase, the
number of linear Weyl nodes increases due to the folding of the
Brillouin zone, while for the SSDW phase, linear Weyl nodes
combine and are turned into double-Weyl nodes carrying a
monopole charge of ±2. It should be noted that, while in
the small-U regime, the Weyl semimetal can be either in the
paramagnetic (PM) phase or in the A-AFM phase with spin in
the xy plane. However, these phases cannot lead to a significant
change in the topological properties of the Weyl semimetal.
The increase of U tends to stabilize the spiral spin density wave
(SSDW) state and A-AFM phase and increases the magnetic
energy gain. Strong magnetization can lead to a significant
change in the topological properties of the Weyl semimetal.
Our findings thus pave a way to build a double-Weyl semimetal
from a Weyl semimetal.

While so far in this work we only considered Weyl
semimetals with two linear Weyl nodes located along the z axis,
due to the rotational invariance of the Hubbard interaction, we
expect that the results may be applicable to pairs of Weyl nodes
located along other axes. In general, the number of linear Weyl
nodes may exceed two. Our results are applicable to any pair of
linear Weyl nodes located along some axis passing through the
� point. Thus, we expect our findings of the unusual interplay
between the topology of electronic structures and magnetism
may be applicable to Weyl semimetals with more than two
Weyl nodes.
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Even though our results are based on the mean-field theory,
the Weyl points in the electronic structures have a topological
origin, which is reflected in their origin from the band inversion
along the z axis. Hence it is expected that the topological
electronic structures of the nodes are robust even if magnetic
fluctuations are included. In real materials, the exact electronic
structure depends on detailed crystal symmetries and may
show different detailed structures. Nonetheless, our results
offer an important direction to look for in the interplay between

magnetic phases and electronic structures and are left for future
experimental confirmations.
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