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Plaquette valence bond theory of high-temperature superconductivity
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We present a strong-coupling approach to the theory of high-temperature superconductivity based on the
observation of a quantum critical point in the plaquette within the t,t ′ Hubbard model. The crossing of ground-state
energies in the N = 2–4 sectors occurs for parameters close to the optimal doping. The theory predicts the
maximum of the dx2−y2 -wave order parameter at the border between localized and itinerant electron behaviors
and gives a natural explanation for the pseudogap formation via the soft-fermion mode related to local singlet
states of the plaquette in the environment. Our approach follows the general line of resonating valence-bond
theory stressing a crucial role of singlets in the physics of high-Tc superconductors but focuses on the formation
of local singlets, similar to phenomena observed in frustrated one-dimensional quantum spin models.
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I. INTRODUCTION

After the 30-year history of extremely intensive experimen-
tal [1–4] and theoretical [5–10] studies of the high-temperature
superconductivity (HTSC) in copper oxides we are still far
from understanding the basic mechanism of this fascinating
phenomenon. Taking into account the enormous number of
researchers involved in this field, one can assume that almost
all possible ideas were expressed and that the main problem
is just to select the basic simple concepts from the pile
of available theoretical results. The most ambitious attempt
was made by Anderson who emphasized with his resonating
valence-bond (RVB) theory the crucial importance of strong
electron correlations, the tendency for singlet spin state
formation, and the non-Fermi-liquid character of the normal
phase [6]. Unfortunately, details of his original approach, such
as suppression of interlayer hopping in the normal phase
as the main factor of superconductivity, seem to contradict
experimental data [11]. The latest version of the RVB theory
is presented in Ref. [12]. We believe that the main assumption
of the strongly correlated limit as the base of understanding
the high-temperature superconductivity is correct as well as
emphasizing a crucial role of spin singlet states but important
details were missing. Below we present arguments for the
thesis that the minimal object of HTSC theory is the plaquette
in the so-called effective t,t ′ Hubbard model [13,14] rather
than the conventional atomic limit typical for the theory
of Mott insulators [6,9]. The best practical realization of
this atomic-based theory is the dynamical mean-field theory
(DMFT) [15]. The obvious minimal generalization in the
case of dx2−y2 -wave pairing is a cluster DMFT (CDMFT)
scheme [16,17].

Since the first plaquette CDMFT calculation of dx2−y2 -
wave superconducting order together with antiferromagnetic
fluctuations [16], there have been many calculations for dif-
ferent cluster sizes and geometries based on continuous-time

quantum Monte Carlo (CTQMC) or exact diagonalization
solvers [17–35]. Unfortunately, the basic qualitative feature
of the many-body states in the plaquette were hidden in
the computational details. The main aim of this paper is to
present a simple and transparent strong-coupling theory of
the dx2−y2 -wave superconductivity, i.e., a minimal consistent
many-body model, based on the plaquette energy spectrum
peculiarity, namely, the “quantum critical point” that merges
two singlets and two doublets. These states of the doped
plaquette are different from those discussed in the resonating
valence-bond theory [6,12]. The main point is that the quantum
critical point discussed here is related to the formation of local
valence bonds in the frustrated quantum spin model [36].
Therefore, the optimal superconducting states are located
on the border between localized and delocalized resonating
plaquette valence bonds. Here we follow a bottom-up approach
starting with an isolated plaquette and building stepwise a more
complex environment.

An important theoretical problem is to find a minimal and
generic electronic-structure model of cuprate superconductors.
From band-structure calculations [13,14] we can safely reduce
it to an effective one-band model with nearest- and next-
nearest-neighbor hopping. We use a standard parametrization
of the tight-binding model for YBa2Cu3O7 [13,14] with the
next-nearest-neighbor hopping: t ′/t = −0.3 and t as units of
our energies. The local Hubbard interaction parameter U is on
the order of the bandwidth W = 8t . Then, the t,t ′ Hubbard
model on the square lattice reads

H = −
∑
ij

tij c
†
iσ cjσ +

∑
i

Uni↑ni↓, (1)

where tij is an effective hopping and U is the local Coulomb in-
teraction. The operators c

†
iσ ,ciσ create and annihilate fermions,

respectively, at site i with spin σ = ↑(+),↓(−), and the

2469-9950/2016/94(12)/125133(6) 125133-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.94.125133


HARLAND, KATSNELSON, AND LICHTENSTEIN PHYSICAL REVIEW B 94, 125133 (2016)

0 1 2 3 4 5 6
U

−2.0
−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5
2.0

µ

N = 2
N = 3
N = 4

FIG. 1. Zero-temperature phase diagram of the isolated plaquette
as a function of the Hubbard U and chemical potential μ in the
proximity of the quantum critical point (circle) for t ′/t = −0.3.

occupation operator is niσ = c
†
iσ ciσ ; furthermore we will use

t as the energy unit.

II. ISOLATED PLAQUETTE

We start the discussion with electronic states in the isolated
Hubbard plaquette. The optimal doping for high-temperature
superconductivity is on the order of 15% of holes per site
for almost all cuprate materials. This gives us an average
number of electrons per site of 0.85 and results in 3.4 fermions
per four-site plaquette in the crystal. We argue that this
is related to three-electron states of the isolated plaquette
since particle-hole asymmetry introduced by the next-nearest-
neighbor hopping t ′ with moderate values of U and certain
fixed chemical potentials (μ) result in an occupation per
plaquette of the crystal, that is very close to the optimal value
of 3.4 electrons.

The Hamiltonian of the isolated plaquette reads

Hp =
∑

(i,j )=1···4
h0

ij c
†
iσ cjσ +

∑
i=1···4

Uni↑ni↓,

−ĥ0 =

⎛
⎜⎜⎜⎝

μ t t ′ t

t μ t t ′

t ′ t μ t

t t ′ t μ

⎞
⎟⎟⎟⎠. (2)

We include the chemical potential in the diagonal part of
h0

ij . The energy spectrum of the isolated plaquette near the
three-electron filling is very unusual. We present in Fig. 1
regions in the U − μ space, whose ground states have an
occupation of three plus-minus one electrons. The one-electron
spectrum possesses four states with the energies: ±2t − t ′ − μ

and double-degenerate t ′ − μ. At zero interaction U = 0,
there is no stable ground state with three electrons in the
sense that one can add or remove one electron without
changing the thermodynamic potential. Starting from some
critical interaction strength U ≈ 3 there is a small region
in that the plaquette ground state with N = 3 electrons is
separated by energy gaps from the states with N = 2 and
N = 4, see Fig. 1. Importantly, this N = 3 ground state is
fourfold degenerate consisting of two doublets in the sectors
(2↑,1↓) and (1↑,2↓), which we label X and Y , according

to their symmetry. Moreover, there is a critical point (circle
in Fig. 1) where all three sectors with two through four
electrons have the same ground-state energy and form a
sixfold degenerate ground-state multiplet consisting of two
singlets of the sectors (1↑,1↓) and (2↑,2↓) together with two
doublets of the three-electron sectors. This critical point has
the coordinates U = 2.78, μ = 0.24 for the standard value of
t ′/t = −0.3. We think that this critical point of the plaquette
has crucial importance for the physics of the strong-coupling
dx2−y2 -wave superconductivity. The importance of these three
many-body states of the plaquette CDMFT has been discussed
first for the t-J model [19]. In that case an additional triplet
state in the N = 4 sector appeared without formation of
the single quantum critical point. The crossing of different
many-body states has been investigated in the valence-bond
DMFT [20], the checkerbord Hubbard model [37], and in the
plaquette CDMFT [27,33]. The idea of a quantum critical point
and nematicity has also been discussed in Refs. [23,31,32].
Here, we demonstrate via a bottom-up approach that this is the
key ingredient of a consistent minimal picture of HTSC.

If we approach this critical point from the region with the
N = 3 ground state, then the one-electron density of states
(DOS) at the Fermi energy diverges for both electron and
hole sides due to transitions from the fourfold degenerate
N = 3 ground state to singlets of N = 2 (hole side) and N = 4
(electron side) with zero excitation energy. The corresponding
spectral weights with normalization of the δ functions are equal
to 0.46 and 0.23 for the hole and electron sides, respectively.
Thus, it introduces an important electron-hole asymmetry. We
see below that this plaquette quantum critical point results in
a formation of a soft-fermion mode, i.e., a DOS peak at the
Fermi energy when investigating it in a crystal of plaquettes.
We argue that these soft fermions favor the formation of the
dx2−y2 -wave superconducting pairing at low temperatures and
of the pseudogap at high temperatures. At smaller t ′ this
critical point shifts to larger U , and at t ′/t = 0 its coordinates
are U = 4.58, μ = 0.72. It is worthwhile to point out that
at optimal values of t ′ antiferromagnetic order is suppressed
due to frustrations. As soon as we add a fermionic bath to
the plaquette within the spirit of CDMFT or density-matrix
embedding theory (DMET) [38] with only four bath sites, a
stable singlet solution forms with an almost equal mixture
of all N = 2–4 sectors, which again is favorable for the
superconducting state as is shown below.

III. PLAQUETTE IN THE BATH

The appearance of the DOS peak at the Fermi energy leads
to a universal instability in the sense that the susceptibility
diverges in many different channels (magnetic, superconduct-
ing, charge-density wave, etc.). From the weak-coupling point
of view this was discussed in the framework of the van Hove
scenario of HTSC [39–41]. In order to study the interplay
of different instability channels from the strong-coupling
perspective we introduce a simple model of an embedded
plaquette in the spirit of DMET [38]. To this aim we add
to the plaquette’s Hamiltonian a hybridization with four
fermionic bath states, one bath state per corner of the plaquette,
see Fig. 2(a). We use an exact diagonalization technique,
namely, the Lanczos scheme with a Hilbert space size of 216
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FIG. 2. (a) Sketch of the plaquette in the four-site bath with the
dx2−y2 -wave order parameter. (b) Superconducting (χd ), singlet bond
order (χs), and antiferromagnetic (χm) susceptibilities of the plaquette
in a bath as a function of the hybridization V for U = 3 and μ = 0.27.

without any symmetry restrictions. Furthermore, we introduce
different symmetry-breaking fields acting on the bath fermions
b
†
iσ ,bjσ , i.e., dx2−y2 -wave pairing, singlet magnetic states on

the bonds, and the conventional Néel antiferromagnetic state,

hd =
∑

σ=↑,↓,i=1···4
(−1)iσ�d (bi,σ bi+1,−σ + H.c.), (3)

hs =
∑

σ=↑,↓,i=1···4
(−1)iσ�s(b

†
i,σ bi+1,−σ + H.c.), (4)

hm = 1

2

∑
σ=↑,↓,i=1···4

(−1)iσ�mb
†
i,σ bi,σ . (5)

Here we assume periodic boundary conditions, that means
for i = 4, we define i + 1 = 1. We switch on small fields
�d = �s = �m = 0.01t simultaneously and calculate numer-
ically their associated susceptibilities of the plaquette. The
hybridization V between fermions c

†
iσ and b

†
jσ breaks the

sixfold degeneracy of the plaquette’s quantum critical point,
and without external fields it results in a singlet ground state,
see Fig. 2(a). The dx2−y2 -wave superconducting [Eq. (3)] and
the magnetic bond-singlet [Eq. (4)] external fields respect
quantum entanglement of the singlet character of the ground
state, whereas the Néel field Eq. (5) destroys it. Being classical
in its nature, the Néel state is expected to be the most stable
for sufficiently strong coupling with the environment V [42]
or high temperatures [43]. For an infinite system different
types of order can be found by studying divergences of
susceptibilities. Since in DMET we deal with finite systems,
the susceptibilities remain finite up to zero temperature, and
we assume that the largest susceptibility of the cluster, shown
in Fig. 2(a), signals the corresponding order of the crystal. The
computational results are shown in Fig. 2(b) as a function of the
hybridization parameter V . One can see that the dx2−y2 -wave
superconducting pairing always wins in comparison with
the singlet bond pairing and is more favorable than the
Néel order for V � 0.2. The self-consistent plaquette-Bethe
DMFT for the cluster case (see below) with optimal HTSC
parameters corresponds to V = 0.1. The singlet ground state
near the plaquette’s quantum critical point favors dx2−y2 -wave
superconductivity rather than magnetic ordering. This result

FIG. 3. The main contributions to the plaquette’s singlet ground
state in a four-site bath with the dx2−y2 -wave order parameter is the
hybridization V = 0.2�d = 0.05 for U = 3 and μ = 0.27. (a) Sector
N = 2 with coefficient =0.05 and four antisymmetric contributions.
(b) Sector N = 3 with coefficient =0.06 and eight antisymmetric
contributions. (c) Sector N = 4 with coefficient =0.08 and two
antisymmetric contributions.

agrees well with large-scale CDMFT calculations for optimal
doping [28,29].

In order to elucidate important properties of the plaquette
singlet in the superconducting bath we visualize the main
contributions to the ground-state singlet in Figs. 3(a)–3(c).
There are three main contributions by the single-plaquette
sectors with N = 2–4 electrons, which have almost equal
spectral weights. In particular, it means a strong mixture of
states that differ by two electrons, i.e., by a local Cooper
pair on the bond. This is understood as an important detail
for superconductivity since the degenerate quantum critical
point (circle in Fig. 1) consists of states with the same total
number of electrons (Ntot = 8), but none of those show a
double occupation on the plaquette. It occurs only on bath
sites that have no Hubbard interaction, see Figs. 3(a)–3(c).
The degeneracy of the quantum critical point splits into four
states for N = 2, eight states for N = 3, and two states for
N = 4. Taking into account the total number of these states
and including all their antisymmetric singlet combinations,
we observe that 85% of the ground-state components are
related to the quantum critical point. This means that the
system as a whole perfectly screens the strong Coulomb
interactions (Hubbard U is about 70% of the bandwidth),
and the plaquette states with N = 2–4 electrons contribute
equally to the ground-state singlet of the total system. The fact
that there are no double occupied states inside the plaquette
and only on the bath sites with no Hubbard interactions was
expected to occur only in the limit U � W , obtained by the
perfect Gutzwiller projector. The crucial role of the Gutzwiller
projector for the physics of high-Tc superconductivity was
emphasized by Anderson [12]. We see that the situation is
much more subtle: A specific symmetry of the ground state at
the plaquette’s quantum critical point increases effectively the
single-site U by suppressing double occupations on plaquette
sites. But, at the same time, it decreases the effective U for the
plaquette in a sense that one does not have to pay an additional
energy for adding two more electrons to the plaquette as
a whole. This situation is very nontrivial; it demonstrates
clearly that discussions of strong correlations for the high-Tc

cuprates would be based on a rather four-orbital Hubbard
model, corresponding to a lattice built from plaquettes, than
on an initial single-band Hubbard model for copper sites.
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FIG. 4. (a) Sketch of the plaquette-Bethe lattice with connectivity
q = 2 . Only one plaquette is shown for simplicity. (b) Local part
of the normal Green’s function of the dx2−y2 -wave solution in the
plaquette-Bethe lattice near optimal values of tb for U = 3 and
n = 0.85 and (the inset) the nonlocal part of the anomalous Green’s
function.

IV. PLAQUETTE-BETHE LATTICE

As a next step towards a more realistic description of
the cuprate crystal, we consider a plaquette-Bethe model
with all sites arranged in quadrupole Bethe “planes” and
interconnected in a plaquettelike manner, see Fig. 4(a). The
plaquette CDMFT becomes exact for this model when the
connectivity of the Bethe sublattice q tends to infinity. We
obtain similar results as for the double-Bethe model for a
two-site cluster [42,44]. The bath Green’s function in Nambu
representation for this model reads

Ĝ−1(iω) = iω1 + (μ − ĥ0)σz − tbσzĜ(iω)σztb, (6)

where σz is the Pauli matrix and including site degrees of
freedom Ĝ(iω) is an 8 × 8 matrix of the superconducting
Green’s function for the plaquette in the bath. We discretize
the bath Green’s function with only four states similar to the
DMET approach using the Lanczos scheme in order to find the
matrix Green’s function of the superconducting states [28,29].
As mentioned above, there is a sixfold degenerate ground state
for tb = 0 at the quantum critical point. At sufficiently small
hybridizations, i.e., small tb in the plaquette-Bethe model, the
system becomes metallic with a slightly broadened peak in
the DOS at the Fermi energy. The ground state is dx2−y2 -wave
superconducting at low temperatures [28,29]. However, when
tb increases a quantum phase transition occurs with the
destruction of the singlet states and a formation of the energy
gap in the single-electron excitation spectrum. The latter can
be observed in the normal part of the one-electron Green’s
function at tb = 0.3, see Fig. 4(b). The energy gap of the states
can be estimated at 0.2t , that is, an order of magnitude larger
than the superconducting gap. For t = 0.25 eV [13] this results
in a pseudogap on the order of 50 meV, which is observed
experimentally [45]. In regard to the double-Bethe model this
corresponds to a transition of a quantum entangled singlet
state to a classical Néel state [42]. Importantly, the anomalous
(superconducting) part of the Green’s function has a maximum
exactly at this transition, see the right inset in Fig. 4(b).
Similar behavior has been observed recently experimentally
for the maximum of the superconducting order parameter at the
localized-delocalized transition point in the strongly correlated

FIG. 5. Density of states for both spins of the plaquette CDMFT
for U = 6 and μ = 0.54 for different temperatures, (the left inset)
with plaquette-lattice hoppings scaled by a factor of α at β = 10 and
(the right inset) for optimal doping n = 0.85 at β = 100.

organic superconductors [46] as well as for the BCS-BEC
crossover in cold-atom systems [47].

V. PLAQUETTE CDMFT

Finally, we perform the standard CDMFT calculations
using a strong-coupling continuous-time quantum Monte
Carlo solver [48,49] in the normal state. Since a transition
to the periodic plaquette in the crystal increases the bandwidth
by a factor of 2 due to doubling of the coordination numbers
compared to the isolated plaquette, we increase the values of
U and μ by the factor of 2. Note, that the natural energy unit is
the bandwidth W rather than the hopping t . Furthermore, we
use the value of U/t = 6, which approximately describes real
cuprate materials [50].

The calculated local DOS obtained by maximum-entropy
analytic continuation [51] is shown in Fig. 5. We observe that
for sufficiently high temperatures there is a broad peak at the
Fermi energy originating from the plaquette quantum critical
point. This relation is illustrated in the inset of Fig. 5. We
artificially scaled the hopping between plaquettes by a factor
of α ranging from 0 to the physical value 1.

At lower temperatures a pseudogap is formed. It is well
known in all HTSC materials and considered as one of its
most striking features [45]. Sometimes this pseudogap is
also considered to be the precursor of the superconducting
gap (formation of incoherent Cooper pairs above Tc) or as a
smeared antiferromagnetic gap (shadow bands) [45]. However,
both interpretations have problems when they get compared
to experiments [45]. Within our scheme it is natural to
interpret this pseudogap as a pseudohybridization gap similar
to that arising in Kondo lattices [52] or intermediate valence
semiconductors [53]. From this point of view the pseudogap
in HTSC materials originates from the Fano antiresonance
due to embedding of the soft-fermion mode of the plaquette
(discussed above) into a continuous band spectrum of the
lattice. Indeed, from the degeneracy between the states
with N = 3 and N = 3 ± 1 = 2,4 of the isolated plaquette

125133-4



PLAQUETTE VALENCE BOND THEORY OF HIGH- . . . PHYSICAL REVIEW B 94, 125133 (2016)

immediately follows by the Lehmann spectral representation
that the atomic Green’s function of the plaquette has a pole at
E = 0. In a lattice built from plaquettes this pole is mixed by
hopping with the other spectral components of the Green’s
function, which otherwise would form a regular strongly
correlated band. However, the mixture with the E = 0 peak
leads to a singularity in the self-energy and thus to the gap
opening. The broadening of the E = 0 peak transforms the
gap into the pseudogap. A similar effect is produced by the
Kondo peak in the periodic Anderson model [52] but with
the important difference that the spectral weight of the Kondo
peak is proportional to the Kondo temperature and therefore
small, whereas in the model discussed here the soft fermion has
a noticeable spectral weight. It leads to a much larger energy
scale of the pseudogap compared to the Kondo lattices. The
singularity in the self-energy and the gap opening in systems
with flat bands has been discussed recently from the point of
view of phenomenological Fermi-liquid theory [54].

The role of soft-fermion modes, the hidden fermion, has
been discussed in Refs. [55–57]. However, it was not done in
the context of the quantum critical point of the plaquette. This
relation is the main message of our paper.

The density of states for optimal doping n = 0.85 in the
self-consistent CDMFT calculations is shown in the right inset
of Fig. 4(b). Its chemical potential converges to a value of
μ = 1.2, which is very similar to that of the fixed μ of the
quantum critical point in the isolated plaquette. Furthermore,
we have calculated a low-temperature superconducting state
with CDMFT, a Lanczos solver, eight-bath sites, and with a
CTQMC cluster solver and found similar results to many other
calculations [17–35].

VI. CONCLUSIONS

To conclude, we developed a picture of HTSC based on
the existence of a quantum critical point at the crossing of
the ground-state energies in the N = 2–4 sectors within the
plaquette for parameters close to the optimal doping, t ′ being
of crucial importance. Contrary to the original RVB theory of
Anderson [6], we start with the local valence-bond formation
in the doped plaquette. The difference can be illustrated

by comparison with the exactly solvable one-dimensional
quantum spin model [36]. The prototype state for the RVB
is the Bethe ansatz solution for the antiferromagnetic S = 1/2
Heisenberg model in the nearest-neighbor approximation. For
the model with first- and second-nearest-neighbor interactions
J2/J1 = 1/2, the ground state is known exactly too. It can
be represented as a product state of local valence-bond sin-
glets [36]. For the two-dimensional J1,J2 model [58,59] recent
calculations show the formation of a plaquette valence-bond
state with a tendency towards the d-wave superconductivity
for the t − J1,J2 model [60]. The second-nearest-neighbor
hopping t ′ seems to play a similar role in the Hubbard model.
The optimal superconducting region is related to a localized-
delocalized transition of plaquette valence-bond states in the
plaquette. It would be interesting to describe the formation of
global singlet states with plaquette valence-bond states using
the matrix product scheme [61] since the CDMFT scheme
breaks translational symmetry.

Formation of the soft-fermion mode near the optimal
doping has an analog in the weak-coupling theory within the
van Hove scenario of HTSC [62]. Due to the formation of flat
bands of many-body origin [62,63] there is a whole region
of parameters t ′,U,μ in that the Fermi-liquid description
is broken. However, we believe that the strong-coupling
description presented here is more relevant for real HTSC
materials, which are characterized by large values of U [50].
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