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Bulk spectroscopic measurement of the topological charge of Weyl nodes with resonant x rays
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We formulate a bulk spectroscopic method for direct measurement of the topological invariant of nondegenerate
band crossings in Weyl semimetals. We demonstrate how polarization-resolved resonant x-ray scattering captures
the winding of the Berry flux around Weyl nodes. The spectra obtained by the proposed strategy feature an integer
number of zero crossings that is directly related to the topological charge of the measured nodes. We benchmark
the proposed protocol on TaAs, using realistic low-energy models derived from density-functional theory to
accurately represent the states close to the Fermi level, including sizable deviations from the idealized linear
dispersion. We conclude that the proposed measurement, which is within the reach of current experimental setups,
yields direct signatures of nontrivial band topology in the spectroscopy of three-dimensional bulk matter.
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I. INTRODUCTION

The two defining hallmarks of topological insulators are
their distinctive bulk transport responses and the presence
of current-carrying states confined at their boundaries [1,2].
The latter feature has rendered surface spectroscopy a well-
established method for characterization of three-dimensional
topological states of matter. On the other hand, spectral
quantities in the bulk of a topological insulator are generally
expected to be indistinguishable from those of a trivial
insulator. However, topological semimetals feature a finite
number of topologically nontrivial Fermi surfaces in the
bulk [3–5]. Weyl semimetals (WSMs), in particular, possess
pairs of nondegenerate linear band crossings at isolated points
in the Brillouin zone (BZ) called Weyl nodes. There, electronic
properties are effectively governed by the relativistic Weyl
equation. Functioning as sources and sinks of Berry flux, these
points give rise to a number of remarkable physical properties,
including open constant-energy contours in the surface band
structure called Fermi arcs [6–9] and the condensed-matter
realization of the chiral anomaly in the bulk [10–16].

Confirming theoretical predictions [17,18], angle-resolved
photoemission spectroscopy (ARPES) has identified Ta and
Nb monarsenides and monophosphides as the first realizations
of WSMs in solids [19–24]. More recent experiments [25–30]
have unearthed representatives of a subsequently identified
class of WSMs labeled “type II” [31–33]. Particular em-
phasis has been placed on resolving spectral signatures of
topological origin at the boundary: ARPES has been used
to identify surface bands as Fermi arcs [19–24,26–28] and
scanning tunneling spectroscopy (STS) has been employed
to search for uniquely characterized patterns [34] in surface
quasiparticle interference (QPI) [26,35–37]. Magnetotransport
measurements [38–44], on the other hand, have revealed a
negative magnetoresistance and quantum oscillations that are
compatible with the presence of Weyl nodes in the bulk.

Despite the successful identification of WSM states in more
than one material class, the topological content of individual
Weyl nodes is still inaccessible to experiment directly. Quan-
tum oscillations [45], as well as recently proposed transport
methods [46], have the capacity to access the Berry phase of
Fermi surfaces surrounding Weyl nodes, whenever the chemi-
cal potential is favorably placed with respect to the nodal point.
However, contributions from similarly sized Fermi surfaces

are superimposed in these methods and the overall response
comes from the entire BZ. Moreover, these approaches yield
no response at all when the chemical potential lies at the nodal
point. Experiments have so far inferred the topological charge
from the number and dispersion of edge modes originating
from the projections of Weyl nodes at the boundary [19,21–23].
This approach is not always viable [24] and is impeded
by overlaps of trivial boundary Fermi surfaces, projections
of bulk Fermi surfaces, and Fermi arcs on a given surface.
Additionally, it may not be possible to cleave the surface of
interest cleanly enough to observe the Fermi arcs with ARPES.

The purpose of this work is to show that the topological
nature of a WSM can be revealed by a targeted spectroscopic
measurement of Weyl nodes in the bulk using polarization-
resolved resonant inelastic x-ray scattering (RIXS) [47,48].
The unique spin-orbital selectivity of polarized RIXS allows
for the measurement of the effective spinor components close
to a Weyl point. The topological charge of a Weyl node
manifests itself as zero crossings in suitable combinations
of RIXS spectra, obtained using different photon beam
polarizations. The number of these zero crossings is found to
be a fixed integer times the topological charge of the targeted
nodes. This scheme is robust against sizable perturbations
away from the idealized linearly dispersive regime. The rest
of this paper is organized as follows: In Sec. II we introduce
the low-energy RIXS cross section in Weyl semimetals. In
Sec. III we provide the theoretical description for a direct
bulk measurement of the topological invariant characterizing
a Weyl node using RIXS. We then study the robustness of
the pertinent spectral signature under arbitrary deformations
of the scattering geometry and perturbations away from the
linear energy dispersion in Sec. IV. In Sec. V we apply the
measurement protocol to the Weyl nodes in TaAs and show
that it indeed yields the topological invariant of the targeted
nodes in a material-specific application. Finally, we discuss in
detail the feasibility of the experimental procedure in Sec. VI.

II. LOW-ENERGY RIXS RESPONSE
IN WEYL SEMIMETALS

A. Low-energy theory around Weyl nodes

In WSMs, the interesting physics happens close to the nodal
points of the band structure. There, only two bands are relevant
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and the effective Hamiltonian is

H =
∑
k∈BZ

ψ
†
kHkψk, (1)

where ψk = (ck,↑ ck,↓)T is a spinor containing annihilation op-
erators acting on electrons with wave vector k and pseudospin
σ =↑, ↓. The 2×2 Hamiltonian matrix is

Hk = gk · τ + (g0,k + μ)τ0, (2)

where the 2×2 identity matrix τ0 and the three Pauli
matrices τ = (τx,τy,τz) span the pseudospin basis, gk =
(g1,k,g2,k,g3,k), and μ is an overall chemical potential. g0,k,
g1,k, g2,k, and g3,k are real-valued functions of the wave
number k. The spectrum is εk,± = g0,k + μ ± gk with gk =
|gk|. In what follows, the pseudospin will arise from the orbital
degree of freedom of electrons.

The topological invariant pertinent to Weyl nodes can be
defined as [3]

C = 1

2π

∮
�

dk
gk

2g3
k

· (∂λ gk × ∂ν gk), (3)

where � denotes a closed two-dimensional surface that con-
tains the Weyl node and λ,ν are coordinates that parametrize
the surface. The integrand is the Berry flux through � [49].
A Weyl node carrying a topological charge C = 1, henceforth
called a single Weyl node, is described by

gsingle
k = (vxkx,vyky,vzkz), (4)

where vi , i = x,y,z are momentum-space velocities. For Weyl
nodes with C = 2, or double Weyl nodes [50],

gdouble
k = (

v2
xk

2
x − v2

yk
2
y,2vxvykxky,vzkz

)
. (5)

Equation (3) implies the winding of the Berry flux around
the Weyl node. When |C| = 1, the Berry flux winds once
along any path P on � that encircles the Weyl point. For
gdouble

k the winding is observed when the projection of P in
the kz = 0 plane encloses the Weyl node. The Berry flux then
winds twice along P [7,51]. Since gk is aligned to the Berry
flux, a measurement of the former yields the latter. We will now
show how the components of gk can be identified in RIXS.

B. RIXS cross section

In a RIXS experiment, core electrons of a specific ion are
promoted to an unoccupied state using an intense x-ray beam,
thereby locally exciting the irradiated material into a highly
energetic and very short-lived intermediate state [47,48]. The
core and valence spin-orbital states that participate in the
scattering can be selected by the choice of incoming and
outgoing photon polarizations. Subsequently, the core hole
recombines with a valence electron, after a lifetime of the
order of 1 femtosecond. The process imparts both energy
and momentum to particle-hole excitations left behind in the
material, as the momentum and energy of decaying electrons
are generally not the same as those of the photoexcited one.
Their dispersion can be inferred by the differences in scattering
angle and frequency of incoming and outgoing x-ray photons.

The total RIXS intensity at zero temperature is [48,52–54]

I (q,ωk,ωk′ ,ε,ε′) =
∑
fg

|Ffg(ε,ε′,q,ωk)|2

× δ(Eg − Ef + �ωkk′), (6)

where �ωkk′ = �(ωk′ − ωk) and q = k′ − k are the energy
and momentum transferred to the material, k and k′ (ε and ε′)
the incoming and outgoing photon momenta (polarizations),
and Eg and Ef are the eigenenergies corresponding to initial
and final states |g〉 and |f 〉. The scattering amplitude Ffg

contains dipole operators that describe the transitions between
core and unoccupied levels. Here we consider the processes in
which core electrons are promoted directly into the orbitals that
generate the physics of interest. This experimental setting is
frequently referred to as “direct” RIXS. In the monarsenide and
monophosphide family of WSMs, the bands at the Weyl nodes
are contributed predominantly by Ta or Nb ions. We therefore
consider the L or M edges of Nb or Ta, which correspond to
transitions 2p/3p → 4d/5d.

The intermediate state in RIXS is typically very short-lived.
Due to this, the fast-collision approximation can be employed
to accurately model the scattering process [55–57]. In the fast-
collision approximation, the inelastic scattering amplitude at
a specific absorption edge is defined as [48,58–60]

Ffg(ε,ε′,q,ωk) = 〈f |
∑
k,s,s ′

ck,s ′Ts ′,s(ε,ε
′,ωk)c†k+q,s |g〉 , (7)

where s and s ′ are combined indices of spin and orbital degrees
of freedom and the operator c

†
k,s (ck,s) creates (annihilates) an

electron in the single-particle state |k,s〉, and ε and ε′ are
the incoming and outgoing beam polarizations, respectively.
The entries of the complex matrix T contain the fundamental
absorption cross sections for spin-preserving and spin-flip
processes, which also depend on the core orbitals [58,59]. Note
that core-hole dynamics is insignificant here, so the operators
acting on core electrons have been dropped.

An appropriate choice of polarizations can isolate the
components of the (pseudo)spin density. As a simple example,
consider the measurement of spin winding in a WSM with
tetragonal symmetry. To first order, the overall polarization
dependence is given by the matrix [58]

T (ε,ε′,ωk) = T0(ε,ε′,ωk)τ0 + T (ε,ε′,ωk) · τ , (8a)

where τ0 is the 2×2 identity matrix, τ = (τx,τy,τz) is the vector
of Pauli matrices in (pseudo)spin space, and

T0(ε,ε′,ωk) = R
(0)
aB

1g

(ωk)(εxε
′
x

∗ + εyε
′
y

∗)+R
(0)
aA

1g

(ωk)εzε
′
z

∗
, (8b)

T1(ε,ε′,ωk) = R(1)
eu

(ωk)(ε × ε′) · x̂, (8c)

T2(ε,ε′,ωk) = R(1)
eu

(ωk)(ε × ε′) · ŷ, (8d)

T3(ε,ε′,ωk) = R(1)
a2u

(ωk)(ε × ε′) · ẑ, (8e)

with x̂, ŷ,ẑ unit vectors. The fundamental x-ray scattering
spectra R

(0)
aB

1g

,R
(0)
aA

1g

,R(1)
eu

, and R(1)
a2u

of the irradiated ions can

be accurately determined via crystal-field calculations, as
discussed in Ref. [58]. In the above equations, it is seen that
appropriate choice of cross-polarized x rays can probe each
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of the spin components individually. For example, selecting
ε ‖ x̂ and ε′ ‖ ŷ yields

Ffg(ε ‖ x̂,ε′ ‖ ŷ,q,ωk) ∝ 〈f |Sz
q |g〉 , (9)

where we have defined the quantity

Sq = 1

2

∑
k,s,s ′

c
†
k+q,sτ s,s ′ck,s ′ . (10)

All components of Sq can be obtained in this manner. This
selectivity is still possible even when all the terms up to
third order in spin are included (see Eq. (16) of Ref. [59])
and regardless of the precise value of the fundamental x-ray
scattering spectra, as long as these are nonzero.

In WSMs, the interesting physics happens close to the nodal
points of the band structure. There, the effective electron
spinor has a pseudospin σ = ↑, ↓, with ↑ and ↓ signifying
two orthogonal linear combinations of the original spin and
orbital degrees of freedom of the material. This combination
is material dependent and can be accurately calculated within
DFT. In this low-energy subspace, the excitation and decay
operators are reduced to this pseudospin subspace: c

†
k+q,s →

c
†
k+q,σ and ck,s → ck,σ . The matrix T is similarly downfolded

to the pseudospin basis and a decomposition similar to that
of Eq. (8) is obtained. In the special case where the orbital
degree of freedom does not vary appreciably around the Weyl
node, then the description of the winding is precisely that of
Eq. (8), i.e., s ≡ σ . For the case of TaAs, studied below, the
pseudospin is actually a “pseudo-orbital” degree of freedom,
arising from the 5d orbitals of Ta.

The respective RIXS cross sections then reduce to

Ii(q,ωkk′) =
∑
k,b′,b

|F i
b′b(q,k)|2

× δ(εk,b − εk+q,b′ + �ωkk′), (11a)

with

F i
b′b(k,q) = 〈ψk+q,b′ |τi |ψk,b〉 , (11b)

where i = x,y,z and |ψk,b〉 are the eigenstates of H at
momentum k with band index b = ±. For scattering from
a partially filled lower band, b = − and

|Fx
±−|2 = 1

2
− g3,k+qg3,k

2gk+qgk
∓ g⊥,k+qg⊥,k

2gk+qgk
cos(φk+q + φk),

(12a)

|Fy
±−|2 = 1

2
− g3,k+qg3,k

2gk+qgk
± g⊥,k+qg⊥,k

2gk+qgk
cos(φk+q + φk),

(12b)

where g⊥,k =
√

g2
1,k + g2

2,k and φk = Arg(g1,k + ig2,k). Fully
analogous results are retrieved when b = +.

In crystals with low symmetry, a single measurement with
cross-polarized beams may not be sufficient to isolate the
pseudospin components. It is, however, always possible to
obtain RIXS spectra for two or more different polarizations,
which can then be appropriately added or subtracted to
isolate the desired pseudospin density components themselves.
For example, in the cuprates, where the relevant degree of

freedom is simply the 3dx2−y2 orbital, two differently polarized
measurements are enough to extract useful information about
the orbital structure with RIXS [60]. The correct polarization
combinations for the measurement of the topological charge
can be deduced from a quantitative estimate of the participation
of different orbitals at each k point in the band structure,
which is readily achievable with density-functional theory
(DFT). Since such detailed ab initio calculations of the orbital
structure around Weyl nodes of materials are lacking, in this
proof-of-principle study we focus directly on the fundamental
RIXS scattering amplitude of Eq. (7). However, it should be
stressed that accurate DFT calculations can readily provide all
the necessary information for an experimental case study.

III. MEASUREMENT OF THE TOPOLOGICAL
INVARIANT OF WEYL NODES

We now define the difference

D±−(q,k) = |Fy
±−(q,k)|2 − |Fx

±−(q,k)|2

= ±g⊥,k+qg⊥,k

gk+qgk
cos(φk+q + φk). (13)

When g⊥,k+qg⊥,k �= 0, the zero crossings of D±− are given
solely by the angle φk+q + φk. The condition D±− = 0 can be
expressed equivalently as

g1,k+qg1,k − g2,k+qg2,k = 0. (14)

Using the combined RIXS spectra, one can obtain the
difference spectrum

ID(q,ωk,ωk′) =
∑
k,b′

Db′−(q,k,ωk)

× δ(εk,− − εk+q,b′ + �ωkk′), (15)

which is an experimentally attainable quantity.
The zeros of ID reflect the winding of gk around the Weyl

node. The condition of Eq. (14) has the solutions qy = ±qx

for a single Weyl node. There are therefore 4 solutions for
ϕq = Arg(qx + iqy) ∈ [0,2π ). For a double Weyl node, the
solutions in the first quadrant are qy = tan(π

4 ± π
8 )qx , and ID

becomes zero for 8 values of ϕq ∈ [0,2π ) in total. Similarly, the
RIXS difference spectrum for a triple Weyl node has 12 zero
crossings for ϕq ∈ [0,2π ). Numerical calculation confirms that
these are indeed the only solutions of Eq. (14). We therefore see
that the number of zero crossings of ID for scattering around
a Weyl node is 4|C|, where C is the topological charge. Note
that the zero crossings are the same regardless of whether the
scattering is intra- or interband, as the band index does not
enter the cosine in Eq. (15). This means that the measurement
is possible in both elastic and inelastic scattering. This is
important because, unlike quantum oscillations [38–41,43,44],
the RIXS measurement works even in the case where the Fermi
surface that encloses a Weyl node is vanishingly small. The
RIXS difference spectra ID for interband scattering, calculated
for a few idealized cases, is shown in Fig. 1.

In experiments on WSMs, the RIXS spectrum at small
q will contain a superposition of contributions from at least
two—and commonly several—Weyl nodes, as well as trivial
Fermi surfaces. Even though trivial Fermi surfaces do not
contribute a net Berry flux, the contributions from Weyl nodes
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FIG. 1. RIXS difference spectrum ID at �ωkk′ = 0.25 for (a)
single Weyl node, (b) double Weyl node, (c) triple Weyl node, defined
as gtriple

k = (vxkx(v2
xk

2
x − 3v2

yk
2
y),vyky(v2

yk
2
y − 3v2

xk
2
x),vzkz) [51], and

(d) type-II single Weyl node with g0,k = 1.2kz. In all cases, vx =
vy = vz = 1.

will need to be disentangled in the resulting spectra, in order
to extract the Chern numbers. Internode scattering between
time-reversal or inversion symmetry partners, on the other
hand, can come uniquely from a single pair of Weyl nodes,
avoiding spurious contributions. This facilitates the targeted
measurement of the topological charge of specific Weyl nodes
in real materials. In the simple case of a linear spectrum around
two Weyl nodes related by time-reversal symmetry, intra- and
internode scattering are equivalent, as we show in the next
section.

IV. GEOMETRY OF RIXS AROUND WEYL NODES AND
ROBUSTNESS AGAINST FINITE PERTURBATIONS

Before turning to the geometry of RIXS scattering, consider
the gauge-invariant quantity

�Sk = ∣∣Sy

k,±
∣∣2 − ∣∣Sx

k,±
∣∣2

, (16)

where Si
k,± = 〈ψk,±|τi |ψk,±〉, i = x,y. Let P be a contour on

the Fermi surface defined by gk = μ > 0, with g0,k = 0. In
this case,

�Sk = −1

4

(
1 − v2

z k
2
z

μ2

)1/|C|
cos 2φk. (17)

When vzkz �= ±μ, �Sk changes sign and crosses zero at
exactly 4 (8) angles φk ∈ [0,2π ) for single (double) Weyl
nodes. We denote the number of zero crossings of �Sk

on a path P around a Weyl node as N and conclude that
N = 4|C|. Since the winding of the spin around the Weyl
node is a property of topological origin, it is robust against

FIG. 2. Cartoons of (a) Fermi surface � and (b) constant-energy
surfaces � and �′, relevant to elastic and inelastic scattering around
a Weyl node, respectively; (c), (d) Fermi-surface contour in the kz =
0 plane (c) for an unperturbed and (d) for a perturbed Weyl node
Hamiltonian, both with μ �= 0; (e), (f) constant-energy contours in
the kz = 0 plane (e) for an unperturbed and (f) for a perturbed Weyl
node Hamiltonian. In (d) the perturbation is such that the shape of
the Fermi-surface contour is no longer elliptic, whereas in (f), even
though the constant-energy contours are still elliptic, the scattering is
no longer from φk to φk + π .

any perturbation that leaves the topological charge of the Weyl
node intact.

RIXS close to a Weyl node can be visualized geometrically.
In the simplest case, εk,b = ε−k,b around the Weyl point.
We shall consider the Hamiltonian gk = gsingle

k and g0,k = 0
for illustration, but everything we discuss below carries over
straightforwardly to double or triple Weyl nodes. For a fixed
energy transfer �ωkk′ � 0, scattering close to the node can
take place between states on two concentric constant-energy
surfaces � and �′ in reciprocal space, for which the energy
condition ε�′,b′ − ε�,b = �ωkk′ is fulfilled [see Fig. 2(b)]. Of
course, scattering takes place only from an occupied state on
ε�,b and an unoccupied one on ε�′,b′ . Assume a partially filled
lower band and �ωkk′ = 0, so that b′ = b = − and � ≡ �′
is simply the Fermi surface given by gk = μ, as shown in
Fig. 2(a). Also, suppose that we choose to measure only
scattering with qz = 0, so that scattering takes place within
the constant-kz planes that intersect �. Let us first treat elastic
scattering. Turning summations into integrals and enforcing
�ωkk′ = 0, we obtain

ID(q,ωk = ωk′) ∝
∫∫

dkxdky cos(φk+q + φk)

×
∫

dkz

(
1 − g2

3,k

μ2

)
. (18)

For scattering at finite qx or qy , the integral over kz in the
second line above is always a positive factor. The largest
scattering wave vectors in each constant-kz plane are those
that correspond to scattering from (−kx, − ky) to (kx,ky), i.e.,
between antipodal points of �. These are the wave vectors
for which the condition cos(φk+q + φk) = − cos 2φk holds
[cos(φk+q + φk) = cos 2φk for a double Weyl node]. The
overall maximal scattering wave vectors occur in the equatorial
scattering plane kz = 0 and we denote them by qφk . For these
wave vectors, the RIXS difference spectrum reduces to

ID(qφk ,ωk = ωk′ ) ∝ cos 2φk, (19)
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since only scattering across the Fermi surface can take place.
We thus recover the zero crossings of �Sk and therefore the
topological charge of the Weyl node. These zero crossings of
ID are exactly the ones that we found by explicit solution
of Eq. (14). We note that our approach here bears some
resemblance to that of Ref. [61], although excitations in RIXS
are in the particle-hole channel instead. In fact, for simple
enough Fermi surfaces, the RIXS spectrum contains the Berry
curvature seen by the particle-hole excitation in the outer shell
of the three-dimensional scattering signal. This can then be
integrated to yield the monopole charge, in full analogy to the
paired-particle treatment of Ref. [61], with the advantage that
no pairing is required. However, unlike the paired case, the
RIXS spectrum also contains all possible noncentrosymmetric
contributions.

The zero crossings of ID are recovered in inelastic spectra
as well. In this case, � and �′ are distinct surfaces fulfilling
the condition �ωkk′ > 0. For εk,b = ε−k,b around the Weyl
point, the largest scattering wave vectors within constant-
kz planes correspond to transitions from (

√
k2
x + k2

y ,φk) to
(
√

k′
x

2 + k′
y

2
,φk + π ), with the overall largest wave vectors

occurring for kz = 0. This again leads to the sinusoidal
modulation of the intensity on the outer rim of the measured
signal, as outlined above. This analysis carries over to double
and triple Weyl nodes. In these cases, the shapes of the
surfaces � and �′ are more complicated, but the antipodal
scattering condition in constant-kz planes [Eq. (19)] holds as
long as the condition εk,b = ε−k,b around the Weyl point is
preserved.

We now discuss the effect of breaking the condition εk,b =
ε−k,b around the Weyl node. The simplest perturbation that
does that is g0,k = αki , i = x,y,z, with α a real parameter. A
finite g0,k of this form does not affect the wave function; it
only deforms the cone, while maintaining the linearity of the
bands. This causes a relative shift between � and �′ along one
of the semiprincipal axes. When this is the case, measurement
of scattering in the plane perpendicular to the shift will
still yield the topological invariant. Suppose, for example,
that g0,k = αkz. Then, for RIXS measurements at qz = 0,
the scattering takes place between concentric constant-energy
ellipses as before and we recover the same zero crossings as
above. This insensitivity allows one to obtain the topological
charge of type-II Weyl nodes with RIXS in the same manner
[see Fig. 1(d)].

To approximate a more realistic situation, we allow arbitrary
perturbations of the simple Weyl-node Hamiltonians we have
treated so far. On one hand, topological properties, such as
the zeros of �Sk, are robust against any perturbation that does
not annihilate the Weyl node. On the other hand, perturbations
that affect the scattering conditions, such as alterations of the
shapes of � and �′, can cause the features of ID to deviate
from those of �Sk. In particular, it is important to see whether
perturbations can cause finite spectral weight to appear at the
zero crossings of ID. We argue that small perturbations can
shift zero crossings at the maximal scattering wave vectors qφk

but cannot remove them. Let us again consider only scattering
for which g⊥,k+qg⊥,k �= 0 and concern ourselves only with the
trigonometric factor cos(φk+q + φk), which defines the zero
crossings. When small perturbations are added to a Weyl-node
Hamiltonian, the shapes of the constant-energy surfaces � and

FIG. 3. RIXS difference spectra ID as a function of the polar co-
ordinate φq = Arg(qx + iqy) and

√
q2

x + q2
y = 0.5 for 50 different re-

alizations of a single Weyl node Hamiltonian with vx = vy = vz = 1
and all possible perturbations of up to cubic order, each with a
random prefactor in the range [−0.2,0.2]. All spectra cross zero
(dashed line) at precisely 4 values of φq ∈ [0,2π ), confirming that
finite perturbations do not affect the measurement of the topological
charge of a Weyl node.

�′ are not exact ellipsoids anymore. Nevertheless, one may
still define the overall largest scattering wave vectors qφk that
connect � and �′. For small perturbations of the Hamiltonian,
the scattering conditions, or both, we have

ID(qφk ,ωk,ωk′) ∝ cos(2φk + δφk), (20)

where we have defined φk+q � φk + π + δφk. The shift
δφk � π represents the perturbation to the geometry of
the Fermi surface [see Figs. 2(d) and 2(f) for schematic
illustrations]. Since δφk is small, we can expand the above
as

cos(2φk + δφk) = cos(2φk) cos δφk − sin(2φk) sin δφk (21)

≈ cos(2φk) − δφk sin(2φk). (22)

This means that the perturbation can add a local shift of at
most ±δφk to the sinusoidal modulation. This shift in turn
moves the zero crossings of ID, but as long as δφk is small
the zero crossings cannot be removed. We have tested this
robustness by adding random perturbations in the form of all
possible terms of up to cubic order, each with a magnitude up
to 0.2 times the linear velocity, to all components of gk and
to g0,k for single Weyl nodes and find that the signature of the
topological charge remains unchanged (see Fig. 3).

Even though the above discussion is concerned with intra-
node scattering, the same principles carry over to internode
scattering as well. In a time-reversal symmetric WSM, each
Weyl node at k has a time-reversed partner at −k with the
same chirality. For a linear spectrum, time reversal maps
constant-energy contours around a Weyl node to identical
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contours around its partner. Internode scattering between
time-reversal symmetry partners at momentum Q + q, with
Q the separation between Weyl nodes, is therefore equivalent
to intranode scattering at momentum q in the linear regime
close to the nodal points. Appropriate selection of the wave
vector Q can yield scattering between only two Weyl nodes.
We note that suitable Q vectors in a material can be deduced
from density-functional theory (DFT), ARPES, or even RIXS
itself whenever Q does not nest any other part of the Fermi
surface apart from the two Weyl nodes of interest. As dis-
cussed above, small deformations of constant-energy contours
cannot obscure the experimental signature of the topological
charge of the nodes, as we exemplify in the case of TaAs
below.

V. MODELING OF RIXS MEASUREMENT
IN TANTALUM MONARSENIDE

We exemplify internode scattering with an explicit calcula-
tion for TaAs. Of the 24 nodes in this material, 8 are in the kz =
0 plane. Those at kz �= 0 are located in small Fermi-surface
pockets, whose shape is roughly ellipsoidal [20,22,40,43,44].
Experiments reveal that the energy spectrum is to good
approximation linear within ∼20 meV above and below the
Fermi level [20–22]. The geometry of the Fermi surface can
be accurately modeled by a linear k · p Hamiltonian deduced
from a full DFT calculation [62] that fits the Fermi surface
determined by quantum oscillations in TaAs [38]. Using this
Hamiltonian, we evaluate the RIXS difference spectrum for
scattering between one of the kz �= 0 Weyl nodes and its
time-reversal partner. We calculate the wave function in a
volume around each of the two Weyl nodes connected by
the in-plane wave vector Q and evaluate the RIXS difference
spectrum ID for wave vectors q in the qx-qy plane. The result
is shown in Fig. 4(b). The topological feature we anticipate,
i.e., 4 zero crossings of ID around q = Q, is clearly visible
[see also Fig. 4(e)]. The zero crossings are obscured only in a
small region at the center of the spectrum due to the tilting of
the ellipsoidal Fermi surface. In all other respects, the RIXS
difference spectrum is equivalent to that of the idealized single
Weyl node shown in Fig. 1. Both the energy and the momentum
resolution required for this measurement are experimentally
achievable today, as we discuss in Sec. VI.

The equivalence of intra- and internode scattering exploited
above is an artifact of the linearity of the Hamiltonian. We now
demonstrate the topological charge measurement in internode
scattering in the presence of quadratic and cubic terms by
an explicit calculation for the Weyl nodes of TaAs in the
kz = 0 plane. The picture supported by experiment is that of
a pair of Weyl nodes close to each of the four � points of the
BZ, located a few meV below the Fermi level [20,22]. The
band structure close to one of these nodes can be accurately
modeled using a 4×4 k · p model derived from the results
of DFT calculations [17]. The correct parameters for TaAs
were obtained by comparison to experimental magnetotrans-
port and ARPES measurements [43]. This model yields an
oblong boomerang-shaped Fermi surface [40,44], indicating
the sizable quadratic terms present in the Hamiltonian. The
electron spin varies very little close to Weyl nodes in both the
DFT and the k · p model, so we can simply trace over the spin

FIG. 4. (a) Top and (b) side views of the BZ of TaAs, showing
the projections of the 16 pairs of Weyl nodes. Two nodes project onto
each purple dot. The distance between the kx and ky mirror-symmetric
nodes is exaggerated for illustration. (c) RIXS difference spectrum
ID , integrated over the range from 0 to 20 meV, for scattering between
Weyl nodes connected by the wave vector Q shown in (a) and (b). (d)
RIXS spectra Ix and Iy , defined in Eq. (11), calculated as a function of
ϕq = Arg[qx − Qx + i(qy − Qy)] on the circle shown in (c), and (e)
the corresponding difference spectrum ID. The intensities in (d) and
(e) are normalized with respect to max(Ix,Iy). The small steps in (d)
are due to the discretization of the circle in (c). The RIXS spectra are
calculated for the k · p model derived from ab initio calculations [62],
with the parameters used to fit experimental quantum oscillation data
for TaAs [38] (see Appendix A).

degree of freedom. The result is shown in Fig. 5(c). Again we
recover the 4 zero crossings of ID around q = Q, with only a
small region at the center of the spectrum obscured due to the
irregular shape of constant-energy contours around the Weyl
node. The robustness against nonlinear terms, which can be
understood on the more general grounds discussed in Sec. IV,
shows that topological features can be recovered by RIXS even
when band structures are quite complicated.

VI. EXPERIMENTAL FEASIBILITY

Our work shows how RIXS can be deployed to the study of
topologically nontrivial band structures. Even though recent
experimental efforts are directed towards using RIXS to
understand properties of strongly correlated materials [48],
the technique has been very successful in inferring the band
structure of approximately noninteracting systems [63–71].
RIXS offers options that are not available to other techniques:
spin and orbital selective scattering that allows for momentum-
resolved determination of pseudospin components in the bulk,
insensitivity to surface imperfections and arbitrarily large
electromagnetic fields, and direct access to the unoccupied
band structure that eliminates the need for a measurable
Fermi surface. This potential is especially tantalizing in
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FIG. 5. (a) kz = 0 plane of the BZ of TaAs, showing the 4 pairs of
Weyl nodes. The distance between the nodes close to each � point is
exaggerated for illustration. Scattering at the wave vector Q selects
only two equivalent Weyl nodes, whereas scattering at Q′ probes
two pairs of nodes simultaneously. (b) Shape of the Fermi surface
around one of the Weyl points; a more detailed visualization can
be found in Ref. [40]. (c) RIXS difference spectrum ID , integrated
over the range from 0 to 10 meV, for scattering between Weyl nodes
connected by the wave vector Q shown in (a). (d) RIXS spectra Ix

and Iy , defined in Eq. (11), calculated as a function of ϕq shown in
(c), and (e) the corresponding difference spectrum ID . The intensities
in (d) and (e) are normalized with respect to max(Ix,Iy). The RIXS
spectra are calculated for the k · p model derived from ab initio
calculations [17], with the parameters used to fit experimental ARPES
data for TaAs [43] (see Appendix A). Note the unequal ranges in qx

and qy , reflecting the peculiar shape of the Fermi surface pocket
shown in (b).

settings where other spectroscopies are difficult to employ:
the possibility for imaging of Dirac or WSM band struc-
tures in arbitrarily strong electromagnetic fields means that
RIXS offers a unique platform for the direct spectroscopic
observation of elusive physical phenomena, such as the chiral
anomaly [10–15].

We estimate that already existing RIXS instrumentation is
sufficient to perform the measurement proposed in this work.
For real materials, the polarization dependence of the RIXS
cross section can be intricate. This means that one may need to
perform two or more measurements with different polarization
combinations in order to isolate the desired signals. Even
though cumbersome, this is certainly feasible: the polarization
selectivity required has been successfully demonstrated exper-
imentally at the L3 edge of copper [72]. The energy resolution
typically achieved in experiments is nominally in the desired
range. For the case of TaAs (NbAs), the states close to the
Fermi level are predominantly formed by the 5d (4d) electrons
of Ta (Nb) (see, for example, the relevant calculation for
TaAs in the Supplemental Material of Ref. [36]). Considering
that the Weyl nodes in TaAs were resolved with �ωkk′ ∼
50–80 meV [20,43], a similar resolution would be enough for
the experiment we propose. The L edges of Ta (Nb) are below

12 keV (3 keV). Existing beamlines can access this energy
range using spectrometers with resolutions comparable to that
of ARPES. Finally, both Ta and Nb M and N edges are in
the soft x-ray regime (�ωk < 500 eV) and are therefore even
more easily accessible, while the optical elements currently in
use in detectors can offer resolutions of the order of 10 meV,
which is comparable to the best resolution of current ARPES
spectra of TaAs [21]. When the separation between Weyl points
in reciprocal space is small, high momentum resolution is
necessary. Adequate resolution for the proposed measurement
of the kz �= 0 Weyl nodes is achievable in RIXS. As an
example, we mention that energy and momentum resolutions

of ∼30 meV and ∼0.03 Å
−1

have been reported for the L3

edge of Ir already some years ago [73,74], whereas modern
synchrotron facilities improve upon these figures by a large
margin [75]. Finally, recent magnetotransport and quantum
oscillation measurements show that Weyl nodes are present
in TaIrTe4 [76,77] and detailed DFT calculations predict that
Mn3Sn and Mn3Ge are also WSMs [78]. This means that
existing spectrometers designed for Ir and Mn ions can be
used to probe Weyl nodes in these materials.

As an experimental technique, RIXS has particular com-
plications associated with it, which may depend on the
specifics of the material under investigation. Threshold sin-
gularities [79,80] constitute one such complication. For the
measurement of Weyl nodes proposed here, this issue can
be avoided simply by detuning away from resonance [71],
since the measurement does not depend on satisfying the
resonance condition exactly. The drawback of this detuning
is that the photon count will drop, resulting in longer beam
times. Another complication that may be of concern in some
materials is deexcitation via the “fluorescence” channel, i.e.,
the case where an electron coming from a “broad band” fills
the core hole. This may happen when a material is not so
strongly correlated, or when it is a metal. This effect, however,
is material specific and successful RIXS measurements of
elementary excitations have been performed even in cases
where fluorescence intensity is high [81].

In RIXS, the surface of materials is mostly transparent
and consequently surface states cannot be detected. On the
other hand, complications related to surface preparation are
bypassed. RIXS requires only small sample volumes and can
access the entire BZ. It is insensitive to electromagnetic fields,
a feature that may facilitate a direct spectroscopic detection of
the chiral anomaly, even though the latter may also be acces-
sible to high-resolution ARPES measurements [16]. Finally, it
should be noted that additional versatility may be afforded by
careful examination of experimental RIXS data. For example,
an analysis of time scales, i.e., inverse energy scales relevant
to a material (hoppings, spin-orbit coupling), may offer more
in-depth information on the individual processes that make up
the full RIXS response [82,83].

In the case where the pseudospin is indeed the real
electron spin, the response defined in Sec. II reduces to
the measurement of the dynamic spin structure factor with
magnetic RIXS [57,84,85], which will contain the zero
crossings indicating the winding of the spin around the Weyl
node. Inelastic neutron scattering (INS) could also be used to
obtain the same magnetic signature, as it measures the same
quantity. However, in existing WSMs, it is the orbital degree
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of freedom that winds around the Weyl point and not the spin.
Furthermore, even in the case of a material with spin winding,
INS would require large single crystals which may be difficult
to grow.

The methodology presented in this work can be straight-
forwardly extended to scattering between inequivalent nodes,
where the outcome may vary. As an inelastic probe, RIXS can
also access features by scattering electrons across an energy
gap. It is therefore conceivable that it can be used for the
detection of bulk topological properties in gapped systems.
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APPENDIX A: MODELING OF THE WEYL NODES
IN TANTALUM MONARSENIDE

To model the Weyl nodes in TaAs, we use two models de-
rived via independent DFT calculations fitted to two different
experimental measurements. The first is a linear k · p theory
presented in Ref. [62], which was designed to fit the DFT
band structure close to the kz �= 0 Weyl nodes and match the
experimentally observed Fermi surface size and shape [38].
The Hamiltonian matrix is given by [62]

Hkz �=0 = μτ0 +
∑
i,j

kiaij τj , (A1a)

where i,j = x,y,z, τj , and τ0 are the Pauli and identity
matrices in pseudospin space and

aij =
⎡
⎣ 2.657 −2.526 0.926

0.393 −2.134 3.980
−1.200 −3.530 1.193

⎤
⎦. (A1b)

The precise position of the Fermi level does not affect the
salient features of the RIXS spectrum. For the calculation in
Sec. V we have chosen μ = 2 meV.

The pockets around the kz = 0 Weyl nodes have a com-
plicated shape that cannot be captured by linear terms alone.
By including quadratic and cubic terms, the k · p introduced
in Ref. [17] can be used to accurately model the band
structure around the kz = 0 Weyl nodes. This model has been
used in Ref. [43] to reproduce the ring-shaped trivial Fermi
surface and the correct location and number of Weyl nodes
obtained in DFT results, which were used to interpret ARPES
and magnetotransport measurements. The Hamiltonian matrix
obtained after the fitting is

Hkz=0 = H0 + Hmass, (A2a)

H0 = e(k)τ0 + d1(k)τx + d2(k)τy + d3(k)τz, (A2b)

Hmass = m1(k)τ0sy + m2(k)τzsy + m3(k)τxsx

+m4(k)τxsz + m5(k)τysz + m6(k)τysx, (A2c)

where si (τi), i = 0,x,y,z, are the identity and Pauli matrices
spanning the spin (effective orbital) degree of freedom, and

e(k) = μ + wkx + O(k2), (A2d)

d1(k) = ukykz + O(k3), (A2e)

d2(k) = vky + O(k2), (A2f)

d3(k) = M − αk2
x − βk2

z + γ kx + ζk3
x + O(k3), (A2g)

m1(k) = m1 + O(k), (A2h)

m2(k) = m2 + O(k), (A2i)

m3(k) = m3kz + O(k2), (A2j)

m4(k) = m4 + m′
4kx + O(k2), (A2k)

m5(k) = m5kz + O(k2), (A2l)

m6(k) = m6 + O(k), (A2m)

with M = 12.23, μ = −3.504, u = −763.1, v = −685.1,
w = 34.11, α = 682.8, β = 583.0, γ = 264.2, ζ = −147.5,
m1 = 7.019, m2 = 1.031, m3 = 0.9078, m4 = 0.0, m′

4 =
−11.07, m5 = −56.50, m6 = −4.097, all in units of meV and
the appropriate power of Å. This model does not account
for the correct position of the chemical potential, so we shift
the energy spectrum by an additional +4 meV, in order to
reproduce the size and shape of the Fermi surface predicted by
DFT. Note that the prefactors u,α,β,ζ of quadratic and cubic
terms are large compared to those of linear terms, meaning
that this model is away from the idealized linear limit.

APPENDIX B: RIXS DIFFERENCE SPECTRUM
FOR GENERIC NODES

In this section, we give an example of the methodology
developed in this work, in which the node studied is topo-
logically trivial, i.e., has zero monopole charge. Such nodes
appear when there are higher-order crossing points in a band
structure. For example, such a node can be found in the band
structure of Cd3As2 in a magnetic field along [100] [86,87].
The relevant low-energy theory for this node can be written
simply as [86,87]

HC=0 = − 2
[
kyM1 + (

k2
x + k2

z

)
M2

]
τz

− 2(B1 + B2)
(
k2
x − k2

z

)
kyτx

− Akz

(
1 + Ayk

2
y

)
τy + μτ0, (B1)

where M1, M2, B1, B2, A, Ay , and μ are all constants.
The RIXS difference spectrum for intranode scattering is

shown in Fig. 6. There are no zero crossings of ID, exactly
as expected from the 4|C| rule derived in Sec. III. The same
holds in any other q plane for this node. This example thus
illustrates that topological and trivial nodes can be distin-
guished from their different responses to polarized resonant
x rays.

It is also interesting to briefly consider the RIXS response
of a Dirac semimetal. In these materials, nodes are spin degen-
erate due to time-reversal symmetry. The minimal low-energy
description around a node requires a 4×4 Dirac spinor, which,
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FIG. 6. (a) qx-qy intensity map and (b) spectrum as a function
of the polar coordinate φq = Arg(qx + iqy) of the RIXS difference
ID , integrated over the range from 0 to 80 meV, for the trivial node
in Cd3As2 with an applied magnetic field, as described by the low-
energy theory of Eq. (B) [86,87]. The parameter values used are

M1 = A = 1 eV Å, M2 = Ay = 1 eV Å
2
, B1 = B2 = 1 eV Å

3
, and

μ = 0.4 eV.

in the simplest case, is just two antichiral copies of the Weyl
equation. Although more complicated, a RIXS measurement
similar to the one presented here may still be possible,
exploiting the combined spin-orbital selectivity of the method.
Despite the similarities between the two classes of materials,
Dirac and Weyl semimetals are distinct and can even be
distinguished by their RIXS responses in a magnetic field.
Breaking time reversal in a Dirac semimetal leads to splitting
of Dirac nodes. Since time-reversal symmetry breaking in
the laboratory entails sizable magnetic fields, angle-resolved
photoemission experiments cannot be used to capture this
splitting. In these cases, RIXS is a viable method to infer the
band structure around the split Dirac nodes, even without the
need for polarization resolution, along the lines of Refs. [63–
71]. We defer a detailed discussion of this application of RIXS
to a dedicated study.
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and B. Büchner, arXiv:1605.03380.

[77] K. Koepernik, D. Kasinathan, D. V. Efremov, S. Khim, S.
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