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We study the charge and spin density distributions of excitonic insulator (EI) states in the tight-binding
approximation. We first discuss the charge and spin densities of the EI states when the valence and conduction
bands are composed of orthogonal orbitals in a single atom. We show that the anisotropic charge or spin density
distribution occurs in a unit cell (or atom) and a higher rank electric or magnetic multipole moment becomes
finite, indicating that the EI state corresponds to the multipole order. A full description of the multipole moments
for the s, p, and d orbitals is then given in general. We find that, in contrast to the conventional density-wave
states, the modulation of the total charge or net magnetization does not appear in this case. However, when the
conduction and valence bands include the component of the same orbital, the modulation of the total charge
or net magnetization appears, as in the conventional density-wave state. We also discuss the electron density
distribution in the EI state when the valence and conduction bands are composed of orbitals located in different
atoms. We show that the excitonic ordering in this case corresponds to the bond order formation. Based on the
results thus obtained we discuss the EI states of real materials recently reported.
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I. INTRODUCTION

The formation and condensation of excitonic bound states
of electrons and holes in a small band-overlap semimetal or
a small band-gap semiconductor were predicted theoretically
half a century ago [1,2]. The excitonic phase, often referred to
as the excitonic insulator (EI), is described by the quantum
condensation of such excitons triggered by the interband
Coulomb interaction [1–19]. The excitonic condensation in
semimetallic systems can be described in analogy with the
BCS theory of superconductors, and that in semiconducting
systems can be discussed in terms of the Bose-Einstein
condensation (BEC) of preformed excitons [20–23]. It is
also known that, when the valence band top and conduction
band bottom are separated by the wave vector Q, the system
shows the density wave with modulation Q [8–11]. Then,
the spin-singlet and spin-triplet EI states are often referred
to as excitonic charge-density-wave (CDW) and excitonic
spin-density-wave (SDW) states, respectively [9–11].

Recently, a number of candidate materials for the excitonic
phases have been reported, and therefore, the physics of
excitonic phases has attracted renewed experimental and
theoretical attention. The candidate materials include the
following: Tm(Se,Te) was argued to exhibit a pressure-induced
excitonic instability, where an anomalous increase in the elec-
trical resistivity and thermal diffusivity was reported [23,24].
In Ca1−xLaxB6, the observed weak ferromagnetism was
interpreted in terms of the doped spin-triplet EI state [25–
28]. The CDW state observed in 1T -TiSe2 was claimed to
be of the excitonic origin [29–38]. Likewise, the structural
phase transition observed in a layered chalcogenide Ta2NiSe5

was attributed to the formation of a spin-singlet EI state
[39–45]. The SDW states of chromium [46–49] and iron-based
superconductors [50–63] were sometimes argued to be of
the excitonic origin as well. The condensation of spin-triplet
excitons was also predicted to occur in the proximity of the spin
state transition, of which cobalt oxide materials with perovskite
structure are an example [64–69].

The EI states in strongly correlated electron systems have
in particular been addressed in recent years [70,71]. From the

theoretical standpoint, the extended Falicov-Kimball model
was studied extensively in the context of the EI [72–87].
Although this model is the simplest to realize the EI, the
spin degrees of freedom are not included in it. The EI
states with spin degrees of freedom were then discussed
in terms of the two-band Hubbard model [88–93]. It is
known that the spin-singlet and spin-triplet EI states in the
two-band Hubbard model are exactly degenerate when only
the interband direct Coulomb interaction is taken into account,
and moreover that the spin-triplet EI state is stabilized when
the interband exchange interactions, such as Hund’s rule
coupling, are taken into account [89–91]. The importance of
electron-phonon couplings was also pointed out for 1T -TiSe2

and Ta2NiSe5 [34,36,41]; the studies of the multiband models
with electron-phonon coupling showed that the spin-singlet
EI states are actually stabilized by the strong electron-phonon
coupling [38,91,94,95].

However, not much is known about the charge density ρ(r)
and spin density s(r) distributions in the EI states because they
include spatial variations of the Bloch wave functions ψkn(r) of
the systems [11,19,55]. This is in particular the case when we
consider the EI states in strongly correlated electron systems;
on the one hand, the tight-binding lattice models were studied
much in detail using sophisticated numerical techniques to
show the presence of the EI states, but on the other hand, their
electron density distributions caused by the spatial variations
of the Bloch functions were not sufficiently worked out. For
orbital diagonal orders, such as antiferromagnetism and charge
orders in a single-band Hubbard model, we need not pay much
attention to the Bloch functions because the total charge and
magnetization in a unit cell (or atom) can be characterized
by the square of the same local wave function. However, for
orbital off-diagonal orders such as the EIs, the deviation in
the local charge and spin density distributions occurs due to
the spontaneous hybridization between different local orbitals.
Here, the anisotropic electron distribution is caused by the
product of the different local orbitals and therefore becomes
highly complicated depending on the spatial position r in a
unit cell (or atom). To elucidate the electronic structure of the
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EIs, we therefore need to evaluate the local charge density ρ(r)
and local spin density s(r) from the local wave functions in a
unit cell (or atom).

In this paper, motivated by the above developments in the
field, we study the charge and spin density distributions in the
spin-singlet and spin-triplet EI states, where we fully take into
account the spatial shapes of the local (atomic) wave functions
in the tight-binding approximation. We will first discuss the
charge and spin density distributions of the EI state when the
valence and conduction bands are composed of orthogonal
orbitals in a single atom. We will show that the anisotropic
distribution of the charge or spin density occurs in each unit
cell (or in each atom) and a higher rank electric or magnetic
multipole moment becomes finite, depending on the wave
functions of orbitals in the valence and conduction bands. The
EI states thus correspond to the multipole orders, for which we
will give a full description of the multipole moments for the s,
p, and d orbitals in general. We will emphasize that, in contrast
to the conventional density-wave states, the modulation of the
total charge (electric monopole moment) or net magnetization
(magnetic dipole moment) in each atom does not appear when
the orthogonal two orbitals are hybridized via the spin-singlet
or spin-triplet excitonic ordering. However, if the conduction
and valence bands include the same orbital component, the
density-wave modulation similar to the conventional density-
wave states appears. We will furthermore discuss the electron
density distributions in the EI states when the valence and
conduction bands are composed of orbitals in different atoms.
In this case, the excitonic ordering induces the spontaneous
electron bonding between the two orbitals in the different
atoms, and therefore the EI state corresponds to the bond order
formation.

The rest of this paper is organized as follows: In Sec. II, we
will briefly review the theory of the EI state. In Sec. III, we
will discuss the electronic density distributions in the EIs when
the valence and conduction bands are composed of orbitals in
a single atom. We will also discuss the description of the EI
state in terms of the electric or magnetic multipole moments.
In Sec. IV, we will discuss the electronic density distributions
in the EI state when the valence and conduction bands come
from orbitals in different atoms. In Sec. V, we will discuss
implications of our results in the materials aspects, whereby
we will draw conclusions.

II. EXCITONIC INSULATOR STATE

Let us briefly review the theory of EI here, considering
one of the simplest models that describe the EI state, which is
defined by the Hamiltonian

H =
∑

k

∑
σ

εa(k)a†
kσ akσ +

∑
k

∑
σ

εb(k)b†kσ bkσ

+ V

N

∑
k,k′,q

∑
σ,σ ′

b
†
k+qσ bkσ a

†
k′−qσ ′ak′σ ′ , (1)

where a
†
kσ (akσ ) and b

†
kσ (bkσ ) denote the creation (annihila-

tion) operator of an electron with spin σ in the valence and
conduction bands, respectively, and εa(k) and εb(k) are their
band dispersions. V is the interband Coulomb interaction,

for which we consider only the on-site Coulomb repulsion
V

∑
i

∑
σ,σ ′ nibσ niaσ ′ = V

∑
i

∑
σ,σ ′ b

†
iσ biσ a

†
iσ ′aiσ ′ . This type

of interaction is included in the spinless extended Falicov-
Kimball and multiband Hubbard models and is known to drive
the system into the EI state. Although the multiband Hubbard
model includes the intraband Coulomb, Hund’s rule coupling,
and pair-hopping interactions as well, the dominant term
inducing the excitonic phase is the interband direct Coulomb
interaction V [11]. We therefore consider only the V term for
simplicity, thereby describing the EI state.

The order parameter of the EI state is given by 〈b†k+ Qak〉
when the valence band top and conduction band bottom are
separated by the wave vector Q. Taking into account the spin
degrees of freedom, we can assume either the spin-singlet or
spin-triplet electron-hole pairing. The order parameters are
then defined by

�s = − V

2N

∑
k

∑
σ

〈b†k+ Qσ akσ 〉, (2)

�t = − V

2N

∑
k

∑
σ,σ ′

〈b†k+ Qσσ σσ ′akσ ′ 〉, (3)

for the spin-singlet and spin-triplet EI states, respectively,
where σ = (σx,σ y,σ z) is the vector of Pauli matrices [11].
�t = (�x

t ,�
y
t ,�

z
t ) is the vector order parameter, reflecting the

spin direction.
If we assume a direct-gap system ( Q = 0) and apply the

mean-field approximation for simplicity, we obtain the mean-
field Hamiltonian as

H(k) =
(

εa(k)I �sI + �t · σ

�∗
s I + �∗

t · σ εb(k)I

)
, (4)

where we use the basis (a†
k↑ a

†
k↓ b

†
k↑ b

†
k↓) and I is the

unit matrix [19,89]. The order parameters are calculated
self-consistently to obtain solutions with �s �= 0 or �t �=
0. It has been confirmed that the EI states actually ap-
pear in the extended Falicov-Kimball and two-band Hub-
bard models, where not only the mean-field approxi-
mation but also more accurate numerical methods were
used [73,83,85,86,88,89].

It is known that the spin-singlet and spin-triplet EI states are
energetically degenerate in the model of Eq. (1), where only
the interband direct Coulomb interaction is considered [11,91].
This degeneracy is lifted if we take into account other
interactions: the spin-triplet EI is stabilized by the interband
exchange interactions, such as Hund’s rule coupling, and the
spin-singlet EI state is stabilized by a strong electron-phonon
coupling [11,91]. The order parameters are in general complex
and the energy of the system is independent of the choice
of the phase of the order parameters. It is known however
that the phase is fixed by the pair-hopping interaction and/or
electron-phonon coupling, such that the order parameters are
taken to be real [11,91,92,95]. We thus assume the real order
parameters in this paper.

When the valence and conduction bands are hybridized
spontaneously due to the EI state formation, where the
order parameters �s or �t becomes finite, the change in
the local charge or spin density distributions is given by
the band off-diagonal expectation values 〈b†k+ Qσ akσ 〉 �= 0 or
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〈b†k+ Qσσ σσ ′akσ ′ 〉 �= 0. The physical meaning of the EI state
was given by Halperin and Rice [11], which we essentially
follow for the description of the charge and spin density
distributions. In the two-band model, the field operator of
annihilating an electron is given by

�σ (r) =
∑

k

[ψka(r)akσ + ψkb(r)bkσ ], (5)

where ψka(r) and ψkb(r) are the Bloch functions of the valence
and conduction bands, respectively [11,19,28,55]. Using this
operator, the local charge and spin densities are given by

ρ(r) =
∑

σ

〈�†
σ (r)�σ (r)〉, (6)

s(r) = 1

2

∑
σ,σ ′

〈�†
σ (r)σ σσ ′�σ ′(r)〉, (7)

respectively [11,19,28,55]. When the spin-singlet EI state is
realized, the local charge density becomes

ρ(r) =
∑

k

∑
σ

[|ψka(r)|2〈a†
kσ akσ 〉 + |ψkb(r)|2〈b†kσ bkσ 〉

+ {ψ∗
k+ Qb(r)ψka(r)〈b†k+ Qσ akσ 〉 + H.c.}]. (8)

Owing to 〈b†k+ Qσ akσ 〉 �= 0 in the EI state, the change in the
charge density distribution is given by the third term of Eq. (8),
so that the density wave with modulation vector Q appears in
the charge density distribution. Therefore, the spin-single EI
is often referred to as an excitonic CDW [9–11,29,30]. In the
same way, the local spin density of the spin-triplet EI is given
by

s(r) = 1

2

∑
k

∑
σ,σ ′

ψ∗
k+ Qb(r)ψka(r)〈b†k+ Qσσ σσ ′akσ ′ 〉 + H.c.

(9)

Owing to 〈b†k+ Qσσ σσ ′akσ ′ 〉 �= 0 in the EI state, the local spin
polarization appears, so that the spin density distribution
shows the density wave with modulation vector Q. There-
fore, the spin-triplet EI is often referred to as an excitonic
SDW [10,11,54,55,60,61].

As seen in Eqs. (8) and (9), the charge and spin densities
of the EI include the Bloch function ψkn(r), for which the
description is not obvious [96]. Unambiguous description of
the EI states may rely on the wave functions given in real
space, for which we may assume either a nearly-free-electron
approximation or a tight-binding approximation depending
on the situations of materials concerned. Because candidate
materials recently suggested to be in the EI state are among
transition-metal compounds, their electronic structure may
be better described by the tight-binding picture rather than
by the free-electron-like picture. Theoretical studies of the
EI in such strongly correlated electron systems also rely on
the lattice models, such as extended Falicov-Kimball and
multiband Hubbard models, rather than the gas models. In
this paper, we therefore express the Bloch functions in the
tight-binding approximation, or as a linear combination of
the atomic orbitals, and evaluate the charge and spin density
distributions of the EIs, where the shapes of the atomic

orbitals in real space become important. In what follows,
we will discuss two cases separately: (i) the case where the
valence and conduction bands come from the orbitals in a
single atom and (ii) the case where they come from different
atoms.

III. MULTIORBITALS IN A SINGLE ATOM

A. Charge and spin densities

First, let us consider the case where the valence and
conduction bands are composed of orthogonal orbitals in a
single atom. In the tight-binding approximation, the Bloch
function for the α orbital is given as

ψkα(r) = 1√
N

∑
i

eik·Ri φα(r − Ri), (10)

where φα(r) is the atomic wave function of the α orbital and
Ri is the lattice vector. Using this ψkα(r) and applying the
Fourier transformation, the field operator is given in real space
as

�σ (r) =
∑

i

∑
α

φα(r − Ri)ciασ , (11)

where ciασ (c†iασ ) is the annihilation (creation) operator of an
electron at site i and spin σ (=↑ , ↓) in the α orbital [28]. The
charge and spin densities are given by Eqs. (6) and (7) using
this field operator.

Let us assume a two-orbital model for simplicity. Then,
using the orbitals of the valence (a) and conduction (b) bands,
the field operator in the ith unit cell (or atom) is given
as [28,65,89]

�iσ (r) = φia(r)ciaσ + φib(r)cibσ , (12)

where we write φiα(r) = φα(r − Ri). We assume φiα(r) to
be real, neglecting the spin-orbit coupling. We evaluate the
charge and spin densities in a unit cell (or atom), neglecting
the electronic densities coming from the neighboring cells (or
atoms). The essential features of the electronic structure may
be grasped if the atomic orbitals are well localized, so that the
tight-binding approximation is justified.

Using the field operator in Eq. (12) and assuming the spin-
singlet EI state, we write the local charge density in the ith
unit cell (or atom) as [28]

ρi(r) =
∑

σ

〈�†
iσ (r)�iσ (r)〉

=
∑

σ

∑
α,β

φiα(r)φiβ(r)〈c†iασ ciβσ 〉, (13)

where we note that the charge density in the entire space is
given approximately as ρ(r) ∼ ∑

i ρi(r). Defining the orbital
diagonal and off-diagonal terms as

niα =
∑

σ

〈c†iασ ciασ 〉, (14)

�is =
∑

σ

〈c†ibσ ciaσ 〉, (15)
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respectively, we write the local charge density in Eq. (13)
as [28]

ρi(r) = φ2
ia(r)nia + φ2

ib(r)nib + 2φia(r)φib(r)�is. (16)

When the EI state has the modulation vector Q, we have

�is =
∑

σ

〈c†ibσ ciaσ 〉 = �s cos Q · Ri . (17)

Then, from the third term of Eq. (16), the deviation in the
charge density caused by the excitonic ordering is given by

δρi(r) = 2φia(r)φib(r)�s cos Q · Ri . (18)

We thus find from Eq. (18) that the charge density has the
spatial modulation of Q in the spin-singlet EI state.

Assuming the spin-triplet EI state, we write the local spin
density in the ith unit cell (or atom) as [28,65,89]

si(r) = 1

2

∑
σ,σ ′

〈�†
iσ (r)σ σσ ′�iσ ′(r)〉

= 1

2

∑
σ,σ ′

∑
α,β

φiα(r)φiβ(r)〈c†iασ σ σσ ′ciβσ ′ 〉, (19)

where we note that the spin density in the entire space is
given approximately as s(r) ∼ ∑

i si(r). Defining the orbital
diagonal and off-diagonal terms as

miα = 1

2

∑
σ,σ ′

〈c†iασ σ σσ ′ciασ ′ 〉, (20)

�it = 1

2

∑
σ,σ ′

〈c†ibσ σ σσ ′ciaσ ′ 〉, (21)

respectively, we write the local spin density in Eq. (19)
as [28,65,89]

si(r) = φ2
ia(r)mia + φ2

ib(r)mib + 2φia(r)φib(r)�it . (22)

When the EI state has the modulation vector Q, we have

�it = 1

2

∑
σ,σ ′

〈c†ibσ σ σσ ′ciaσ ′ 〉 = �t cos Q · Ri . (23)

Then, from the third term of Eq. (22), the deviation in the spin
density caused by the excitonic ordering is given by

δsi(r) = 2φia(r)φib(r)�t cos Q · Ri . (24)

We thus find from Eq. (24) that the spin density has the spatial
modulation of Q in the spin-triplet EI state.

An important factor arising in the EI state formation is then

F (r) = φia(r)φib(r), (25)

which is a product of the wave functions of the a and b orbitals
and has either positive or negative part depending on r . The
charge and spin densities are therefore spatially varying due
to F (r), showing a variety of distributions in the unit cell
(or atom). When the parities of the wave functions φia(r)
and φib(r) are the same, the parity of F (r) becomes even.
However, if the wave functions φia(r) and φib(r) have different
parities, their product F (r) has an odd parity, breaking the
space inversion symmetry in the unit cell (or atom). Electronic
ferroelectricity, which is derived from the broken inversion
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FIG. 1. (a) Schematic representations of the valence s and con-
duction pz orbitals in the two-dimensional square lattice (side view)
and their band dispersions. (b) Isosurface of F (r) = φs(r)φpz

(r).
Positive and negative parts of F (r) are indicated by red (+) and blue
(−), respectively. Illustrated in the lower panels are the side views of
the two-dimensional plane: (c) the charge density in the normal state
and (d) that in the spin-singlet EI state with Q = (π,π ), and (e) the
spin density in the normal state and (f) that in the spin-triplet EI state
with Q = (π,π ). Note that the radial wave function of the 1s orbital
is slightly broadened to exaggerate the character of F (r) to illustrate
the charge and spin density distributions although the exact spherical
harmonics is assumed for the angular dependencies of the s and pz

orbitals. Thus, (c)–(f) are not exact but schematic illustrations.

symmetry of F (r), has been suggested to occur in the extended
Falicov-Kimball model [72,78,97].

Here, let us consider a simple example, where the valence
band a and conduction band b are composed of the s and pz

orbitals, respectively, which are located in the two-dimensional
square lattice [see Fig. 1(a)]. The valence band top and the
conduction band bottom are separated again by a vector
Q = (π,π ). Then, in the two-band Hubbard model with this
noninteracting band structure, the orbital off-diagonal (or
excitonic) orders are realized as below, where the orbital
diagonal terms with nis = ns , nipz

= npz
, and mis = mipz

= 0
are found [88]. In the case of the spin-singlet EI state, the local
charge density is given by

ρi(r) = φ2
is(r)ns + φ2

ipz
(r)npz

+ 2φis(r)φipz
(r)�s cos Q · Ri , (26)

and the local spin density is given by si(r) = 0. In the spin-
triplet EI state, on the other hand, the local spin density is given
by

si(r) = 2φis(r)φipz
(r)�t cos Q · Ri , (27)

and the local charge density is given by ρi(r) = φ2
is(r)ns +

φ2
ipz

(r)npz
.

The product of the wave functions of the s and pz orbitals,
F (r) = φis(r)φipz

(r), is illustrated in Fig. 1(b), where we find
that its parity is odd, breaking the spatial inversion symmetry,
because the wave functions φis(r) and φipz

(r) are even and
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odd, respectively. Using this function F (r), we estimate the
charge and spin densities in the normal state (�s = 0, �t = 0),
the charge density in the spin-singlet EI state (�s �= 0), and
the spin density in the spin-triplet EI state (�t �= 0), which are
illustrated in Figs. 1(c)–1(f). We find that the charge density
in the normal state is uniform [see Fig. 1(c)], but when the
spin-singlet EI state occurs (�s �= 0), it deviates towards the
+z direction in the ith site and towards the −z direction in the
neighboring sites due to F (r), and thus the charge density
in the EI state has a period twice as long as the original
lattice period [see Fig. 1(d)]. Likewise, we find that there is no
spin polarization in the normal state [see Fig. 1(e)], but when
the spin-triplet EI state occurs (�t �= 0), the spin polarization
corresponding to the spatial variation of F (r) appears in each
unit cell (or atom). This polarization is inverted alternately
over the unit cells (or atoms), leading to the spin density
with a period twice as long as the original lattice period [see
Fig. 1(f)]. We thus confirm that the charge and spin densities
have the density waves corresponding to Q in the spin-singlet
and spin-triplet EI states, respectively. However, we have to
emphasize here that, although the charge and spin densities are
thus modulated, the total charge in the unit cell (or atom) does
not change [see Fig. 1(d)] and the net magnetization in the unit
cell (or atom) is zero [see Fig. 1(f)], which are quite unlike the
situations in the conventional CDW and SDW states. We note
that, in the excitonic phases formed from orbitals in a single
atom, the interorbital exchange interactions such as the Hund’s
rule coupling work to arrange the spins ferromagnetically in
each unit cell (or atom), and therefore the spin-triplet EI state
shown in Fig. 1(f) has lower energy than the spin-singlet
EI shown in Fig. 1(d) if there is no strong electron-phonon
coupling [11,91].

When we consider the strongly correlated electron system,
where the wave functions φiα(r) are typically the d or f

orbitals, we may find a very complicated spatial dependence
of F (r). In Fig. 2, we show an example where the spin-triplet
excitonic ordering occurs from the dxy and dx2−y2 orbitals [92].
The product of the wave functions F (r) has eight nodes [see
Fig. 2(b)], resulting in a complicated spin density distribution
in each unit cell (or atom). In this example, the hopping integral
between the dxy orbitals has the opposite sign to that between
the dx2−y2 orbitals, i.e., txy tx2−y2 < 0 [98], so that the system
has a direct band gap as shown in Fig. 2(a), resulting in a ferro
EI state with Q = 0 [see Fig. 2(c)].

We understand in Eq. (24) that the spin density in the EI
state makes the density wave with modulation Q, but we find
in Figs. 1 and 2 that the excitonic SDW state is quite different
from the conventional SDW state with an antiferromagnetic
order. In the EI state in the tight-binding approximation, the
charge and spin densities are distributed anisotropically in
each unit cell (or atom), which may therefore be described
suitably by multipole moments, as we will discuss in the next
subsection.

B. Multipole moments

Now, let us describe the EI states in terms of the multipole
moments, taking the previous model as an example, where
the valence s and conduction pz orbitals are hybridized due
to excitonic ordering. First, the electric monopole moment,
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FIG. 2. (a) Schematic representations of the valence dxy and
conduction dx2−y2 orbitals in the two-dimensional square lattice (top
view) and their band dispersions. (b) Isosurfaces of the dxy and dx2−y2

wave functions and their product F (r). Positive and negative parts
of these functions are plotted in different colors. (c) Spin density
distribution in the corresponding spin-triplet EI state with Q = 0,
where the up-spin and down-spin distributions are indicated by red
and blue, respectively.

which corresponds to the total charge in each unit cell (or
atom), is defined as

Q0(Ri) ≡ −e

∫
d rρi(r)

= −e
∑

σ

∑
α,β

[∫
d rφiα(r)φiβ(r)

]
〈c†iασ ciβσ 〉, (28)

where −e is the elementary charge. Using the orthogonality
of the atomic orbitals∫

d rφiα(r)φiβ(r) = δα,β, (29)

we find that Q0 in Eq. (28) becomes

Q0(Ri) = −e
∑

α

niα, (30)

given simply as a sum of niα . In the same way, the magnetic
dipole moment, which corresponds to the integrated magneti-
zation in each unit cell (or atom), is given as

M0(Ri) ≡ −gμB

∫
d rsi(r) = −gμB

∑
α

miα, (31)

where M0 = (Mx
0 ,M

y

0 ,Mz
0), g is the Landé g factor, and μB

is the Bohr magneton. We find that, in the present example
of the s and pz orbitals, we have the EI state with niα = nα

and miα = 0, so that the electric monopole moment (or total
charge) Q0 remains unchanged, Q0(Ri) = −e

∑
α nα , and the
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magnetic dipole moment (or net magnetization) M0 vanishes,
M0(Ri) = 0.

Next, let us discuss the higher rank multipole moments
derived by the excitonic order 〈c†ipz

cis〉 �= 0, whereby we
evaluate an electric dipole moment in the spin-singlet EI state.
The electric dipole moment of the z direction is defined as [78]

Qz(Ri) ≡ −e

∫
d rzρi(r)

= −e
∑

σ

∑
α,β

[∫
d rzφiα(r)φiβ(r)

]
〈c†iασ ciβσ 〉. (32)

The integral part in Eq. (32) becomes∫
d rzφiα(r)φiα(r) = 0, (33)∫
d rzφis(r)φipz

(r) ≡ �spz

z �= 0, (34)

so that we obtain the electric dipole moment as

Qz(Ri) = −2e�spz

z �is . (35)

When the spin-singlet EI state occurs with �is �= 0 as in
Eq. (17), this quantity becomes finite as

Qz(Ri) = −2e�spz

z �s cos Q · Ri �= 0. (36)

We also find that the electric dipole moment of the x and
y directions vanishes, i.e., Qx(Ri) = Qy(Ri) = 0, because
the integral part of the wave functions vanishes. Therefore,
depending on the shape of the wave functions of the valence
and conduction bands, only the electric dipole moment of the
z direction becomes finite.

In the same way, the multipole moment for the spin density
is given as

Mz(Ri) ≡ −gμB

∫
d rzsi(r) = −2gμB�spz

z �it , (37)

where Mz = (Mx
z ,M

y
z ,Mz

z ). The multipole moment in Eq. (37)
is given as a product of the dipole distribution of the electron
density �

spz
z and the spin polarization (magnetic dipole) �it ,

which then results in an on-site magnetic quadrupole [89].
When the spin-triplet EI state is realized with �it �= 0 as in
Eq. (23), the magnetic multipole moment Mz becomes finite
as

Mz(Ri) = −2gμB�spz

z �t cos Q · Ri �= 0. (38)

Likewise, the multipole moments depend on the atomic wave
functions of the valence and conduction bands; e.g., when
the spin-triplet excitonic order occurs with the dxy and dx2−y2

orbitals, the higher rank multipole moment becomes finite, as
shown in Fig. 2.

Let us generalize the present discussion by means of a
mapping of the charge and spin densities onto the spherical
harmonics [99–104]. The multipole moments for the charge
and spin densities may, respectively, be defined as

Qlm(Ri) ≡ −e

∫
d r[rlZlm(r̂)]ρi(r), (39)

M lm(Ri) ≡ −gμB

∫
d r[rlZlm(r̂)]si(r), (40)

where we define Zlm(r̂) ≡ √
4π/(2l + 1)Ylm(r̂) with the real

spherical harmonics Ylm(r̂) (sometimes called the tesseral har-
monics). r̂ = (θ,ϕ) indicates the angular coordinates. Using
the tesseral harmonics, we obtain the multipole moments
in Eq. (39) as Q00 = Q0, Q10 = Qz, Q

(c)
11 = Qx , Q

(s)
11 =

Qy , . . . (see the Appendix). We introduce a vector M lm =
(Mx

lm,M
y

lm,Mz
lm) in Eq. (40) to indicate the spin direction.

Defining the integral part of the wave functions

�
αβ

lm ≡
∫

d r[rlZlm(r̂)]φiα(r)φiβ(r) (41)

as in Eq. (34), we obtain

Qlm(Ri) = −e
∑
α,β

∑
σ

�
αβ

lm 〈c†iασ ciβσ 〉, (42)

M lm(Ri) = −gμB

2

∑
α,β

∑
σ,σ ′

�
αβ

lm 〈c†iασ σ σσ ′ciβσ ′ 〉, (43)

whereby we find that the EI state is characterized not only by
the order parameter 〈c†iαciβ〉 (α �= β) but also by the integral
part �

αβ

lm . Thus, the higher multipole moments Qlm or M lm

become finite when 〈c†iαciβ〉 �= 0 and �
αβ

lm �= 0. Whether �
αβ

lm

is finite or not may be estimated from the integral of the
product of Zlm(r̂) and spherical harmonics in the α and β

orbitals. Correspondence between the nonvanishing �
αβ

lm and
the orbitals α and β is summarized in the Appendix.

Qlm in Eq. (39) corresponds exactly to the electric multipole
moment [78,99,100], where l is the rank of the electric mul-
tipole moments called the electric monopole (l = 0), dipole
(l = 1), quadrupole (l = 2), octupole (l = 3), hexadecapole
(l = 4), dotriacontapole (l = 5), etc. Note however that the
definition of the multipole moments for the spin density, which
is given in Eq. (40), is slightly different from the definition
of the usual magnetic multipole moments [99,100]. Here, we
divide the multipole moment in Eq. (43) into the integral part of
the orbitals and the expectation value of the spin polarization,
just as in the definition of the multipole moment for the charge
density given in Eqs. (39) and (42). This classification of
the multipole moments we adopted essentially corresponds
to the classification made by Cricchio et al. [103,104], where
the uncoupled double tensors are used in a model without
spin-orbit coupling. In this definition, M0 corresponds to the
magnetic dipole moment [see Eq. (31)]. Thus, we set l = 0
as the rank-1 magnetic multipole moment and it may be
appropriate to call M lm the (l + 1)th rank magnetic multipole
moment in this paper. The spin density distribution given in
Fig. 2, which corresponds to M (s)

44 = Mxy(x2−y2) �= 0, is then
called the magnetic dotriacontapole (l + 1 = 5).

Let us emphasize here that, in the spin-singlet (spin-
triplet) EI states, when they are derived from the valence
and conduction bands composed of the orthogonal orbitals,
the change in the charge (spin) density distributions occurs
within each unit cell (or atom) and the higher-rank electric
(magnetic) moments become finite. Therefore, the multipole
moments, which are ordered with modulation vector Q,
form the complicated charge and spin density waves. In this
sense, the excitonic CDW and SDW states may be called the
electric multipole density-wave state and magnetic multipole
density-wave state, respectively. We may also point out that
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the higher-rank electric or magnetic multipole orders caused
by the excitonic instability, which are observable in principle,
might be regarded as hidden orders that are not easy to detect
experimentally (see also Sec. V).

C. Effects of cross hopping

We have shown in the previous subsections that the net
magnetization (or magnetic dipole moment) in the unit cell
(or atom) does not appear in the spin-triplet EI state when
the valence and conduction bands, which are composed of
orthogonal atomic orbitals, have no hybridization with each
other in the normal state. However, the SDW states of
chromium [46–49] and iron-based superconductors [50–63],
which are sometimes regarded as the spin-triplet excitonic
ordering, actually exhibit the antiferromagnetic (or conven-
tional SDW) orderings with a nonvanishing net magnetization
in each atom (or unit cell). How do we reconcile these two
facts? Here, we will show that the nonvanishing magnetization
can appear in each atom (or unit cell) in the spin-triplet EI
state when the valence and conduction bands come from the
atomic orbitals, which are orthogonal in the same site but are
nonorthogonal with a nonvanishing hopping integral between
different orbitals in the neighboring sites (cross hopping). This
result explains the situation in real materials, where the energy
bands are usually constructed by the hybridization of many
nonorthogonal atomic orbitals.

Let us assume an example, where the valence and con-
duction bands are composed of the s and dx2−y2 orbitals,
respectively, in the one-dimensional chain [see Fig. 3(a)].
The two orbitals are orthogonal in the same site but have the
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+

+ +
+

+ +
+
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s

(b)
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FIG. 3. (a) Schematic representation of the one-dimensional
chain composed of the valence s and conduction dx2−y2 orbitals.
Cross-hopping integral tsd between the neighboring s and dx2−y2

orbitals is also shown. (b) Corresponding noninteracting band disper-
sions and (c) off-diagonal component of the unitary transformation
ν(k), where we assume tsd/t = 0.0 (dashed line) and 0.5 (solid
line) with ts = td = t and (εd − εs)/t = 3. (d) Spin-triplet orbital
diagonal and off-diagonal order parameters as a function of tsd for
our model in the Hartree-Fock mean-field approximation, where we
assume Us/t = Ud/t = 2, U ′/t = 1, and J/t = J ′/t = 0.5. We find
mα = ms = md owing to Us/ts = Ud/td .

nonvanishing cross hopping tsd between the neighboring sites.
Hereafter, we sometimes abbreviate dx2−y2 to d for simplicity.
The noninteracting tight-binding Hamiltonian of this system
is given as

He =
∑

α=s,d

⎛
⎝εα

∑
i,σ

c
†
iασ ciασ − tα

∑
〈i,j〉,σ

c
†
iασ cjασ

⎞
⎠

− tsd
∑

〈i,j〉,σ
(c†isσ cjdσ + c

†
idσ cjsσ )

=
∑
k,σ

(c†ksσ c
†
kdσ )

(
εs(k) tsd (k)
tsd (k) εd (k)

)(
cksσ

ckdσ

)
, (44)

where εα is the energy level of the α (= s,d) orbital and tα is
the hopping integral between the α orbitals in the neighboring
sites. The orbital diagonal and off-diagonal components in
momentum space are given by εα(k) = εα − 2tα cos k and
tsd (k) = −2tsd cos k, respectively. We assume εs < εd , so that
the valence (conduction) band includes a large component
of the s (dx2−y2 ) orbital. The diagonalized noninteracting
band dispersions are obtained by the unitary transformation
γkμσ = ∑

α ζμα(k,σ )ckασ , which connects between the band
μ and orbital α. The valence band Ev(k) and conduction band
Ec(k) are given by

Ev(c)(k) = η(k) − (+)
√

ξ 2(k) + t2
sd (k) (45)

with 2η(k) = εd (k) + εs(k) and 2ξ (k) = εd (k) − εs(k). The
unitary transformation connecting between the band μ (=v, c)
and orbital α (=s, d) is given by(

γkvσ

γkcσ

)
=

(√
1 − ν2(k) −ν(k)
ν(k)

√
1 − ν2(k)

)(
cksσ

ckdσ

)
, (46)

where the off-diagonal component ν(k) is given by

ν2(k) = 1

2

⎛
⎝1 − ξ (k)√

ξ 2(k) + t2
sd (k)

⎞
⎠. (47)

ν(k) indicates the weight of the s (dx2−y2 ) orbital component
in the conduction (valence) band. The band dispersions and
ν(k) are shown, respectively, in Figs. 3(b) and 3(c), where we
assume tsd = 0 or 0.5t with ts = td = t and (εd − εs) = 3t .
We find that, irrespective of tsd , the valence band top and
conduction band bottom are located at k = ±π and k = 0,
respectively, so that this system may have an excitonic
instability with modulation Q = π . At tsd = 0, where ν(k) =
0, the valence (conduction) band comes purely from the
s (dx2−y2 ) orbital. At tsd = 0.5t , where ν(k) has a large
value around k = 0 and ±π but it vanishes at k = ±π/2,
reflecting tsd (k) = −2tsd cos(k), the conduction band bottom
at k = 0 (valence band top at k = ±π ) acquires the s (dx2−y2 )
orbital component. Therefore, at tsd > 0, the valence band
around k = ±π and conduction band around k = 0 include
the same orbital components, so that the intraorbital Coulomb
interaction may have an impact on the bands in these regions.

To investigate the magnetic structure of the corresponding
two-band Hubbard model with this band dispersion, we
apply the Hartree-Fock mean-field approximation, taking
into account the intraorbital Coulomb (Us , Ud ), interorbital
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direct Coulomb (U ′), interorbital exchange (J ), and pair-
hopping (J ′) interactions. We then obtain the orbital diagonal
and off-diagonal order parameters in the z direction mz

α =∑
k,σ σ 〈c†k+Qασ ckασ 〉/2N and �z

t = ∑
k,σ σ 〈c†k+Qdσ cksσ 〉/2N

by solving the self-consistent equations, where we extend the
2 × 2 matrix in Eq. (44) to a 4 × 4 matrix. The calculated
results for �z

t and mz
α are shown in Fig. 3(d) as a function

of tsd , where we assume ts = td = t , (εd − εs)/t = 3, Us/t =
Ud/t = 2, U ′/t = 1, and J/t = J ′/t = 0.5. At tsd = 0, we
obtain the solution with �z

t > 0 and mz
α = 0, which is

consistent with the results shown in Secs. III A and III B. At
tsd �= 0, however, we find the solution with a nonvanishing
magnetization mα �= 0, where �z

t and mz
α are enhanced with

increasing tsd . Therefore, when the valence and conduction
bands include the same orbital component due to the cross
hopping tsd , the net magnetization (magnetic dipole moment)
Mz

0 = −gμB
∑

α mz
α appears in each unit cell (or atom), just

as in the conventional SDW states.
The excitonic SDW state with nonvanishing magnetization

in each unit cell (or atom) manifests itself in the illustration of
the spin density distribution in real space. In Figs. 4(a) and 4(b),
we illustrate the spin density in the ith unit cell (or atom)
sz
i (r) = [φ2

is(r)mz
s + φ2

id (r)mz
d + 2φis(r)φid (r)�z

t ] cos QRi

with mz
α = 0 and mz

α �= 0, respectively. At tsd = 0, we obtain
the solution with mz

α = 0 and �z
t �= 0, which indicates that the

magnetic octupole moment appears but the magnetic dipole
moment is absent, as shown in Fig. 4(a), in accordance with
the discussion in Sec. III A. At tsd �= 0, however, we obtain
the solution with mz

α �= 0 and �z
t �= 0, which indicates that the

negative (down-spin) part is enhanced along the y axis and the
positive (up-spin) part is reduced along the x axis, resulting
in the nonvanishing net magnetization, as shown in Fig. 4(b).
Thus, the magnetic dipole and octupole moments concurrently
appear in each unit cell (or atom). In the one-dimensional
system with Q = π , the spin polarization inverts alternately
over the unit cells (or atoms), as shown in Fig. 4(c). However,
in contrast to the conventional SDW state, where the spin
density in an atom aligns in the same direction as in a
single-orbital Hubbard system, the excitonic SDW state with
nonvanishing magnetization realized in multiorbital systems

Φt > 0 mα = 0
tsd=0

xz
y

(a)

mα < 0Φt > 0
tsd=0

xz
y

(b)

x

y

up
dow

n
0

(c)

FIG. 4. Isosurface of the spin density in the unit cell at Ri = 0
when (a) �t > 0 and mα = 0 at tsd = 0 and (b) �t > 0 and mα < 0 at
tsd �= 0. (c) Spin density distribution of our one-dimensional model
with �t > 0 and mα < 0 at tsd �= 0, where positive (up-spin) and
negative (down-spin) parts of the spin density are indicated by red
and blue, respectively. As in Fig. 1, the radial wave function of the
1s orbital is slightly broadened to exaggerate the character of the
spin density distributions although the exact spherical harmonics is
assumed for the angular dependencies of the s and dx2−y2 orbitals.

contains a spatial structure of the spin density within the unit
cell (or atom), reflecting the higher-rank multipole moments.

As we have shown here, the net magnetization (or integrated
local dipole moment) in each unit cell (or atom) M0 =
−gμB

∑
α mα appears when the valence and conduction bands

include the same orbital component due to the cross hopping.
This may explain why the SDW states appear in chromium and
iron-based superconductors (if they are of the excitonic origin).
We have to note however that, in contrast to the conventional
SDW state as in the single-orbital system, nonvanishing
higher-rank multipole moments are superimposed on the SDW
states, which can be seen in the local spin density si(r) but
cannot be seen in miα . In the same way, a conventional CDW
modulation may be superimposed on the excitonic CDW state
when the valence and conduction bands include the same
orbital component due to the cross hopping.

IV. MULTIORBITALS IN DIFFERENT ATOMS

Next, let us consider the case where the valence and
conduction bands are composed of orbitals in different atoms,
which is thought to occur in some candidate materials such as
1T -TiSe2 and Ta2NiSe5 [41,105,106]. When there are several
atoms in a unit cell, we have to consider the spatial position of
the α orbital, rα . The Bloch function for the α orbital is given
in the tight-binding approximation as

ψkα(r) = 1√
N

∑
i

eik·Ri φα(r − rα − Ri). (48)

The field operator in real space is then given by

�σ (r) =
∑

i

∑
α

φα(r − rα − Ri)ciασ , (49)

whereby we can evaluate the charge and spin densities of EI
using Eqs. (6) and (7).

Here, we assume a two-band system for simplicity, where
the valence (a) and conduction (b) bands composed, respec-
tively, of the a and b orbitals located in different atoms in a unit
cell i. The field operator in the ith unit cell, which contains the
orbitals a and b, is then given as

�iσ (r) = φia(r − ra)ciaσ + φib(r − rb)cibσ , (50)

where we write φiα(r − rα) = φα(r − rα − Ri) for simplicity.
Using Eq. (50), we obtain the density of electrons of spin σ ,
ρiσ (r) = 〈�†

iσ (r)�iσ (r)〉, as

ρiσ (r) = φ2
ia(r − ra)〈c†iaσ ciaσ 〉 + φ2

ib(r − rb)〈c†ibσ cibσ 〉
+φia(r − ra)φib(r − rb)[〈c†ibσ ciaσ 〉 + 〈c†iaσ cibσ 〉],

(51)

which leads to the charge density ρi(r) = ρi↑(r) + ρi↓(r) and
spin density of the z direction 2sz

i (r) = ρi↑(r) − ρi↓(r).
The change in the electronic density distribution due to

the excitonic ordering 〈c†ibσ ciaσ 〉 �= 0 is given by the third
term of Eq. (51), which indicates the change in the electron
density between the two orbitals a and b. When the excitonic
density wave is given as 〈c†ibσ ciaσ 〉 = 〈c†iaσ cibσ 〉 = Aσ cos Q ·
Ri + Cσ , the density of electrons between the two atoms is
enhanced in a unit cell, forming a bonding orbital, but it is
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reduced in the neighboring unit cells, forming an antibonding
orbital. Therefore, when the valence and conduction bands are
composed of orbitals in different atoms, the excitonic ordering
is nothing but a bond order formation; in the present case, it is
the formation of the bond order wave of spatial modulation Q.
Note that the third term in Eq. (51) includes the product of the
wave functions φia(r − ra)φib(r − rb), so that the electron
distribution depends on the sign of these wave functions;
if 〈c†ibσ ciaσ 〉 > 0 due to excitonic ordering, the bonding
(antibonding) orbital is formed in the positive (negative) part
of the product of the wave functions φia(r − ra)φib(r − rb).

In contrast to the EIs formed in a single atom, the interorbital
exchange interactions, such as Hund’s rule coupling, is weak
between different atoms, so that the spin-triplet excitonic state
is unlikely to be stabilized [11,91]. However, the density of
electrons between atoms is modulated due to the spin-singlet
excitonic ordering, which necessarily influences the position
of the neighboring atoms due to Coulomb interactions. We
have shown that, when the valence and conduction bands
are composed of orbitals in different atoms, the spin-singlet
excitonic state is most likely to be stabilized with the help of
the lattice distortion of the system [91]. We argue that this state
actually occurs in 1T -TiSe2 and Ta2NiSe5 [33,34,36,41].

For an intuitive understanding, we show an example in
Fig. 5, where the valence and conduction bands are composed
of the s and px orbitals in different atoms. The unit cells,
each of which contains two atoms forming the valence and
conduction bands, are arranged in the x direction as a one-
dimensional model. In this example, the top of the valence
band and bottom of the conduction band are located at the
same k point, so that we have the difference Q = 0. The
charge density distribution of the spin-singlet EI state in this
example is shown in Fig. 5(b). We find that the charge density is
enhanced (suppressed) in the region where φia(r − ra)φib(r −
rb)〈c†ibσ ciaσ 〉 > 0 (< 0). Corresponding to the charge density
distribution, the lattice may be deformed as shown by arrows

(a)

m
ax

0

(b)Singlet EI

x
z

x
z

px

s++ + +

+ + +

s

px

FIG. 5. (a) Schematic representation of the one-dimensional
model with the valence (s) and conduction (px) orbitals in different
atoms. (b) Charge density distribution of the spin-singlet EI state
with Q = 0. The shear distortion of the lattice is indicated by
arrows.

in Fig. 5(b). The spin-singlet excitonic ordering thus results in
the bond order formation.

V. DISCUSSION AND CONCLUSIONS

Finally, let us discuss the implications of our results in the
materials aspects. The condensation of spin-triplet excitons
was recently predicted to occur in the proximity of the spin
state transition of cobalt oxides [64–69]. In this system, the
valence and conduction bands are formed by the t2g and eg

orbitals, respectively, in the (same) cobalt atoms. If the EI
state is stabilized in this system, the spin-triplet excitonic
pairing is favored due to strong Hund’s rule coupling in a
single atom, and therefore the magnetic multipole may appear
as the spin-triplet orbital-off-diagonal order, which may have a
vanishing magnetic (dipole) moment per site [64]. Kuneš and
Augustinský [64] suggested that this type of magnetic multi-
pole order occurs in Pr0.5Ca0.5CoO3 and that the experimental
data can be explained comprehensively by the spin-triplet
exciton condensation scenario. The SDW states observed
in chromium metal [47,49] and iron-based superconductors
[50–63] have sometimes been argued to be of the excitonic
origin as well. The valence and conduction bands in these
systems are mainly formed by the 3d orbitals of the (same)
transition-metal atoms, just as in the cobalt oxides. However,
we note that the SDW states of chromium and iron-based
superconductors were studied as the band off-diagonal order,
which is in contrast to the cobalt oxide, where the spin-
triplet EI state was studied as the orbital off-diagonal order.
The band off-diagonal orders are based on the diagonalized
noninteracting bands including components of many relevant
orbitals, and the Coulomb interactions are added as the
effective interband interactions in the diagonalized bands
around the Fermi levels. Here, an electron in the conduction
band and a hole in the valence band are quasiparticles
formed by the hybridization of many orbitals. The total
magnetic moment per atom can be finite as discussed in
Sec. III C because the conduction and valence bands here
include the same orbital component. However, in contrast
to the conventional SDW state in single-orbital systems, the
complicated SDW states with magnetic multipole moments
can be realized in such multiorbital systems. Cricchio et al.
suggested from first-principles calculations that this type of
order actually occurs in iron-based superconductors [103].
In these systems, an unexpectedly low magnetic moment is
observed experimentally [64,103] unlike in the conventional
SDW state, which is thought to be due to the vanishing total
magnetic (dipole) moment in the presence of higher-rank
magnetic multipole moments. We note that even though the
total magnetic moment per site is zero the magnetic multipoles
have the local magnetic polarization in each unit cell (or atom),
which may be observed by, e.g., resonant x-ray scattering
experiments [101–103,107].

The condensation of spin-singlet excitons was recently
predicted in 1T -TiSe2 and Ta2NiSe5. In these systems, the
valence and conduction bands are formed by the orbitals
located in different atoms; in 1T -TiSe2, the 4p orbitals of Se
atoms account for the valence bands and the 3d orbitals of Ti
atoms account for the conduction bands [30–38]. In Ta2NiSe5,
which is a small direct-gap semiconductor, the 3d orbitals of
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Ni atoms form the valence bands and the 5d orbitals of Ta
atoms form the conduction bands [39–42]. If the spin-singlet
EI state is realized in these systems, the orbitals located
in different atoms are hybridized spontaneously to make
the bonding (or antibonding) state, which is the bond order
formation as we have shown in Sec. IV. The lattice degrees
of freedom necessarily couple with the bond order formation
in these systems; in fact, the lattice distortions corresponding
to the vector Q �= 0 in TiSe2 and the shear lattice distortion
corresponding to Q = 0 in Ta2NiSe5 have been observed. In
1T -TiSe2 and Ta2NiSe5, the electron-phonon coupling and
interband Coulomb interaction work cooperatively to stabilize
the spin-singlet bond orders.

We may also point out that the electronic ferroelectricity
and antiferroelectricity are the relevant physics in the EI state
formation. We may actually predict that such states should
occur when the even and odd parity orbitals are hybridized
spontaneously and the electronic density distribution breaks
the space-inversion symmetry in each unit cell. An example
is shown in Fig. 1(d), which was discussed in Sec. III A.
In fact, the electronic ferroelectricity derived from the hy-
bridization between different-parity orbitals was discussed
using the spinless extended Falicov-Kimball model [72,78,97].
We moreover note that the spin density distribution of the
spin-triplet EI state shown in Fig. 1(f) breaks not only the
space-inversion symmetry but also the time-reversal symmetry
in each unit cell. In this type of the electronic spin density
distributions, one may expect the magnetoelectric effects to
occur [108]. In general, when the local wave functions of the
valence and conduction bands have different parities, as in the
s-p, p-d, and d-f orbitals, the spin-triplet excitonic orders
give rise to the magnetic quadrupole, hexadecapole, or tetra-
hexacontapole orders, which break both the space-inversion
and time-reversal symmetries in each unit cell. Thus, one may
expect the magnetoelectric effects to occur in such cases.

To conclude, we have evaluated the charge and spin
densities of the spin-singlet and spin-triplet EI states from
the local wave functions in the tight-binding approximation.
We first discussed the charge and spin density distributions
of the EI states when the valence and conduction bands are
composed of orthogonal orbitals in a single atom. We found
that the anisotropic charge or spin density distribution occurs
in each unit cell (or atom) and higher rank electric or magnetic
multipole moment becomes finite, depending on the wave
functions of the valence and conduction bands, which is the
multipole order formation. In contrast to the conventional
CDW or SDW state, the modulation of the total charge (electric
monopole moment) or the net magnetization (magnetic dipole
moment) in the unit cell (or atom) does not appear when the
two orthogonal orbitals are hybridized via a spin-singlet or
spin-triplet excitonic ordering. However, in the real materials,
the energy bands are constructed by the hybridization of many
orbitals. We then found that the net magnetization in each unit
cell (or atom) can appear as in the conventional SDW state
if both the conduction and valence bands include the same
orbital component. We also discussed the electron density
distribution in the EI state when the valence and conduction
bands are composed of orbitals in different atoms. We found
that the excitonic ordering enhances (suppresses) the electronic

density between atoms when the bonding (antibonding) state
is formed between the two orbitals, which is therefore nothing
but the bond order formation.

We have studied the simplest two-orbital model throughout
this paper. In real materials, however, we may encounter
the situation where the relevant bands are composed of
more than two orbitals. The spin-orbit coupling, which was
completely neglected in this paper, can also be important
in some situations. We want to leave these issues for future
research.
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APPENDIX: MULTIPOLE EXPANSION OF ELECTRONIC
DENSITY IN EXCITONIC INSULATORS

In this appendix, we present the multipole expansion of the
electronic density distribution in the EI states when the valence
and conduction bands are composed of the orbitals in a single
atom. The field operator for a multiorbital system of a single
atom is given by

�(r) =
∑

α

φα(r)cα,

(A1)
�†(r) =

∑
α

φ∗
α(r)c†α,

where φα(r) is the atomic wave function and cα (c†α) is
the annihilation (creation) operator of an electron in the α

orbital [28,89]. Hereafter, we omit the site and spin indices for
simplicity because we consider only the atomic wave functions
in a single atom. We also do not write the elementary charge e

explicitly. The wave function of the α orbital is given by

φα(r) = φnαlαmα
(r) = Rnαlα (r)Ylαmα

(r̂), (A2)

where Rnl(r) is the radial wave function and Ylm(r̂) = Ylm(θ,ϕ)
is the spherical harmonics. nα , lα , and mα are the principal,
azimuthal, magnetic quantum numbers of the α orbital,
respectively. Using Eq. (A1), we write the electronic density
as

ρ(r) ≡ 〈�†(r)�(r)〉 =
∑
α,β

φ∗
α(r)φβ(r)〈c†αcβ〉, (A3)

whereby we find the modification of the electronic density ρ(r)
caused by the spontaneous hybridization 〈c†αcβ〉 �= 0 between
orbitals α and β due to excitonic ordering.

Let us describe the character of the EI in terms of the
multipole moments, which are defined by the projection of
ρ(r) onto the spherical harmonics [100–102] as

Qlm ≡
∫

d r[rlZ∗
lm(r̂)]ρ(r), (A4)

where Zlm(r̂) ≡ √
4π/(2l + 1)Ylm(r̂) and Z∗

lm(r̂) =
(−1)mZl−m(r̂). l is the rank of the multipole moments,
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which are called the monopole (l = 0), dipole (l = 1),
quadrupole (l = 2), octupole (l = 3), hexadecapole (l = 4),
dotriacontapole (l = 5), etc. Using Eq. (A3), we write the
multipole moment as

Qlm =
∑
α,β

[∫
d rφ∗

α(r)rlZ∗
lm(r̂)φβ(r)

]
〈c†αcβ〉

=
∑
α,β

�
αβ

lm 〈c†αcβ〉, (A5)

where we define the integral part as

�
αβ

lm ≡
∫

d rφ∗
α(r)rlZ∗

lm(r̂)φβ(r). (A6)

From Eq. (A5), we find that the multipole moment is finite,
Qlm �= 0, when both �

αβ

lm and 〈c†αcβ〉 are nonzero. A finite value
of 〈c†αcβ〉 is obtained for a symmetry-broken solution, but the
value of �

αβ

lm depends on the character of orbitals in the valence
and conduction bands.

Now, let us calculate �
αβ

lm in detail and clarify which rank of
the multipole moments is finite depending on which orbitals
are hybridized. Using Eq. (A2), we find

�
αβ

lm =
[∫

r2drRnαlα (r)rlRnβ lβ (r)

]

×
[∫

d�Y ∗
lαmα

(r̂)Z∗
lm(r̂)Ylβmβ

(r̂)

]
, (A7)

where d� = sin θdθdϕ. Defining

�l(nαlα,nβlβ) ≡
∫

r2drRnαlα (r)rlRnβ lβ (r), (A8)

�lm(lαmα,lβmβ) ≡
∫

d�Y ∗
lαmα

(r̂)Z∗
lm(r̂)Ylβmβ

(r̂), (A9)

we can divide �
αβ

lm into the radial and angular parts as

�
αβ

lm = �l(nαlα,nβlβ)�lm(lαmα,lβmβ). (A10)

Thus, we can classify �
αβ

lm in terms of �lm(lαmα,lβmβ) because
the radial part �l(nαlα,nβlβ) is always nonzero.

Using Ylm(r̂) ∝ eimϕ and integrating over ϕ, we find that
�lm(lαmα,lβmβ) is nonzero when m, mα , and mβ satisfy the
relation [109]

−m = mα − mβ, (A11)

whereby we can define the integral

cl(lαmα,lβmβ) ≡
∫

d�Y ∗
lαmα

(r̂)Zlmα−mβ
(r̂)Ylβmβ

(r̂), (A12)

which gives

�lm(lαmα,lβmβ) = (−1)mcl(lαmα,lβmβ)δm,mβ−mα
. (A13)

The calculated results for cl(lαmα,lβmβ) are summarized by
Kamimura et al. [109], where we find that cl(lαmα,lβmβ) is
nonzero when l, lα , and lβ satisfy the relations [109]

l + lα + lβ = even, |lα − lβ | � l � lα + lβ . (A14)

Because Ylm(r̂) and Zlm(r̂) are complex for |m| > 0 and
real for m = 0, it is convenient to introduce the real spherical

TABLE I. Correspondence between the tesseral representation
and Cartesian coordinate representation.

l m (c) and 0 (s)

0 0 1
1 0 z

1 x y

2 0 3z2 − r2

1 zx yz

2 x2 − y2 xy

3 0 z(5z2 − 3r2)
1 x(5z2 − r2) y(5z2 − r2)
2 z(x2 − y2) xyz

3 x(x2 − 3y2) y(3x2 − y2)
4 0 35z4 − 30z2r2 + 3r4

1 zx(7z2 − 3r2) yz(7z2 − 3r2)
2 (x2 − y2)(7z2 − r2) xy(7z2 − r2)
3 zx(x2 − 3y2) yz(3x2 − y2)
4 x4 − 6x2y2 + y4 xy(x2 − y2)

harmonics defined as

Y
(c)
lm (r̂) = 1√

2
[Yl−m(r̂) + (−1)mYlm(r̂)], (A15)

Y
(s)
lm (r̂) = i√

2
[Yl−m(r̂) − (−1)mYlm(r̂)] (A16)

for |m| > 0, which is sometimes called the tesseral harmonics.
Similarly, we define Z

(c)
lm (r̂) and Z

(s)
lm(r̂), and

�
(c)
lm = 1√

2
[�l−m + (−1)m�lm], (A17)

�
(s)
lm = 1√

2i
[�l−m − (−1)m�lm] (A18)

for |m| > 0. The correspondence between the tesseral repre-
sentation and Cartesian coordinate representation is summa-
rized in Table I, where we find, e.g., that Y

(c)
11 (r̂) corresponds

to the px orbital and Y
(s)
22 (r̂) corresponds to the dxy orbital.

Next, let us evaluate �lm in the tesseral representation.
The results for the orbitals from s (l = 0) to d (l = 2) are
summarized in Table II. Here, we describe an example, where
α is the d3z2−r2 ([lαmα] = [20]) orbital and β is the dx2−y2

([lβmβ] = [22c]) orbital. Using lα = lβ = 2 and the relation
in Eq. (A14), we find that the ranks of possible multipoles are
l = 0, 2, and 4. Using the tesseral harmonics, we find

�lm(d3z2−r2 ,dx2−y2 ) = (−1)m
∫

d�Y20Zl−mY
(c)
22

= 1√
2
cl(20,2 ± 2)δm,±2, (A19)

which indicates that �lm �= 0 at m = ±2. Therefore, �lm with
l = 2 and 4 and m = ±2 remain and are given by

�2±2(d3z2−r2 ,dx2−y2 ) = 1√
2
c2(20,2 ± 2) = −

√
2

7
, (A20)

�4±2(d3z2−r2 ,dx2−y2 ) = 1√
2
c4(20,2 ± 2) =

√
15

21
√

2
, (A21)
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TABLE II. Correspondence between the orbitals α and β and the nonvanishing multipole moments, where [lmc] and [lms] indicate Y
(c)
lm (r̂)

[or Z
(c)
lm (r̂)] and Y

(s)
lm (r̂) [or Z

(s)
lm(r̂)], respectively.

α [lαmα] β [lβmβ ] l = 0 l = 1 l = 2 l = 3 l = 4

s [00] s [00] [00]
s [00] pz [10] [10]

px [11c] [11c]
py [11s] [11s]

s [00] d3z2−r2 [20] [20]
dzx [21c] [21c]
dyz [21s] [21s]
dx2−y2 [22c] [22c]
dxy [22s] [22s]

pz [10] pz [10] [00] [20]
px [11c] [21c]
py [11s] [21s]

px [11c] px [11c] [00] [20], [22c]
py [11s] [22s]

py [11s] py [11s] [00] [20], [22c]
pz [10] d3z2−r2 [20] [10] [30]

dzx [21c] [11c] [31c]
dyz [21s] [11s] [31s]
dx2−y2 [22c] [32c]
dxy [22s] [32s]

px [11c] d3z2−r2 [20] [11c] [31c]
dzx [21c] [10] [30], [32c]
dyz [21s] [32s]
dx2−y2 [22c] [11c] [31c], [33c]
dxy [22s] [11s] [31s], [33s]

py [11s] d3z2−r2 [20] [11s] [31s]
dzx [21c] [32s]
dyz [21s] [10] [30], [32c]
dx2−y2 [22c] [11s] [31s], [33s]
dxy [22s] [11c] [31c], [33c]

d3z2−r2 [20] d3z2−r2 [20] [00] [20] [40]
dzx [21c] [21c] [41c]
dyz [21s] [21s] [41s]
dx2−y2 [22c] [22c] [42c]
dxy [22s] [22s] [42s]

dzx [21c] dzx [21c] [00] [20],[22c] [40], [42c]
dyz [21s] [22s] [42s]
dx2−y2 [22c] [21c] [41c], [43c]
dxy [22s] [21s] [41s], [43s]

dyz [21s] dyz [21s] [00] [20], [22c] [40], [42c]
dx2−y2 [22c] [21s] [41s], [43s]
dxy [22s] [21c] [41c], [43c]

dx2−y2 [22c] dx2−y2 [22c] [00] [20] [40], [44c]
dxy [22s] [44s]

dxy [22s] dxy [22s] [00] [20] [40], [44c]

where we use c2(20,2 ± 2) = −2/7 and c4(20,2 ± 2) =√
15/21 [109]. Applying the tesseral representation to �l±2,

we find

�
(s)
l2 (d3z2−r2 ,dx2−y2 ) ∝ [�l−2 − �l2] = 0, (A22)

�
(c)
22 (d3z2−r2 ,dx2−y2 ) = 1√

2
[�2−2 + �22] = −2

7
, (A23)

�
(c)
42 (d3z2−r2 ,dx2−y2 ) = 1√

2
[�4−2 + �42] =

√
15

21
. (A24)

Thus, the quadrupole moment Q
(c)
22 = Qx2−y2 and hexade-

capole moment Q
(c)
42 = Q(x2−y2)(7z2−r2) remain finite when the

d3z2−r2 and dx2−y2 orbitals are hybridized spontaneously.
Finally, let us consider the multipole expansion of the

product of the wave functions

Fαβ(r) = φ∗
α(r)φβ(r) (A25)
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= ++ =

d3z2-r2 dx2-y2 F(r) Hexadecapole
[42c]

Quadrupole
[22c]x y

z

FIG. 6. Schematic illustration of the multipole expansion of
Fαβ (r) = φα(r)φβ (r) with α = d3z2−r2 and β = dx2−y2 .

given in Eq. (A3). Using
∑

l,m(2l + 1)Z∗
lm(r̂ ′)Zlm(r̂) =

4πδ(r̂ − r̂ ′), we have

Y ∗
lαmα

(r̂)Ylβmβ
(r̂) =

∑
l,m

(
2l + 1

4π

)
�lm(lαmα,lβmβ)Zlm(r̂).

(A26)

Therefore, from Eqs. (A2) and (A26), the multipole expansion
of Fαβ(r) is given by

Fαβ(r) = Rnαlα (r)Rnβlβ (r)

×
∑
l,m

(
2l + 1

4π

)
�lm(lαmα,lβmβ)Zlm(r̂). (A27)

Using Eq. (A27), we finally obtain the electronic density in
Eq. (A3) as

ρ(r) =
∑
α,β

Rnαlα (r)Rnβlβ (r)

×
[∑

l,m

(
2l + 1

4π

)
�lm(lαmα,lβmβ)Zlm(r̂)

]
〈c†αcβ〉.

(A28)

In the previous example with α = d3z2−r2 and β = dx2−y2 ,
where we find �

(c)
22 �= 0 and �

(c)
42 �= 0, we can expand Fαβ(r)

into the quadrupole and hexadecapole as

Fαβ(r) = 5

4π
R2

32(r)�(c)
22 (d3z2−r2 ,dx2−y2 )Z(c)

22 (r̂)

+ 9

4π
R2

32(r)�(c)
42 (d3z2−r2 ,dx2−y2 )Z(c)

42 (r̂), (A29)

of which the schematic illustration of the multipole expansion
is given in Fig. 6. Thus, the product of the wave functions
Fαβ(r) is given in general by the sum of the multipoles.
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and tx2−y2 = 3t(ddσ )/4 + t(ddδ)/4 > 0, where the Slater-
Koster parameters [110] t(ddπ ) (< 0), t(ddσ ) (> 0), and
t(ddδ) (> 0) are used. We therefore have txy tx2−y2 < 0, so that
the valence band top and conduction band bottom are located
at the same k point of the Brillouin zone.
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