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We study theoretically the interplay effect of Zeeman field and modulated spin-orbit coupling on the topological
properties of a one-dimensional dimerized lattice, known as Su-Schrieffer-Heeger model. We find that in the weak
(strong) modulated spin-orbit coupling regime, trivial regions or nontrivial ones with two pairs of zero-energy
states can be turned into nontrivial regions by applying a uniform (staggered) perpendicular Zeeman field through
a topological phase transition. Furthermore, the resulting nontrivial phase hosting a pair of zero-energy boundary
states can survive within a certain range of the perpendicular Zeeman field magnitude. Due to the effective
time-reversal, particle-hole, chiral, and inversion symmetries, in the presence of either a uniform or a staggered
perpendicular Zeeman field, the topological class of the system is BDI, which can be characterized by Z index.
We also examine the robustness of the nontrivial phase by breaking the underlying symmetries, which results in
that inversion symmetry plays an important role.
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I. INTRODUCTION

Topological phases of matter have attracted a lot of
attention in recent years due to the discovery of graphene
[1] and topological insulators [2]. Also, the search for
conventional and unconventional topological superconductors,
hosting topological phases [3], has become one of the
growing topics in condensed-matter physics [4,5]. As long
as the underlying symmetries in the topological systems are
preserved, the symmetry protected gapless edge or surface
states within gapped bulk states are robust against many
forms of perturbations, fulfilling the relevant requirement
for quantum electronic devices and, especially, topological
quantum computations [6].

One-dimensional (1D) heterostructures [7–9] consisting of
ingredients such as superconductors, topological insulators,
spin-orbit coupled semiconductors, and ferromagnets can
support topologically nontrivial phases hosting, for instance,
non-Abelian Majorana bound states at zero energy levels
[5,10] and fractionally charged fermion bound states [11–13].
Furthermore, a 1D Majorana chain has been proposed to
include Majorana fermions [6,14] at its boundaries. In contrast,
one of the simplest 1D topological insulators is known as the
Su-Schrieffer-Heeger (SSH) model with the BDI symmetry
class, which is proposed for polyacetylene [15]. SSH model
has been shown to exhibit a diversity of nontrivial topological
phases [12,16]. In this context, most of the recent studies have
been devoted to investigating the effects of complex boundary
potentials [17], next-nearest-neighbor hopping [18], super-
conducting correlations [19], disorders [20], time-dependent
potential [21], magnetic flux [22], modulated on-site potentials
[23,24], and hopping amplitudes [24] on the topological
properties of the 1D topological insulators.

In theoretical and experimental studies, both magnetic
field [8,25] and spin-orbit coupling [26] are important, key
ingredients for the existence of nontrivial phases. It has
been recently shown that a spatially varying magnetic field
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can be served as an effective spin-orbit interaction leading
to the creation of flat bands of Majorana states [27] and
fractionalization of charged bound states [13]. The effect of
modulated spin-orbit coupling [28] on trivial and nontrivial
regimes of SSH model has also been studied [29]. However,
the interplay effect of Zeeman fields and spin-orbit coupling
on the topological properties of 1D superlattices [30] and, in
particular, the SSH model has received only limited attention.

In experimentally realizable cases, fine tuning of parameters
of a system to certain values through external fields is not
easily reachable, particularly, when dealing with nontrivial
topological phases in meso- and nanoscopic platforms [9].
So, it is important to provide a much wider range of required
model parameters, which facilitates experimental observations
of desired phases. Generally speaking, flexibility in increasing
or decreasing the range of less important nontrivial or trivial
topological phases in favor of a desired topological phase
is practically one of the most important requirements of
topological quantum computation such that the topological
class of the system remains intact. Therefore an interesting
question is how to increase the nontrivial topological region
of a 1D dimerized lattice in the space of parameters, with
the combined effects of spin-orbit coupling and Zeeman field
respecting the underlying symmetries.

In this work, we analyze the effect of perpendicular and
parallel Zeeman fields on the topological phases of a SSH
chain with a modulated spin-orbit coupling [29]. If the Zeeman
fields are absent, trivial regions, where the system is an
ordinary insulator, can be found in weak and strong modulated
spin-orbit coupling regimes. Furthermore, there exist two types
of topologically nontrivial phases characterized by one or two
pairs of zero-energy edge states. We show that in the presence
of a uniform (staggered) perpendicular Zeeman field for
weak (strong) modulated spin-orbit coupling, the trivial region
would be turned into a nontrivial topological one through a
topological phase transition by increasing the magnitude of the
Zeeman field that results in the emergence of a pair of zero-
energy edge states. Moreover, the perpendicularly applied uni-
form (staggered) Zeeman field in the weak (strong) modulated
spin-orbit coupling regime causes the nontrivial topological
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phase with two pairs of zero-energy edge states to change its
topology and turn into a topologically nontrivial phase hosting
one pair of zero-energy states. Symmetry arguments show
that the system in the presence of such perpendicular Zeeman
fields possesses inversion, chiral, particle-hole, and effective
time-reversal symmetries, which still falls in the BDI class
with topological number Z. We also calculate analytically the
winding number through bulk properties of quantum states and
show that the results of periodic boundary conditions (PBCs)
are in good agreement with those of open boundary conditions
(OBCs), according to bulk-edge correspondence. Further, we
explore the robustness of the symmetry protected edge states
by adding local perturbations such as parallel Zeeman field and
spin-dependent on-site potential. These perturbations break the
symmetries implying that the nontrivial topological phases are
protected by inversion symmetry fundamentally.

This paper is organized as follows. In Sec. II, we introduce
a tight-binding model of the system, and obtain bulk energy
bands. We also investigate the symmetries of the system.
In Sec. III, topological phase diagrams without the Zeeman
fields are studied. In Secs. IV and V, the effects of uniform
and staggered perpendicular Zeeman fields, respectively, on
the topological phases are studied by calculating the energy
spectrum and the topological number of a finite system. For
the winding number, an analytic formula is derived via bulk
states in Sec. VI. We discuss the effect of symmetry breaking
perturbations on the robustness of edge states in Sec. VII and
finally conclusions are presented in Sec. VIII.

II. THEORETICAL MODEL

We consider a 1D dimerized lattice along the x axis, which
contains two sublattices a and b in each unit cell with a lattice
constant d. The lattice is subjected to a modulated spin-orbit
coupling [29] and also both perpendicular and parallel Zeeman
fields are applied. Thus the total tight-binding Hamiltonian
describing the system is the sum of the Hamiltonians of the
SSH model ĤSSH, the spin-orbit coupling ĤSO, and the Zeeman
fields ĤB as

Ĥ = ĤSSH + ĤSO + ĤB, (1)

with

ĤSSH =−
∑
n,σ

[(t − δt)â†
n,σ b̂n,σ +(t + δt)â†

n,σ b̂n−1,σ +H.c.],

ĤSO =
∑
n,σ

[λâ†
n,σ b̂n,−σ − λ′â†

n,σ b̂n−1,−σ + H.c.],

ĤB =
∑
n,σ,σ ′

[â†
n,σ (Mn,a · τ )σσ ′ ân,σ ′ + b̂†n,σ (Mn,b · τ )σσ ′ b̂n,σ ′ ],

where â
†
n,σ (ân,σ ) and b̂

†
n,σ (b̂n,σ ) are the fermion creation

(annihilation) operators of electrons with spin σ = (↑ or ↓)
on the sublattices a and b of the nth unit cell, respectively.
In addition, t − δt and t + δt (λ and λ′) denote the hopping
(spin-orbit coupling) amplitudes in the unit cell and between
two adjacent unit cells, respectively, with the dimerization
strength δt , τ is the Pauli vector acting on the spin subspace
and the Zeeman field vector on the nth unit cell is Mn,i =
(Mn,x,i ,Mn,y,i ,Mn,z,i) with sublattice index i = (a or b). Here,

since the lattice is invariant under rotations about the x axis,
without loss of generality, we apply the perpendicular Zeeman
field along the y direction, i.e., Mn,z,i = 0. Furthermore, for
simplicity, the Zeeman field is supposed to be identical in each
unit cell, so we drop its unit cell index n hereafter. We shall later
investigate the effect of the Zeeman field in the x direction,
therefore we include the Zeeman field as Mi = (0,My,i ,0). We
choose t as the energy unit and the lattice constant d = 1.

Adopting PBCs and Fourier transforming, the total Hamil-
tonian Ĥ , Eq. (1), can be easily written as

Ĥ =
∑

k

ψ̂
†
k ĥ(k)ψ̂k, (2)

where ψ̂
†
k = (âk,↑,âk,↓,b̂k,↑,b̂k,↓)†, and

ĥ(k) =

⎛
⎜⎜⎝

0 −iMy,a s(k) ξ (k)
iMy,a 0 ξ (k) s(k)
s(k)∗ ξ (k)∗ 0 −iMy,b

ξ (k)∗ s(k)∗ iMy,b 0

⎞
⎟⎟⎠, (3)

with

s(k) = −(t − δt) − (t + δt)e−ik, ξ (k) = λ − λ′e−ik. (4)

We diagonalize the Hamiltonian in the momentum space,
Eq. (3), to obtain the eigenvalues as

E(k) = l

√
α(k) + m

√
β(k)

2
, (5)

with

α(k) = M2
y,a + M2

y,b + 2ss∗ + 2ξξ ∗,

β(k) = M4
y,a + M4

y,b + My,aMy,b(8(ss∗ − ξξ ∗) − 2)

+ (My,a + 4My,b)(ss∗ + ξξ ∗) + 4(s∗ξ + sξ ∗)2,

where l = +(−) indicates the conduction (valance) band and
m = +(−) represents upper (lower) subband.

It is well studied that a topological phase transition accom-
panying by closing and reopening of bulk band gap always de-
termines the boundaries between different topological phases
in the absence of interactions [31]. The gap closing conditions
of ĥ(k) can be obtained by calculating det(ĥ(k)) = 0. In
the absence of both the perpendicular Zeeman field and the
modulated spin-orbit coupling, the energy spectrum reduces
to E(k) = ±√

ss∗ and the energy gap closes at the momentum
k = π if δt = 0. On the other hand, in the presence of the
modulated spin-orbit coupling and Mi = (0,0,0), the energy
gap closure conditions are [29]

2|δt | = |λ + λ′| (6)

and

2|t | = |λ − λ′| (7)

at the boundaries of the Brillouin zone k = ±π and momentum
k = 0, respectively. But in the presence of both the y

component of Zeeman field and the modulated spin-orbit
coupling, we find that the gap closes at the momenta k = ±π

and k = 0 with the corresponding conditions, respectively,
given by

My,aMy,b = 4δt2 − (λ + λ′)2 (8)
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and

My,aMy,b = 4t2 − (λ − λ′)2. (9)

In fact, the above relations are the generalized versions of
Eqs. (6) and (7). This means that the boundaries between
topological phases can be changed drastically, as a result of the
perpendicular Zeeman field. Importantly, the sign of right-hand
sides of Eqs. (8) and (9) can be either positive, namely,

4δt2 > (λ + λ′)2, and 4t2 > (λ − λ′)2, (10)

or negative, namely,

4δt2 < (λ + λ′)2, and 4t2 < (λ − λ′)2, (11)

depending on the values of the parameters. We refer to the
former (latter) case, i.e., relation (10) [(11)] as the weak
(strong) modulated spin-orbit coupling case. Consequently,
the weak (strong) modulated spin-orbit coupling requires
My,aMy,b > 0 (My,aMy,b < 0). In addition, there are some
parameter regions where only one of the inequalities from
each relations (10) and (11) can be fulfilled. We use the
phrase “mixed regime” to refer to these cases. Therefore the
perpendicular Zeeman fields of the sublattices a and b should
be either parallel or antiparallel with respect to each other
in the unit cell as depicted in Fig. 1. Subsequently, one may
anticipate that uniform and staggered Zeeman fields not only
satisfy the energy gap closing conditions [see Eqs. (8) and (9)],
but also preserve some symmetries of the system which will
be discussed below.

The system shows particle-hole and chiral symmetries de-
fined, respectively, as Pĥ(k)P−1 = −ĥ(−k) and Cĥ(k)C−1 =

FIG. 1. Schematic illustration of a 1D dimerized lattice consisting
of two sublattices (blue and red balls) with perpendicularly applied
Zeeman field (black arrows). Configuration of (a) uniform perpendic-
ular Zeeman field for weak modulated spin-orbit coupling regime and
(b) staggered perpendicular Zeeman field for strong modulated spin-
orbit coupling regime. t − δt (t + δt) indicates intercell (intracell)
hopping energy.

−ĥ(k) where P = σz ⊗ IK and C = σz ⊗ τx with I , K, and
τx being the identity matrix, the complex conjugation, and the
x component of the Pauli vector τ , respectively. Also, σz is the
z component of the Pauli vector σ acting on sublattice space.
Because of the fact that T · P = C, the antiunitary effective
time-reversal operator can be determined as T = I ⊗ τxK.
These symmetry operators also exhibit the features that P2 =
1, C2 = 1, and T 2 = 1. As a result of the last property, there is
no Kramer’s degeneracy related to effective time-reversal sym-
metry. Therefore, according to the standard Altland-Zirnbauer
classification [32], the symmetry class is BDI in the presence
of either uniform, Ma,y = Mb,y , or staggered, Ma,y = −Mb,y ,
Zeeman field. Moreover, when Ma,y = Mb,y , the Hamiltonian
(3) also satisfies the inversion symmetry relation Iuĥ(k)I−1

u =
ĥ(−k), where Iu = σx ⊗ I with σx being the x-component
of σ . On the other hand, if Ma,y = −Mb,y , it can be clearly
seen that ĥ(k) fulfils Is ĥ(k)I−1

s = ĥ(−k) under the inversion
symmetry operation Is = σx ⊗ τx . Notice that due to inversion
and reflection symmetries, topological classifications fall
beyond the standard classification [32], which are based on
the global symmetries, i.e., time-reversal, particle-hole, and
sublattice (chiral) symmetries. In cases satisfying the modified
topological classifications [33,34], the inversion symmetry
operator commutes with all the global symmetries [34]. In
contrast, in our case, interestingly, the inversion operators
Iu and Is anticommute with both chiral and particle-hole
operators but commute with effective time-reversal operator.
Note that a one-dimensional system belonging to the BDI
class has either Z or Z2 topological index depending on the
algebraic relations between the inversion operator and other
global symmetry operators [33,35]. According to the modified
periodic table [33,35], the algebraic relations of our system
imply that the topological index is Z.

III. TOPOLOGICAL PHASES OF THE 1D CHAIN
WITHOUT PERPENDICULAR ZEEMAN FIELD

In order to understand the effect of the perpendicular
Zeeman fields on the topological properties of the system,
the topological phase diagram in the absence of such fields
is first investigated by calculating the topological invariant
[36,37] numerically. The relevant topological invariant for
a 1D system can be expressed by the topological num-
ber Z = φZak/π where the Zak phase [38,39] is φZak =∑

E<0

∫ π

−π
〈uk|i∂kuk〉 dk with |uk〉 being the occupied Bloch

states [37]. Both quantized Zak phase [40,41] and symmetry-
protected states localized on the boundaries of the system [42]
characterize the existence of a nontrivial topological phase,
emerging from bulk state properties and symmetry configura-
tions. The quantized Zak phase has also been measured experi-
mentally in 1D periodic potentials using ultracold atoms in op-
tical lattices [43] and periodic tubes in phononic crystals [44].

Since the value of Zak phase is gauge dependent, we follow
the choice of unit cell so that the Zak phase of Bloch bands
takes the values 0, π , or 2π [40,45]. Thus the topological
number Z = 1(2) corresponds to the existence of one pair
(two pairs) of zero-energy states at the boundaries under OBCs
and indicates that the system is in the topologically nontrivial
phase. Furthermore, when the number Z = 0, the system is
topologically trivial without zero-energy states.
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FIG. 2. Phase diagram in the plane (λ,λ′) without Zeeman fields
for parameters: (a) δt = −0.5t , (b) δt = 0.5t . Capital letters M , S,
and W denote mixed, strong, and weak modulated spin-orbit coupling
regimes. Topologically distinct regions Z = 0, 1, and 2 are depicted
by gray (green), light (yellow), and dark (red) colors, respectively.
The relevant part of energy spectrum for different values of spin-
orbit couplings under OBCs with 50 unit cells is shown for (c) δt =
−0.5t and (d) 0.5t . In the middle of the energy gap, the spectrum
contains zero-, two-, or fourfold degenerate states corresponding to
topologically distinct insulating phases.

The resulting topological phase diagrams in the plane (λ,λ′)
for the case δt < 0 and δt > 0 are shown in Figs. 2(a) and
2(b), respectively. The black solid lines are phase boundaries
where the bulk band gap closes. Topologically distinct regions
Z = 0, 1, and 2 are indicated by gray (green), light (yellow),
and dark (red) colors, respectively. The different regimes of
mixed, weak, and strong modulated spin-orbit couplings are
denoted by “M ,” “W ,” and “S,” respectively, as well. As one
can see in Fig. 2(a), there are three trivial regions,Z = 0. While
one of them is located in the weak modulated spin-orbit regime,
the others are in the strong modulated spin-orbit regime. Also,
in the strong modulated spin-orbit and mixed regimes, there
are nontrivial topological phases with different topological
number Z. For the case of δt > 0, there are two trivial regions
in the strong modulated spin-orbit regime and the nontrivial
topological phase with topological numberZ = 2 can be found

not only in the strong modulated spin-orbit regime but also in
the weak modulated spin-orbit regime [see Fig. 2(b)]. In both
cases, δt < 0 and δt > 0, the topological phase with number
Z = 1 is only restricted to the mixed regime. Notice that if
δt 
= 0, the phase diagrams are not symmetric with respect to
the parameters λ and λ′. To show the number of zero-energy
states in connection with the distinct topological phases, we
calculate the energy spectra of the 1D lattice dimerization with
50 unit cells under OBCs for the cases δt < 0 and δt > 0 as
presented in Figs. 2(c) and 2(d), respectively. In either cases,
in the middle of the energy gap, depending on the appropriate
choice of parameters λ and λ′ in the three different regions of
panels (a) and (b), one can observe zero, one, or two pairs of
zero-energy states related to topologically distinct insulating
phases.

IV. THE EFFECT OF UNIFORM PERPENDICULAR
ZEEMAN FIELD ON THE TOPOLOGICAL PHASES

We consider the y components of Zeeman field terms on
sublattices a and b, which vary cyclically with the parameter
θ as

My,a = γa sin(θ + φa), My,b = γb sin(θ + φb), (12)

where the amplitude γa(b) and phase factor φa(b) are parameters
to control the strength and sign of the Zeeman field on
sublattice a (b), respectively. Without loss of generality, we
assume φb = 0. Also, we take γa = γb = γ and φa = 2n′π
or φa = (2n′ − 1)π with n′ an integer, as required by the
inversion symmetry.

As discussed already above, when δt < 0, in the absence of
Zeeman fields, the system is always gapped and subsequently,
a trivial insulator in the weak modulated spin-orbit coupling
regime. Thus, in order to close the energy gap and change
the topology of the band structure, we must apply a uniform
perpendicular Zeeman field [see Eqs. (8) and (9)]. It is
straightforward to see that for φa = 2n′π , which establishes
the uniform Zeeman field, closing and reopening of the bulk
gap take place at two certain values of the Zeeman field
magnitude given by

γ u
1 =

√
4δt2 − (λ + λ′)2, (13)

γ u
2 =

√
4t2 − (λ − λ′)2, (14)

within which this uniform Zeeman field drives the system
into topologically nontrivial phase. Therefore the topological
phases caused by Zeeman field can be characterized by the
Z such that the quantized Zak phase π (Z = 1) manifests the
existence of a pair of zero-energy edge states under OBCs.

The dependence of energy spectrum on γ is shown in
Fig. 3(a) for δt < 0 with θ = π/2 and λ = λ′ = 0.1t , i.e.,
weak modulated spin-orbit coupling regime. Low energy states
associated with edge states are indicated by thick solid (red)
lines. One can see that within a certain range of γ the lowest
energy states become zero-energy states. In this region, the
value of Zak phase is π as shown in Fig. 3(b) indicating the
establishment of nontrivial topological phase. Outside of this
region, the Zak phase takes 0 value and the energy gap is
open as well. The induced nontrivial topological phase, due to
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FIG. 3. (Top) Dependence of the energy spectrum of a finite lattice with 20 unit cells on (a) [(e)] γ with δt = −(+)0.5t , λ = λ′ = 0.1(0.2)t
and θ = π/2 and on (c) θ with δt = −0.5t , λ = λ′ = 0.1t , and γ = 1.6t . Bottom (b), (d), and (f) are the corresponding Zak phases of the top
panels. Here, φa = 0.

perpendicular Zeeman field, stems from spin-splitting of the
helical basis projected into a 1D bipartite lattice.

The energy spectrum as a function of θ is plotted in Fig. 3(c)
for δt < 0 with parameters γ = 1.6t and λ = λ′ = 0.1t . There
is an energy gap for small θ . As we increase θ in magnitude, a
phase transition occurs, consequently, the gap closes and flat
bands appear. With further increase of θ , flat bands disappear
and gap reopens. Naturally, the spectrum is symmetric about
θ = 0 arising from reflection symmetry with respect to the xz

plane. The corresponding Zak phase is shown in Fig. 3(d). One
can see that in the parameter region in which the flat bands are
appeared, the Zak phase takes π value indicating the existence
of zero-energy edge states, whereas, in the other region, the
Zak phase is 0 exhibiting a topologically trivial phase.

Upon applying the uniform perpendicular Zeeman field,
both pairs of edge states for the case of δt > 0 in the weak
spin-orbit coupling become unstable and gap opens, as shown
in Fig. 3(e). With the increase of the γ , while one of the pair
states remains unstable, interestingly, the other one becomes
stable; as a result, the system undergoes a topological phase
transition from a normal insulator to a topological insulator.
Moreover, at large γ , since only one of the spin species will
be dominated, the possibility of establishing the edge states
containing both types of spins states vanishes and subsequently
gap opens for the second time. The corresponding Zak phase
as a function γ is illustrated in Fig. 3(f). One can see that if
the zero-energy states are present, then the Zak phase shows a
nontrivial topology. It is worthwhile noting that, in the case of
weak spin-orbit coupling for both δt < 0 and δt > 0, if φa =
(2n′ − 1)π , one obtains φZak = 0 (Z = 0), thus, the system is
always gapped.

In Fig. 4(a), the energy spectrum versus γ is shown for
mixed regime with parameters δt = −0.5t , λ = λ′ = 4t , and
θ = π/2 (the result of case δt > 0 is the same and not shown).
In this regime, for both cases δt > 0 and δt < 0, the uniform
perpendicular Zeeman field preserves the twofold degenerate
zero-energy edge state from zero up to a certain value of the

Zeeman field strength. This can be understood as follows. In
the mixed region, equal strengths of inter- and intra cell spin-
orbit couplings with almost large magnitudes cause that the
band structure around the Fermi surface can be affected slightly
by small or mediate Zeeman field strengths without losing
its topological features. As described above, increasing the
Zeeman strength beyond the critical value, completely splits
opposite spin states resulting in the disappearance of zero-
energy states. In order to confirm that the zero-energy states
exhibit themselves as localized states at sample boundaries,
the probability distribution of the lowest energy states for two
different values γ = t and 6t with the same parameters as
Fig. 4(a) is depicted in panel (b). In the presence of zero-energy
states, for γ = t , the probability distribution has maxima at
the two boundaries of the chain, while for γ = 6t , minimum
values of probability distribution occur at such points.

V. THE EFFECT OF STAGGERED PERPENDICULAR
ZEEMAN FIELD ON THE TOPOLOGICAL PHASES

In this section we will first investigate the effect of
perpendicular Zeeman field on different topological phases

FIG. 4. (a) The energy spectrum as a function of γ under OBCs
in presence of uniform Zeeman field with 20 unit cells. (b) Probability
distribution for two different values γ /t = 1 and 6. Here, δt = −0.5t ,
θ = π/2, λ = λ′ = 4t , and φa = 0.
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FIG. 5. (Top) Dependence of energy spectrum of a finite lattice with 30 unit cells on (a) [(e)] γ with δt = +(−)0.5t , λ = 7(3)t , λ′ = 2(7)t ,
and θ = π/2 and on (c) θ with δt = 0.5t , λ = 7t , λ′ = 2t and γ = 8t . Bottom panels (b), (d), and (f) are the corresponding Zak phases of the
top panels. Here, φa = π .

occurred in the strong modulated spin-orbit coupling regime.
As discussed in Sec. III, in the absence of Zeeman fields,
for both cases δt < 0 and δt > 0, when intercell spin-orbit
coupling is larger than intracell one the system is a trivial
insulator. To change the topology of these regions from
trivial phase into a nontrivial one, it is necessary to close
and then reopen the energy gap with the help of staggered
perpendicular Zeeman field [see Eqs. (8) and (9)]. It can
be easily checked that for φa = (2n′ − 1)π , providing the
staggered Zeeman field, within the range γ s

1 < My,a < γ s
2 the

phase of trivial region turns into the nontrivial. Here, we have
defined,

γ s
1 =

√
(λ − λ′)2 − 4t2, (15)

γ s
2 =

√
(λ + λ′)2 − 4δt2. (16)

The evolution of energy spectrum as functions of γ and θ

is depicted in Figs. 5(a) with θ = π/2 and 5(c) with γ = 8t ,
respectively, for δt = 0.5t , λ = 7t , λ′ = 2t , and φa = π . The
bulk states of the eigenvalues, depicted by thin solid black
lines, have a different structure compared to the uniform
perpendicular Zeeman field case [see Figs. 3(a) and 3(c)],
whereas the lowest energy states of eigenvalues (thick solid red
lines) including the boundary states reveal a broadly similar
behavior. Also, the evolution of Zak phase as functions of
γ and θ with the same parameters as Figs. 5(a) and 5(c) is
presented in Figs. 5(b) and 5(d), respectively. They show that
zero-energy states have nontrivial characteristics. Also, the
γ dependence of energy spectrum in the strong modulated
spin-orbit coupling regime containing fourfold degenerate
boundary states is shown in Fig. 5(e). As can be seen, there
is only a fourfold degenerate zero-energy state at γ = 0.
Similar to Fig. 3(e), as we increase the strength of staggered
perpendicular Zeeman field, the system goes to a trivial phase
such that the lower and upper bulk bands separate with an
energy gap in the parameter regime γ ∈ (0,3.46t). By further
increasing the strength of Zeeman field, two branches of low
energy states (thick solid red lines) merge together again
in the parameter regime γ ∈ (3.46t,9.94t) as zero-energy

flat bands (Z = 1). Thus the unstable fourfold degenerate
nontrivial topological phase in the strong modulated spin-orbit
coupling regime for δt < 0 (even for δt > 0) is changed to
the twofold degenerate topologically nontrivial phase by γ

though undergoing a topological phase transition. Also, in
Fig. 5(f), the γ dependence of Zak phase of panel (e) is
shown. Notice that when φa = 2n′π , the system is always
gapped and a trivial insulator in both cases δt < 0 and
δt > 0.

In the mixed regime, for δt < 0(> 0), the twofold degener-
ate nontrivial phase still remains nontrivial in the presence of
staggered perpendicular Zeeman field. The behavior of energy
states is depicted in Fig. 6(a), which is similar to the one
described in the case of a uniform Zeeman field. However, in
contrast to the case presented in Fig. 4(a), one can observe
that zero-energy states can sustain larger staggered Zeeman
field strengths than that of the uniform Zeeman field case.
This can be traced back to the specifically staggered magnetic
field, having a zero net magnitude in each unit cell, that only
deforms the spectrum such that a large value of strength can
make a significant effect. Figure 6(b) shows the probability
distributions of lowest energy states for different values of γ

in the presence of staggered perpendicular Zeeman field for
the mixed regime.

FIG. 6. (a) The energy spectrum as a function of γ under OBCs
with 20 unit cells in the presence of staggered perpendicular Zeeman
field. (b) Probability distribution for two different values γ /t = 4 and
12. Here, δt = −0.5t , θ = π/2, λ = λ′ = 4t , and φa = π .
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VI. WINDING NUMBER

In addition to the Zak phase, a useful quantity for discussing
the bulk features of quantum states is a winding number. It can
be used to distinguish different topological phases determining
the number of pairs of zero-energy edge states. The definition
of the winding number is relevant in the case of block off-
diagonal Hamiltonians. A well-studied feature of systems with
the chiral symmetry class, arising from the sublattice or chiral
symmetry, is that Hamiltonians describing of such systems can
be brought into block off-diagonal form in the basis of chiral
operator [32,46]. Obviously, in this basis, the chiral operator
C must be diagonalized, Û1CÛ−1

1 = −σz ⊗ I , via the unitary
matrix

Û1 =

⎛
⎜⎝

0 0 1 1
−1 1 0 0

0 0 −1 1
1 1 0 0

⎞
⎟⎠. (17)

It is possible to transform the Hamiltonian (3) by the unitary
transformation Û1, yielding

Û1ĥ(k)Û−1
1 = h̃(k), h̃(k) =

(
0 V̂1

V̂
†

1 0

)
, (18)

with

V̂1(k) =
(

iMy,a s(k) + ξ (k)

−ξ (k)∗ + s(k)∗ −iMy,b

)
. (19)

Therefore the block off-diagonal representation of the
Hamiltonian, Eq. (18), allows for the definition of the chiral
index as

W = −T r

∫ π

−π

dk

2πi
V̂ −1

1 ∂kV̂1 = −
∫ π

−π

dk

2πi
∂kLnZ(k),

(20)
with

Z(k) =DetV̂1 = −2[(t2 − δt2) + λλ′] cos(k)

− 2i[(t + δt)λ + (t − δt)λ′] sin(k)

− 2(t2 + δt2) + My,aMy,b + λ2 + λ′2. (21)

W is the winding number of Z(k) characterizing topologically
distinct phases. The integration over k in Eq. (20) can be
performed with the use of Cauchy’s residue theorem, leading
to a simple analytical formula for the winding number. For
weak and strong modulated spin-orbit coupling regimes as
well as mixed regime in the presence of uniform (staggered)
perpendicular Zeeman field, we find W as

W = �
(|My,a| − min

{
Reγ u(s)

1 ,Reγ u(s)
2

})
−�

(|My,a| − max
{
Reγ u(s)

1 ,Reγ u(s)
2

})
, (22)

where �(x) is the Heaviside theta function and Re means the
real part. γ

u(s)
1 and γ

u(s)
2 are defined by Eqs. (13) and (14)

[Eqs. (15) and (16)]. W = 1 denotes nontrivial topological
region which manifest itself by a pair of degenerate zero-
energy boundary states under OBCs and W = 0 denotes trivial
region in which the system is an ordinary insulator. Notice that
the analytical results support the above-obtained numerical
topological phases quite well.

VII. SYMMETRY BREAKING PERTURBATIONS

Now, let us discuss the stability of the topological phase by
considering local perturbations which remove the symmetries
of the system. In the nontrivial topological region, in addition
to either a uniform or a staggered y component of the Zeeman
field, if we introduce the Zeeman field along the x axis with the
same direction and strength on the sublattices, Mx,a = Mx,b,
then the topological phases fall into the AI class. This is
because of breaking of chiral and particle-hole symmetries and
preserving of effective time-reversal symmetry. Subsequently,
the midgap edge states under OBCs are no longer stable and
shift away from zero energy value as shown in Fig. 7(a).
Moreover, in the absence of y component of Zeeman field, the
uniform Zeeman field along the x direction causes the chain
to be a nontrivial insulator with Zak phase φZak = π (Z = 1)
only in the mixed regime under the conditions

λλ′ > 0 and 0 < Mx,a < |2t |,
λλ′ < 0 and 0 < Mx,a < |2δt |. (23)

As discussed in the previous Secs. IV and V, the system is
an ordinary insulator in the presence of uniform (staggered)
Zeeman field along the y axis in the weak (strong) spin-
orbit coupling regime within the range 0 < My,a < γ

u(s)
1 .

Interestingly, in this range, we can close and reopen the
energy gap to change the topology of the system with the
aid of x component of uniform Zeeman field. The energy gap
closure happens in the presence of uniform Zeeman field along
the x axis and y component of staggered Zeeman field with
conditions

γ x
1 = |λ − λ′|

√
1 + M2

y,a

4t2 − (λ − λ′)2
, at k = 0,

γ x
2 = |λ + λ′|

√
1 + M2

y,a

4δt2 − (λ + λ′)2
, at k = ±π. (24)

Hence the chain is a nontrivial insulator Z = 1 within the
range γ x

1 < Mx,a < γ x
2 . In Fig. 7(b), the energy spectrum is

plotted versus Mx,a for Mx,a = Mx,b and My,a = −My,b. At
Mx,a = 0, the chain is an ordinary insulator. As we increase
Mx,a , the gap closes at Mx,a = 3.26t and low energy states
merge together. If the x component of Zeeman field exceeds
a certain value Mx,a = 9.79t , the bulk states join the midgap
states and then the gap reopens. Similarly, the energy gap
closure conditions in the presence of x and y components of a
uniform Zeeman field take place at

γ ′x
1 = 2|δt |

√
1 − M2

y,a

4δt2 − (λ + λ′)2
, at k = ±π,

γ ′x
2 = 2|t |

√
1 − M2

y,a

4t2 − (λ − λ′)2
, at k = 0. (25)

The chain has a nontrivial topology with the condition γ ′x
1 <

Mx,a < γ ′x
2 . For this case, the energy spectrum is plotted in

Fig. 7(c), which exhibits a nontrivial phase in the parameter
space Mx,a ∈ (0.94t,1.97t). Notice that for zero value of the x
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FIG. 7. Dependence of energy spectrum of a finite lattice with 40 unit cells on Mx,a with (a) [(e)] (Mx,a = Mx,b − 0.6t), δt = −0.5t ,
λ = λ′ = 4t , γ = 2t , θ = π/2, and φa = π , (b) δt = −0.5t , λ = 7t , λ′ = 3t , γ = 2t , θ = π/2, and φa = π , (c) δt = −0.5t , λ = λ′ = 0.2t ,
γ = 0.3t , θ = π/2, and φa = 0, and (d) δt = 0.5t , λ = λ′ = 3t , γ = 3t , θ = π/2, φa = π , V1 = 2t , and V2 = t . (f) The corresponding Zak
phase of the (e).

component of Zeeman field, the relations (24) and (25) reduce
to the ones presented in Eqs. (8) and (9).

In order to investigate the effect of effective time-reversal
symmetry on the stability of the edge states, we add the
following perturbation to the total Hamiltonian:

Ĥ ′ =
∑
n,

c = (a,b)

(V1ĉ
†
n,↑ĉn,↑ + V2ĉ

†
n,↓ĉn,↓), (26)

where V1 (V2) is the strength of on-site potential. This
perturbation breaks not only both particle-hole and chiral
symmetries but also effective time-reversal symmetry. As it
is shown in Fig. 7(d) the x and y components of Zeeman fields
with perturbation Ĥ ′ preserve the mid-gap edge states but shift
them away from zero energy. In this case, due to absence of
effective time-reversal, chiral and particle-hole symmetries,
the topological class is A.

Remarkably, it is easy to show that a nonuniform Zeeman
field along the x axis, Mx,a 
= Mx,b, can break the inversion
symmetry even in the presence of a uniform or a staggered
perpendicular Zeeman field. In Figs. 7(e)[7(f)], the energy
spectrum (Zak phase) is depicted versus Mx,a for different
magnitudes of the x component of Zeeman fields on each
sublattice, i.e., (Mx,a = Mx,b − 0.6t). In this case, the edge
states separate from each other and, subsequently, the Zak
phase does not have quantized values. Therefore the above
inspections ensure that the topological edge states in the
studied system, belonging to the BDI, AI, and A classes, are
protected by the inversion symmetry.

VIII. CONCLUSIONS

We have investigated the mutual effects of Zeeman field
and modulated spin-orbit coupling on the topological char-
acteristics of 1D dimerized lattice. It is shown that 1D lattice
dimerization is a trivial insulator in different parameter regions

of weak and strong modulated spin-orbit coupling. We have
also showed that with the aid of a uniform perpendicular
Zeeman field for weak modulated spin-orbit coupling and a
staggered perpendicular Zeeman field for strong modulated
spin-orbit coupling, the trivial phases change to a nontrivial
topological phase with a topological phase transition. There-
fore, as compared with the bare SSH model, the region of
nontrivial topological phase in the parameter space can be
extended by adding the modulated spin-orbit coupling and the
perpendicular Zeeman field to the SSH model. This nontrivial
topological phase exhibits one pair of zero-energy edge states
obeying non-Abelian statistics, which is a key requirement
in topological quantum computing. The topological phases of
the system are classified with the Z number and belong to the
BDI class. We also have derived an analytical formula for the
winding number through bulk quantum states to confirm our
numerical results. Finally, the stability of the edge states to
an externally applied Zeeman field along the chain and on-
site spin-dependent potential has also been investigated. The
inclusion of these effects breaks chiral, particle-hole, effective
time-reversal, and inversion symmetries resulting in that the
edge states are topologically protected and robust against the
perturbations as long as the inversion symmetry requirement
is satisfied. We remark that the discussion presented here
is an example of the general issue implying that required
experimentally accessible regions in parameter space may be
engineered, in order to reach desired phases efficiently.
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