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Recently, it was shown that by using special artificial materials it is possible to ensure that all electromagnetic
modes of free space are conjugately matched to the modes of a material body and, thus, all modes deliver power
to the body in the most effective way. Such a fascinating feature is acquired because the conjugate matching does
not concern only the propagating modes but, most importantly, is applied to all evanescent modes; in this way,
all the possible ways of transferring the electromagnetic energy to the material body can be optimally exploited.
However, coupling to higher-order (mostly evanescent) modes is weak and totally disappears in the limit of an
infinite planar boundary. Here, we show that by properly perturbing the surface of the receiving or emitting body
with, for example, randomly distributed small particles, we can open up channels for super-radiation into the
far zone. The currents induced in the small particles act as secondary sources (radiation “vessels”) which send
the energy to travel far away from the surface and, reciprocally, receive power from far-located sources. For a
particular example, we theoretically predict about 20-fold power transfer enhancement between the conjugately
matched power-receiving body (as compared with the ideal black body) and far-zone sources. Reciprocally, the
proposed structure radiates about 20 times more power into the far zone as compared with the same source over
a perfect reflector.

DOI: 10.1103/PhysRevB.94.125117

I. INTRODUCTION

The problem of optimizing and maximizing absorption and
emission of electromagnetic energy is relevant for a broad
variety of applications such as antennas, radar absorbers,
thermal emitters and accumulators, photovoltaic devices, and
more [1–8]. For macroscopic bodies (having sizes large
compared to the wavelength of electromagnetic radiation),
it is usually assumed that the ultimate absorber and emitter
is the ideal black body that completely absorbs all incident
rays (e.g., [9]). Conceptually, ideal black body, introduced
by Kirchhoff [10], is totally opaque and has zero reflection
coefficient for any propagating plane wave (any incidence
angle and any polarization); in this sense, it is the perfect
absorber of electromagnetic energy. Following the Planck
theory of thermal radiation [11], the ideal black body appears
to be also the ultimate thermal emitter for radiating heat into
free space. Practical realization of bodies whose properties
mimic those of ideal black bodies is a scientific and technical
challenge (see, e.g., [2,3]).

However, it has been recently demonstrated that, in princi-
ple, it is possible to engineer bodies which can absorb power
not only from incident propagating waves (incident rays in
the Kirchhoff black-body concept), but also from external
evanescent fields or high-order spherical harmonics of the
incident-wave spectrum [12,13]. Due to the resonant nature
of surface modes of these superabsorbing and superemitting
bodies, their absorption cross section grows without limit when
the medium parameters approach the ideal values, and the
thermal spectral emissivity at the resonance frequency be-
comes arbitrarily high compared to Planck’s black body of the
same size and the same temperature. The material structures
proposed in [12,13] realize the ideas of conjugate matching of
all modes of free space to all modes of the absorbing/emitting
body [8,14,15], and we call them conjugately matched bodies
or layers (CML).

The material realizations proposed in [12,13] are based
on the use of double-negative (DNG) isotropic or uniaxial
media which obey the uniaxial perfectly matched layer (PML)
conditions [16]. High-order modes of conjugately matched
bodies [12,13] resonate with all modes of free space and most
effectively exchange energy with them. However, to effectively
absorb or emit all the modes, it is necessary that the modes
of the body are sufficiently coupled with the corresponding
modes of free space. In [12], it is shown that if a conjugately
matched body fills a half-space (a planar infinite interface with
free space), its properties are the same as of the conventional
ideal black body and no absorption or radiation enhancement
over the ideal black-body limit can take place. To couple with
higher-order free-space modes, we can make the surface not
planar, and in [12] it is shown that for bodies of finite sizes,
on an example of a sphere, unlimited power exchange power
is indeed possible. An alternative scenario was explored in
paper [13], where the conjugately matched body filled a half-
space with an infinite planar interface, but the sources in free
space were positioned close to the interface and created large
evanescent fields which directly couple to the resonant surface
modes of the conjugately matched layer. Also in this case it
was seen that the absorption in the body was dramatically
stronger than in an ideal black body at the same position.

In this paper, we show that it is possible to realize an infinite
and planar surface which can absorb and emit more power than
the ideal black body by perturbing the surface of a conjugately
matched layer, introduced in [13]. In this scenario, small
subwavelength scatterers randomly distributed over the body
surface offer necessary coupling between high-order resonant
surface modes and the far-zone fields, opening channels for
extra absorption or emission of energy. In the limit of ideal
material parameters, this planar interface not only absorbs
or reflects all incident propagating waves, but does the same
also for all evanescent harmonics. We show that a perturbed
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interface with a low-loss conjugately matched body acts as a
“super-reflector” of fields developed from a small antenna in
its vicinity by launching the energy stored in the antenna near
field into space.

In particular, we introduce a random grid of electrically
thin cylinders close to a resonant interface with a conjugately
matched layer, where huge reactive energy is stored. Inevitably,
currents induced in thin conductive cylinders radiate into far
zone as linear antennas, and we say that these cylinders act as
radiation “vessels.” A random and sparse enough distribution
of cylinders ensures that diffuse radiation survives in the far
zone and is not coherently combined into a plane wave. We
test the effects of this cluster of particles on the radiation
from various conjugately matched layers and conclude that
for a realizable passive structure, one can achieve a stable
20–30-fold enhancement of the far-field power.

Such super-reflectors are extremely strongly coupled to
evanescent fields of external sources and can extract power
from them in the most efficient way. In the antenna ter-
minology, the effective area of the CML reflector is larger
than the geometrical one, although the reflector size is very
large compared with the wavelength. Basically, we aim at
realization of a surface which (at its resonant frequency)
would be “more reflective than the ideal perfectly conducting
mirror,” and this property would hold even in the limit of the
infinite planar reflector. If the perturbing elements are lossy,
instead of enhancing reflection we can enhance absorption in
a planar absorbing layer or enhance thermal radiation from
a planar hot surface into the far zone beyond the Planck
limit of the ideal black body. We expect that perturbing the
surface can be a more effective mean to couple to far-zone
field as compared to curved surfaces. In the study [12] it was
expectedly found that for large spherical bodies, when the
curvature of the surface becomes small, one needs extreme
(low-loss) values of material parameters in order to realize
enough effective coupling to high-order harmonics. The sur-
face perturbation approach, introduced here, does not have this
limitation.

II. CONJUGATELY MATCHED LAYER (CML)

We begin the study by a brief explanation of the concept of
the conjugately matched layer, introduced in [13]. It has been
recently reported [12,13] that there can exist material bodies
which optimally absorb energy of electromagnetic fields, by
achieving conjugate matching for every free-space mode. In
the theoretical limit of negligible losses in the absorbing
body, such an optimally designed finite-sized body can absorb
the whole infinite energy of an incident propagating plane
wave [12]. In [13], a uniaxial medium with special values
for its constituent parameters has been suggested as possible
realization. The permittivities and permeabilities (transversal
with subscript t and normal to the material sample boundary
with subscript n) satisfy the uniaxial perfectly matched
layer (PML) conditions [16–20] and simultaneously possess
negative real parts as in a double-negative (DNG) medium [21],
contrary to the conventional uniaxial PML choice. For planar
interfaces and TM polarization (sole magnetic component
parallel to the half-space boundary), the material parameters

satisfy

εt = μt = 1

εn

= a − jb, (1)

where a and b are real parameters and a < 0. We assume
harmonic time dependence exp(+jωt), where ω is the angular
operating frequency and j is the imaginary unit. The parameter
b > 0 corresponds to losses for propagating plane waves,
and it is easy to show [16,26] that sufficiently thick slabs
of such materials behave as perfect absorbers for arbitrary
incident propagating plane waves. From duality, a similar
expression for the parameters of uniaxial perfect absorbers
holds for the fields of the TE polarization: εt = μt = 1

μn
=

a − jb. To ensure that the thought properties hold for both
orthogonal polarizations, we can require that εn = μn. For
compactness, in the following we present only formulas for
the TM polarization, without compromising the generality.

Any uniaxial medium characterized by the constituent
parameters (εt ,μt ,εn) has the following TM wave impedance
Z (e.g., [26]):

Z = −j
η0

k0εt

√
εt

εn

k2
t − εtμtk

2
0, (2)

which relates the tangential to the interface components of
electric and magnetic fields of plane waves in the medium.
The notations η0 = √

μ0/ε0 and k0 = ω
√

ε0μ0 = 2π/λ0 cor-
respond to the free-space wave impedance and wave number,
respectively (ε0 and μ0 are the permittivity and permeability of
vacuum, while λ0 is the operational wavelength in free space).
The symbol kt is used for the transversal wave number of the
incident plane wave. Vector kt is parallel to the boundary of
the half-space and normal to the sole component of magnetic
field. The basic property of a material with the constituent
parameters given by (1) when a < 0 is that its wave impedance
Z is the complex conjugate of the TM wave impedance of

vacuum Z∗ = Z0 = −j
η0

k0

√
k2
t − k2

0 [13].
Most importantly, this equality is valid for every real wave

number kt ∈ R, either of a propagating wave in free space
(|kt | < k0) or of an evanescent mode (|kt | > k0). Therefore,
the use of such conjugately matched layers (CLM), as we
call them, leads to maximal power transfer from arbitrary
incident fields into the medium since they optimally use every
possible way (mode) available from sources outside of the
material sample. Actually, in this ideal case of overall lossless
conjugately matched medium, fields tend to infinity at the
material surface. Assuming infinitesimally small losses in the
CML, infinite power can be delivered to the medium, provided
that the incident evanescent field is created by an antenna fed
by an ideal voltage or current source, capable of supplying
infinite power. In other words, the CML structure is identical
to ordinary PML for |kt | < k0 but operates totally differently
for |kt | > k0 aiming not at zero reflection but at the maximal
power transfer.

By inspection of (1), one can directly infer that if b > 0,
the transversal relative constituent parameters εt ,μt , are lossy;
however, the normal component of the permittivity εn is an
active one. In order to identify the overall character of the
uniaxial medium, we consider a perturbed version of the
ideal material parameter values by using a small additional
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FIG. 1. (a) The testbed configuration of a grounded electrically thick slab filled with a uniaxial material (εt ,μt ,εn) with the thickness L,
excited by a TM electric dipole line inclined by the angle θ located at a small distance g from the air-medium interface. (b) The same structure
in the presence of a cluster of N electrically thin (the radius r) circular perfect magnetic conductor (PMC) cylinders randomly distributed in
the vicinity of the air-slab interface with arbitrary coordinates (xn,yn) for n = 1, . . . ,N .

parameter δ controlling the imaginary part of the normal
permittivity εn = 1

εt
− jδ = 1

a−jb
− jδ, which tends to the

ideal CML medium parameters for δ → 0. To study the
properties of such a quasi-CML medium, we use the testbed
configuration illustrated in Fig. 1(a). For simplicity of analyt-
ical considerations, we assume that there is no dependence on
one of the tangential coordinates (z). A grounded slab of the
thickness L, filled with a uniaxial material with the constituent
parameters (εt ,μt ,εn), is excited by an infinite electric-dipole
line located at the distance g from the air-medium interface.
The exciting dipole moments are orthogonal to the axis z

and inclined by the angle θ with respect to the axis x

[Fig. 1(a)]. In this configuration, the magnetic field has only
one nonzero component (along z) and the fields are TM
polarized.

In [13], an approximate analytical formula for the absorbed
power (per unit length along the ẑ axis) has been derived. It
shows that the absorbed power P is a sum of two terms. The first
term corresponds to the power delivered by the propagating
modes Pprop = μ0ω

3q2/16, and it is independent from the
angle θ . Here, q is the electric dipole moment per unit length
of the line (measured in Coulomb). The second term gives
the power absorbed from the evanescent-modes fields and is
written as [13]

Pevan
∼= Pprop

8|a|
k2

0π

∫ +∞

k0

k2
t

(
k2
t − k2

0 sin2 θ
)

(
k2
t − k2

0

)3/2 e−2g
√

k2
t −k2

0

× δ

[1 + sgn(a)]2 + δ2
[

k2
t |εt |

2(k2
t −k2

0)
]2

dkt (3)

for δ → 0. It is noteworthy that the CML slab acts as an
ultraefficient passive absorber (P → +∞) of the incoming
illumination for δ > 0 and as an infinite-power active emitter
(P → −∞) for δ < 0. In the limit of δ → 0+, both the
field strength at the surface and the absorbed power diverge
and tend to infinity. Therefore, it would be meaningful to
inspect the field distributions leading to such unbounded field
concentrations.

III. EXCITATION OF CML

Let us examine the fields created by a small source in the
vicinity of an infinite and homogeneous CML slab within the
testbed setup shown in Fig. 1(a). The corresponding boundary-
value problem is scalar, and the magnetic field possesses a
sole component parallel to ẑ axis [H = ẑH (x,y)]. The used
Cartesian coordinate system (x,y,z) is also defined in Fig. 1(a),
with the primary dipole line source positioned at (x,y) = (0,0).
The incident magnetic field from that electric-dipole line
(existing in vacuum) can be expressed in the following integral
form [22]:

Hinc(x,y) = −ωq

4π

∫ +∞

−∞
e−|x|κ0(kt )

×
[

kt

κ0(kt )
cos θ + j sin θ sgn(x)

]
e−jkt ydkt , (4)

where the normal to the interface component of the wave

number κ0(kt ) =
√

k2
t − k2

0 is evaluated with a positive real
part and if the real part is zero, as a positive imaginary number.
Analytical expression for the incident field involving Hankel
function [22,23] is also available but not given here for brevity
since all the field quantities are expressed as spectral integrals.

The formulated boundary-value problem can be solved
analytically. As a result, we find that the secondary field
developed due to the presence of the uniaxial slab and the
PEC plane in free space (x < g) is given by Hsec(x,y) =∫ +∞
−∞ Ssec(kt )eκ0(kt )x−jkt ydkt , where

Ssec(kt ) = ωq

4π
e−2gκ0(kt )

(
kt

κ0(kt )
cos θ + j sin θ

)

× κ(kt ) − εt coth[κ(kt )L]κ0(kt )

κ(kt ) + εt coth[κ(kt )L]κ0(kt )
. (5)

The value of

κ(kt ) =
√

k2
t

εt

εn

− k2
0εtμt (6)
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FIG. 2. The magnitude of the spatial spectral density function of the secondary field Ssec(kt ) at x = 0 with respect to the normalized wave
number kt/k0 for various inclination angles θ and (a) a = 2 (DPS-PML) and (b) a = −2 (CML). Common plot parameters: b = 0.1, δ = 0.001,
g = 0.03λ0, L = 3λ0. The represented quantity is normalized by Sinc(90◦) = jωq/(4π ).

is the normal component of the plane-wave propagation
constant in the CML slab. The total field in vacuum equals
to Hback(x,y) = Hinc(x,y) + Hsec(x,y).

In Fig. 2, we present the magnitude of the integrand in
the formula of the secondary magnetic field for x = 0 (very
close to the air-CML boundary located at x = g), equal to
|Ssec(kt )| as a function of the normalized transversal wave
number kt/k0 for various inclination angles of the source
θ . The presented quantity is normalized by the (constant)
magnitude of the integrand of the incident field (4) for θ = 90◦:
Sinc(90◦) = jωq

4π
, which is independent from kt and gives us a

metric of the incident power. Figure 2(a) corresponds to a
double-positive (DPS) conventional uniaxial PML [16] and
it is directly observed that |Ssec| vanishes exponentially for
evanescent waves (|kt | > k0). On the contrary, for the CML

case [Fig. 2(b)], the integrand values have huge magnitudes
for |kt | > k0 regardless of the angle θ . These graphs verify
the aforementioned theoretical expectation that unbounded
absorbed power of (3) in the CML case (a < 0 and |δ| → 0) is
due to the extremely large magnitudes of the evanescent fields
developed in the vicinity of the interface, as demonstrated by
Fig. 2(b). Note the different scale in Figs. 2(a) and 2(b): the
values in the region −1 < kt/k0 < 1, which correspond to the
propagating-wave part of the spectrum, are the same in both
figures.

Figure 3 shows the spatial distribution of the total magnetic
field |Hback(x,y)| for the two cases of Fig. 2 (with θ = 90◦).
The represented quantity is normalized by the value of
the incident field at (x,y) = (g,0) and is expressed in dB.
We again observe how more efficient is the CML medium
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FIG. 3. The spatial distributions of the total magnetic field Hback(x,y) normalized by Hinc(g,0) expressed in dB for (a) a = 2 (DPS-PML)
and (b) a = −2 (CML). Common plot parameters: b = 0.1, δ = 0.001, g = 0.03λ0, L = 3λ0, θ = 90◦.
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[Fig. 2(b)] in exciting fields along its boundary compared to
the conventional PML case [Fig. 2(a)]. However, since the
nature of these fields is evanescent, they are rapidly decaying
with increasing the distance from the surface (x → −∞). It
should be stressed that the concentration of the fields in the
vicinity of the CML interface is always huge regardless of the
sign of δ, both for overall passive (δ > 0) or active (δ < 0)
structures.

In this paper, we propose to make use of this concentration
of fields along the boundary of the two regions (x = g) to
create an “antenna,” which would “launch” the energy stored
in this region into the far zone x → −∞. This is not an easy
task, though. It is well known that resonant surface modes
along infinite and regular surfaces do not radiate energy into
the far zone. In other words, despite the huge difference of
the two systems (PML versus CML slab) in the near field,
the behavior of the field radiated in the far region is similar.
Actually, with the use of the stationary phase method, one can
directly evaluate the azimuthal profiles of the incident and the
secondary fields in the far zone as follows:

hinc(ϕ) ∼ k0jωq

4
sin(ϕ − θ ), x → −∞, (7)

hsec(ϕ) ∼ −πk0Ssec(k0 sin ϕ) cos ϕ, x → −∞, (8)

for 90◦ < ϕ < 270◦. We notice that the expression of the
secondary component, which describes the effect of the
grounded slab, is proportional to a specific value of the function
Ssec(kt ): the one corresponding to kt = k0 sin ϕ. Since this
value is always smaller in magnitude than k0 (ϕ ∈ R), namely,
corresponding to a propagating and not to an evanescent mode,
it is clear that huge reactive fields of Fig. 2(b) do not to
contribute to far-zone radiation. The situation is not the same
if one uses as an electromagnetic energy sink a finite-size
body filled with a suitable CML medium. In cylindrical [13] or
spherical [12] cases, there are no purely evanescent modes and
thus all the fields contribute (poorly) to the radiative power. In
the infinite slab case analyzed here, the necessity of something
that can act as a radiation “vessel” to allow the field energy
stored in resonant surface modes to propagate far away from
the source, becomes clear.

IV. RADIATION WITH “VESSELS”

A. Circuit theory approach

In an attempt to find a way to exploit this huge field
concentration and transform the sizable magnitude of evanes-
cent modes (developed close to x = g) into radiative fields,
we consider the configuration of Fig. 1(b). Let us randomly
distribute small cylindrical scatterers in the vicinity of the
air-CML slab interface. It is expected that the large evanescent
fields would excite currents along these wires, which will act
as radiation vessels, and their own field would be expressed as
cylindrical modes which are always partially propagating and
survive in the far region.

The idea of perturbing the surface with tiny scatterers can
be understood from the equivalent circuit corresponding to
the fields of a particular evanescent plane-wave component
exciting the CML slab in presence of a small scatterer, shown
in Fig. 4. The ideal voltage source V represents the primary

V

CML

RCML

LCML
RRAD

Radiation
“Vessel”

CVAC
jωM

Vacuum

I

IRAD

I

jXRAD

Electric
Dipole
Source

FIG. 4. Sketch of the equivalent circuit for excitation by a partic-
ular evanescent TM plane-wave component. The wave impedance of
TM waves in vacuum Z0 corresponds to the capacitance CVAC, while
the impedance Z of the CML contains a loss resistor RCML and an
inductive LCML component. The cylindrical vessel in the near field
of vacuum-CML interface is characterized by a radiation resistance
RRAD and a reactive impedance XRAD.

radiator (an electric dipole source in this configuration) and
capacitance CVAC expresses the wave impedance of free space
for a specific value of kt , given by (2) for εt = μt = εn = 1.
The inductive complex impedance (RCML + jωLCML) is given
by (2) with the parameters of the CML layer. Resistance RCML

models the dissipative losses in the CML slab and the current
flown through the primary circuit is denoted by I . The small
scatterer (radiation “vessel”) in the vicinity of the interface
is modeled by the radiation vessel circuit, of current IRAD,
formed by a nonresonant reactive element (jXRAD) (capacitive
or inductive) and a small resistor of the radiator RRAD. If
the scatterer is lossless, RRAD corresponds to the radiation
resistance, and if it is absorptive, the resistance is the sum of the
radiative and dissipative terms. Near-field coupling between
the scatterer and the resonant surface mode of the interface is
modeled for simplicity by mutual inductance jωM . In general,
the mutual impedance jωM can be a complex number with
any sign of the imaginary part; however, here we confine our
analysis to a very closely positioned particle, in which case
the mutual impedance is predominantly reactive (M ∈ R) and
inductive (M > 0) for the considered TM polarization.

The circuit in the absence of the radiation vessels (M = 0)
has been analyzed in [13], and it is clear that the power
delivered to the loss resistor RCML tends to infinity when the
series LC circuit works at resonance and under the additional
condition RCML → 0. In other words, the absorbed power
is limited only by the energy available from the primary
source, while there is no radiation towards the far zone
(PRAD = 0). In the presence of the vessels, however, the
systems behave dramatically different. Considering the circuit
of Fig. 4, we can easily find the current amplitude both in
the directly fed branch (I ) and in the circuit of the radiating
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vessel (IRAD):

I = V (RRAD + jXRAD)

ω2M2 + (RRAD + jXRAD)
(
RCML + jωLCML + 1

jωCVAC

) , (9)

IRAD = − jωMV

ω2M2 + (RRAD + jXRAD)
(
RCML + jωLCML + 1

jωCVAC

) . (10)

If we assume that there are no particles playing the role
of radiation vessels (M = 0), we notice that at the resonant
frequency of the mode jωLCML + 1

jωCVAC
= 0 and in the limit

of negligible losses into the CML slab RCML → 0, the current
I increases without bound. However, the radiated power PRAD

is zero because the resistance RCML represents the dissipative
process, not the radiative operation. In this way, we come
again to the aforementioned conclusion that the power is
accumulated in the near field and does not reach the far zone.
On the contrary, when the pin comes close to the vacuum-CML
interface, the radiated power equals to that delivered to RRAD

since it models the function of the vessel as antenna. Therefore,

PRAD = |V |2
2

ω2M2RRAD

(ω2M2 + RRADRCML)2 + (XRADRCML)2
, (11)

under the assumption that the system works at CML resonant
frequency, namely, ω = 1/

√
LCMLCVAC. For resonant and

low-loss CML (RCML → 0), the expression for the radiated
power simplifies to PRAD = RRAD|V |2

2ω2M2 . It is clear that in order to
enhance radiation, we need to bring the CML to resonance
and reduce its losses, while the vessels can be small and
nonresonant. Coupling between the scatterers and the surface
modes should be weak in the scenario.

In the reciprocal situation of excitation by far-zone sources,
we see that it is possible to enhance absorption beyond the
ideal black-body full absorption of propagating plane waves
by making the small scatterers lossy. In this case, assuming
that the scatterers do not create a significant shadow for the
propagating modes, the propagating plane waves deliver nearly
all their power to the CML body, while the evanescent waves
(high-order cylindrical harmonics) couple to the resonant
surface modes via the small scatterers and deliver additional
power into the loss resistors of the scatterers.

B. Electromagnetic theory approach

Having understood the basic operational principle from an
equivalent circuit, which is by default an approximation for
every single mode kt , we will next solve the problem rigorously
for the entire spectrum of kt . A spectrum integral formulation
is feasible if we assume random but specific positions of a
finite number of scatterers (xn,yn) on the xy plane, where
n = 1, . . . ,N [as shown in Fig. 1(b)]. For the sake of simplicity
of test calculations, we assume that particles are circular
cylinders of a small radius r and of perfectly magnetically
conducting (PMC) material. In Fig. 1(b), the pins are located
even at x < 0 since we have implied that the distance g of
the primary dipole from the interface is electrically small and
thus the evanescent fields may be strong even at the left side
of the source. Such a choice does not affect the presented

concept since similar results can be obtained if we restrict
the radiation vessels positions to the strip 0 < x < g. We
chose perfect magnetic conductor pins as a simple model of
lossless scatterers supporting magnetic currents which is most
appropriate for the considered TM polarization. Conceptual
results will not change for any other small lossless scatterers
at the same positions. Green’s function of the considered
configuration for both source (χ,ψ) and observation points
(x,y) in vacuum is comprised of two components. The singular
component is just a cylindrical wave [23]:

Gsingular(x,y,χ,ψ) = −j

4
H

(2)
0 (k0

√
(x − χ )2 + (y − ψ)2),

(12)
where H

(2)
0 is the Hankel function of zero order and second

type. The smooth component of Green’s function describes the
effect of the grounded CML slab on the free-space field and is
found as follows:

Gsmooth(x,y,χ,ψ) =
∫ +∞

−∞
Sgre(kt )e

κ0(kt )(x+χ)e−jkt (y−ψ)dkt ,

(13)

where the spatial spectral density is given by [24]

Sgre(kt ) = 1

4π

e−2κ0(kt )g

κ0(kt )

εt coth[κ(kt )L]κ0(kt ) − κ(kt )

εt coth[κ(kt )L]κ0(kt ) + κ(kt )
. (14)

If we use the symbol Mn (n = 1, . . . ,N) for the magnetic
currents (measured in volt/meter) induced along the axes of
the cylinders, the scattered magnetic field produced due to the
presence of them is given as the following integral [25]:

Hscat(x,y) = −jk0

η0

N∑
n=1

∫
(Cn)

Mn(l)[Gsingular(x,y,χ (l),ψ(l))

+Gsmooth(x,y,χ (l),ψ(l))]dl. (15)

The notation Cn is used for the contours of cylinder’s surfaces.
Since the cylinder radius is electrically small (k0r 	 1), the
magnetic currents can be assumed to be uniformly distributed
over the cylinder perimeter, and modeled by line currents
along the cylinder axes, namely, Mn(l) ∼= Mn. In this way, the
approximate boundary condition for zero total magnetic field at
the centers of the cylinders Hback(xm,ym) + Hscat(xm,ym) = 0
for m = 1, . . . ,N can be enforced to formulate the following
N × N linear system of equations with respect to the unknown
magnetic currents Mn:

N∑
n=1

Mn[Imn + 2πrGsmooth(xm,ym,xn,yn)]

= η0

jk0
Hback(xm,ym). (16)
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The quantity Imn is the following approximately evaluated
integral:

Imn =
∫

(Cn)
Gsingular(xm,ym,χ (l),ψ(l))dl

= −jπr

2

{
H

(2)
0 (k0r), m = n

H
(2)
0 (k0dmn), m 
= n

(17)

where dmn =
√

(xm − xn)2 + (ym − yn)2 is the distance be-
tween the centers of the nth and the mth particles.

In this way, the induced magnetic currents can be found and
the scattered field in the far region (ϕ-dependent profile) takes
the form

hscat(ϕ) ∼ −j2πk0r

η0

N∑
n=1

Mn[ejk0ρn cos(ϕ−ϕn)

−πk0 cos ϕSgre(k0 sin ϕ)e−jk0ρn cos(ϕ+ϕn)],

x → −∞ (18)

where ρn = √
x2

n + y2
n and ϕn = arctan(xn,yn) are the polar

coordinates of the cylindrical radiation vessels. Thus, we have
obtained the analytical solution for the far field of the CML slab
in the presence of numerous radiation vessels. In the following,
we are going to use both approaches (circuit analysis and
electromagnetic analysis) in order to study, interpret, and
quantify the radiation enhancement achieved when the pins
are located in the vicinity of the vacuum-CML interface.

V. NUMERICAL RESULTS

In the following examples, we use a large number of vessels
which are positioned neither very close to each other, to avoid
building effective PMC walls which will block the incident
illumination, nor too far since we want a strong background
field at their positions. In particular, we locate N = 80 random
points (xn,yn) for n = 1, . . . ,N belonging to a narrow vertical
strip {−λ0/20 < x < λ0/20, − 10λ0 < y < 10λ0}. The dis-
tance between every couple of centers of the cylinders dmn is
kept larger than λ0/5, so that the lattice is inhomogeneous at
the wavelength scale and there is strong diffuse scattering into
the far zone [26]. As referred above, we confine ourselves to
uniaxial media (under TM illumination) with

εt = μt = a − jb, εn = 1

εt

− jδ = 1

a − jb
− jδ, (19)

and we are mainly interested in the CML cases with a < 0.
Obviously, the presented results are dependent on the random
distribution of the radiation vessels; however, our studies of a
number of particular realizations of the pins distribution show
that the obtained conclusions are valid regardless of the spatial
distribution of the PMC pins in the vicinity of the CML slab.

A. Radiation enhancement

A metric of how strong is the effect of the radiation
vessels on the radiated far-field strength should be definitely
related with the energy of the azimuthal field profiles:
{hinc(ϕ),hsec(ϕ),hscat(ϕ)}. In particular, we can define the
radiation enhancement ratio R as the ratio of the far-zone

power radiated in the presence of the near-field scatterers over
the corresponding quantity in the absence of them:

R =
∫ 3π/2
π/2 |h(ϕ)|2dϕ∫ 3π/2

π/2 |hinc(ϕ) + hsec(ϕ)|2dϕ

≡
∫ 3π/2
π/2 |hinc(ϕ) + hsec(ϕ) + hscat(ϕ)|2dϕ∫ 3π/2

π/2 |hinc(ϕ) + hsec(ϕ)|2dϕ
. (20)

Here, we evaluate and analyze the radiation enhancement fac-
tor R when certain parameters of the considered configuration
vary. We are seeking for combinations of the structure, the
material parameters, and the excitation which lead to R � 1,
namely, a substantial improvement of the radiated power when
one puts a random cluster of cylinders in the near region of the
resonant surface.

In Fig. 5(a), we show the ratio R as a function of the real part
a of the relative transversal permittivities/permeabilities (a =
Re[εt ] = Re[μt ]) for various perturbation parameters δ. One
directly observes a huge change in the magnitude of R taking
place when the material parameters transit from the double-
negative (CML) slabs (a < 0) to double-positive, conventional
PML slabs (a > 0). This feature is explained by the resonant
nature of the CML with a < 0. That is why we are focusing on
the case of CML (a < 0) rather than the conventional uniaxial
PML (a > 0). With the purple dots, we show (in the DNG
cases a < 0) the points on each curve for which the normal
permittivity becomes lossless (it is lossy on the left side of
the dots and active on the right side). In other words, the dots

indicate the equality δ = b
a2+b2 ⇒ a = −

√
b
δ

− b2, which is
valid (within the considered ranges of a) only for the three of
the four curves of Fig. 5(a) [and for none of Fig. 5(b)]. It is clear
that when one moves along that “ultimate passivity boundary”
(where none of the permittivity/permeability components are
active) defined by the aforementioned successive purple dots,
takes a decreasing R both for increasing δ and for increasing
a < 0 (when |a < 0| becomes smaller). We can also conclude
that even when the medium is lossy for any direction of the
fields, the radiation enhancement is significant.

Most importantly, these results prove that the radiation
enhancement due to strong coupling of resonant surface modes
to the far-field modes is orders of magnitude higher than
possible reduction of radiation of propagating modes into the
far zone. Recall that in the absence of the scatterers and δ → 0,
the CML slab is perfectly matched to free space. For small
values of b, all propagating modes are fully reflected, and we
clearly see that adding pins makes the reflected fields more
than two orders of magnitude stronger than reflected from a
conventional perfect reflector. Furthermore, R is larger when δ

is closer to zero which is anticipated by the limiting expression
of (3) in the DNG case. The best results are recorded when a

is negative but close to zero (much larger than −1, namely, for
−1 	 a < 0) where the radiation enhancement is giant and
practically independent from δ. In Fig. 5(b), we represent R

as a function of a for several loss parameters b. Again, we
note that the cluster works only in the CML case, where it
does a very good job (R > 50 on average). Finally, a smaller
imaginary part b (with fixed δ > 0) favors the increase in the
radiated power achieved with the cylindrical vessels.
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FIG. 5. The radiation enhancement ratio R as a function of the real part of the transversal components a = Re[εt ] = Re[μt ] for (a) several
perturbation parameters δ = Im[1/εt − εn] of the normal component of the material parameters (with b = 0.1) and (b) several values of the
imaginary part b = −Im[εt ] = −Im[μt ] (with δ = 0.03). Plot parameters: r = λ0/200, N = 80, g = λ0/20, L = 3λ0, θ = 90◦.

The singular behavior of the radiated power in the limit
a → 0− can be explained by considering the quality factor
of the resonating surface modes. To do that, we calculate the
equivalent inductance LCML and resistance RCML considering
the wave impedance Z of the CML medium (2); similarly,
one can find expressions for the capacitive effect of free space
CVAC by evaluating Z0. If one assumes that δ > 0 (to ensure
overall passivity), evanescent modes |kt | > k0 (for which the
interesting phenomena happen) and a < 0 (to have resonance),
the quality factor of the equivalent RLC series circuit takes
the form

Q = 1

RCML

√
LCML

CVAC
⇒

Q ∼=

√
2
(
k2
t − k2

0

)
k2
t

√
2
(
k2
t − k2

0

) + bδk2
t

(−a)δ
, δ → 0+. (21)

It is easy to see that the loss parameter RCML is proportional to
(−a)δ in this case. Thus, for a fixed level of losses in the CML
slab (measured by δ), the quality factor behaves as 1/a for a →
0−. Figure 6 shows the values of the quality factor on the plane

a

1/
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FIG. 6. The decimal logarithm of the quality factor of the
equivalent circuit log Q with respect to the real part of the transver-
sal components a = Re[εt ] = Re[μt ] and the inverse perturba-
tion parameter 1/δ = 1/Im[1/εt − εn]. Plot parameters: kt = 1.5k0,
b = 0.1.

(a,1/δ) in the region −2 < a < 0.2, 1 < 1/δ < 100. It is clear
that Q obtains huge magnitudes when |a|,δ are very small for
the CML scenario, namely, under the assumption of a < 0. The
ultimate passivity boundary, along which we have a nonactive
εn (Im[εn] = 0), is indicated by a white line with purple dots. It
divides the map (a,1/δ) into two regions: one upper right which
corresponds to active normal permittivity (Im[εn] > 0) and
one lower left which concerns a passive normal permittivity
(Im[εn] < 0).

In Fig. 7(a), we depict the variations of the radiation
enhancement R with respect to the perturbation parameter
δ = Im[ 1

εt
− εn] = Im[ 1

μt
− εn] for several values of the real

parts a of the transversal constituent components. When δ > 0,
namely, when the structure is overall passive, the effect of the
radiation vessels becomes weaker and weaker for increasing δ,
which is also obvious from Fig. 5(a). Note, however, that when
the real part of the transversal permittivity approaches zero
from negative values, radiated power enhancement remains
substantial even for rather large positive δ, that is, for rather
high overall losses in the system. On the other hand, when
δ < 0, the structure is overall active and the whole slab acts
as an additional power source; that is why the variations
are sharper and more parameter dependent. In particular, R

possesses substantially oscillating and, on the average, much
higher values when δ < 0; in addition, the fluctuations are
weaker and the output more stable when a is negative but
close to zero. It should be pointed out that these “spikes”
in the response of the active structures reminds of electrical
thickness resonances combined with a proper excitation. As
it will be illustrated later in the analysis, such behavior is not
attributed mainly to the presence of a random grid of pins but
to the fact that the grounded slab is active and infinite in size.
Again, one can observe the behavior of the system along the
“ultimate passivity limit” (purple dots) which indicate once
again that the functions R = R(δ > 0) and R = R(a < 0) are
decreasing.

In Fig. 7(b), the change of R = R(δ) is shown for various
b = Im[εt ] = Im[μt ]. The radiation enhancement is almost
independent from the imaginary part b in the passive scenario,
while, similarly to Fig. 7(a), shaky response is observed when
δ < 0. It appears that when the system is overall active, one
can find specific narrow intervals of δ where extremely high
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FIG. 7. The radiation enhancement ratio R as function of the perturbation parameter δ = Im[1/εt − εn] for (a) various real part of transversal
components a = Re[εt ] = Re[μt ] (with b = 0.2) and (b) various imaginary parts b = −Im[εt ] = −Im[μt ] (with a = −1). Plot parameters:
r = λ0/200, N = 80, g = λ0/20, L = 3λ0, θ = 90◦.

radiation is achieved regardless of the inherent losses b along
the transversal directions.

As far as the rapid oscillations of the device response for
δ < 0 are concerned, we show in Fig. 8(a) the reflection
coefficient when the radiation vessels are absent and the
structure is illuminated by an obliquely incident propagating
plane wave. In Fig. 8(a), we represent the decimal logarithm
of the reflection coefficient with respect to the perturbation
parameter of the imaginary part δ and the incidence angle.
Apparently, the reflection coefficient can be larger than unity
for the active case (δ < 0); furthermore, sharp maxima are
recorded for the same half-plane close to the grazing angle.
In other words, similar “spikes” as those appearing in Fig. 7
constitute a characteristic of the active structure even though
no evanescent modes are considered (real incidence angles)
and no radiation vessels are used. They are just resonances
of an infinite active slab which pumps energy to the system
occurring at specific excitation directions. To better understand
how these oscillations depend on the real part of the transversal
permittivity/permeability of the CML, we show [Fig. 8(b)] the
average magnitude of the aforementioned reflection coefficient
(with respect to the real incidence angle) as a function of δ for
several a. It is clear that the number of peaks increases for

more negative a and most of them are exhibited for δ → 0−;
such a conclusion is compatible with the variations in Fig. 7(a).
Finally, the curve spikes in Fig. 8(b) do not appear at the same δ

as those in Fig. 7(a) since they correspond to different systems
(excitation and structure); however, the inherent tendency of
the active slab (δ < 0) towards abruptly changing response is
demonstrated in both cases.

A more systematic approach which proves the necessity
of an overall active slab (δ < 0) in order to have sharp
maxima comes from the corresponding transmission-line
model of the grounded CML slab. The reflection coefficient
of a vessel-free structure [which is represented in Fig. 8(a)]
is written in terms of the TM wave impedances (2) as
follows: RC = Z0−Z tanh[κ(kt )L]

Z0+Z tanh[κ(kt )L] . The quantity RC has large (or
infinite) magnitude, which imply sharp variations, when its
denominator takes small (or zero) values. It is more feasible
when the argument of hyperbolic tangent is an imaginary
number; it is then replaced by a trigonometric tangent whose
range is infinite and thus the equality Z0 + Z tanh[κ(kt )L] = 0
becomes easier to get (even approximately) satisfied. Such
a condition can only be fulfilled when quantity under the
square root of κ(kt ) is negative and thus purely real, namely,
when Im[κ2(kt )] = 0 ⇒ k2

t = 2bk2
0( 1

2b−(a2+b2)δ − δ). For this
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FIG. 8. (a) The decimal logarithm of the magnitude of the reflection coefficient of the vessel-free structure as function of the perturbation of
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FIG. 9. The radiation enhancement ratio R for various values of the real part of transversal components a = Re[εt ] = Re[μt ] as a function
of the electrical distance of the source from the interface g/λ0 (L = 3λ0). (a) Overall passive CML with δ = 0.02. (b) Overall active CML with
δ = −0.02. Plot parameters: b = 0.2, r = λ0/200, N = 80, θ = 90◦.

direction of excitation, the propagation constant in the CML
slab is real and takes the form κ ∼= k0

a2+b2√
2b

√
δ for small δ → 0.

It is now clear that the only way for the quantity tanh[κ(kt )L]
to have the sharp variations of the trigonometric tangent is to
use an overall active structure with δ < 0 (given that b > 0).

In Fig. 9, we identify the influence of the location of the
primary source in representative passive and active scenarios
(δ = ±0.02). In Fig. 9(a), we can see that the radiation falls
rapidly as the primary source gets distant from the air-CML
slab interface because the evanescent part of the exciting
field gets weaker. However, especially in the active case
shown in Fig. 9(b), radiation enhancement remains significant
even when the distance to the source is much larger than
the wavelength. As indicated above, in the active case the
enhancement factor R takes, on the average, higher values
and exhibits a less monotonic behavior as a function of the
geometrical and material parameters of the configurations.

B. Radiation patterns

Apart from the macroscopic insight offered by the radiation-
enhancement metric R, one can understand many features by
observing the azimuthal variations of the far-field patterns for

the introduced radiation-enhancing mirrors. The represented
quantities are normalized by |hinc(0)| = k0ωq/4. The incident
field in the far region hinc(ϕ) is evaluated by (7), the back-
ground field hinc(ϕ) + hsec(ϕ) is given by (8), and the total field
in the presence of the cylinders hinc(ϕ) + hsec(ϕ) + hscat(ϕ) is
computed using (18).

In Fig. 10, we illustrate two characteristic cases: one passive
[Fig. 10(a)] and one active [Fig. 10(b)]. The far-field patterns
are represented in the case that the grounded CML slab is
nearly fully reflecting propagating waves (we select the dissi-
pation parameter b = 0 and the CML loss factor δ is small).
The three curves compare the far-field pattern of the primary
source into free space (green), the pattern for the CML slab
without perturbing pins (blue), and the CML slab with radia-
tion enhancing vessels (red). The green curve is simply the pat-
tern of a dipole line source, with the maximum in the broadside
direction [in both Figs. 10(a) and 10(b)]. CML slab without
pins basically acts as a reflector for the propagating part of the
incident spectrum and its response gets substantially enhanced
along the grazing-angle directions (ϕ ∼= 90◦,270◦) for the
active scenario. We can see that for the passive mirror the max-
imum enhancement of the field strength equals 2 (fourfold in
terms of power), which takes place for directions along which
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FIG. 10. The azimuthal profiles |h(ϕ)|2 (normalized by |hinc(0)|2 = k2
0ω

2q2/16) of the incident field, the background field and the total
field as functions of angle ϕ for: (a) a passive scenario (δ = +0.01) and (b) an active scenario (δ = −0.01). Plot parameters: a = −2, b = 0,
L = 3λ0, gλ0/10, r = λ0/100, N = 80, θ = 90◦.
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FIG. 11. The azimuthal profiles |h(ϕ)|2 [normalized by |hinc(0)|2 = k2
0ω

2q2/16] of the incident field, the background field, and the total
field for (a) a = −0.25, δ = 0.02, L = 2.557λ0, g = λ0/20 (R ∼= 84) and (b) a = −1, δ = −0.02, L = 3λ0, g = 0.0665λ0 (R ∼= 525). Plot
parameters: b = 0.2, r = λ0/200, N = 80, θ = 90◦.

the reflected field sums up in phase with the field of the primary
source. This value is the maximal possible value of the reflected
field from any ideally reflecting planar mirror (with arbitrary
reflection phase). We clearly see that the radiation vessels
provide an additional radiation channel via the evanescent part
of the spectrum, and the radiated power is strongly enhanced,
well above the fundamental limit for any lossless mirror.

In Fig. 11, we represent the results also for a passive
[Fig. 11(a)] and an active [Fig. 11(b)] case which correspond
to high radiation enhancement R. Losses in the CML are
present (b = 0.2), so that the reflections of the propagating
part of incident waves are weak. That is why we see that the
blue and green curves nearly coincide for the passive CML.
The chosen value of δ = 0.02 leads to an enhancement in
radiation by a factor of R ∼= 84. In this case, it is apparent that
the far-field response of the CML slab without the radiation
enhancing cluster is almost identical to the incident field,
which is anticipated from (8). However, when one puts the
randomly distributed vessels in the near field, the output power
of the antenna gets significantly amplified (and the pattern
becomes asymmetric with respect to ϕ = 180◦). In Fig. 11(b),
corresponding to an active CML, we use δ = −0.02 and the
enhancement is huge in all directions (the overall radiated
power enhancement factor R ∼= 525).

All the proposed structures used in the aforementioned
cases incorporate as the main component the CML medium,
a material whose effective properties are described above. For
this reason, the issue of actually realizing DNG structures
with controllable values of the longitudinal parameters may be
raised. To emulate the negative transversal permittivities and
permeabilities, one of the most promising configurations is the
so-called fishnet structure [27,28]; a multilayered structure of
perforated thin metal sheets. As far as the longitudinal direction
is concerned, one can insert into the formed holes rods of
negative permittivity materials or wire media to achieve the
desired response. A more detailed description on how materials
with CML properties may be constructed is contained in [13].

VI. CONCLUSIONS

It is well known that infinite homogeneous planar sur-
faces can fully reflect electromagnetic waves in the limit of

negligible losses. In this case, the amplitude of waves radiated
by a source near the mirror can be doubled as compared with
the incident waves. This surface is thought to be “ideally
shiny.” On the other hand, the reflection coefficient from
planar surfaces can be, in principle, made zero for all incident
propagating waves (any polarization and any incident angle).
In this case, all power of incident propagating plane waves
is absorbed and the surface is “ideally black,” absorbing
maximum power and, reciprocally, emitting maximal heat
power according to the Plank law. In both these scenarios,
evanescent waves do not participate in power exchange
between far-zone external sources and the material body.

In this paper, we have shown that perturbing the boundary
of an infinite planar surface which maintains resonant surface
modes, can in principle realize a planar reflector which reflects
more power than any ideally reflecting planar surface. Due
to perturbations, surface modes couple to propagating plane
waves and create additional channels for power exchange via
evanescent fields. Such perturbed resonant surface extracts
extra power from near sources and sends that into space. The
amplitude of the reflected field can be orders of magnitude
larger than the maximal value of 2 for any usual lossless
mirror. Making the perturbation lossy, it can become possible
to overcome the black-body limit even for planar surfaces. In
this scenario, the black body absorbs nearly all propagating
waves, while the perturbations provide coupling between the
resonant surface modes and an additional energy sink via
evanescent modes.

The perturbations are random at the wavelength scale
and nonresonant. In this configuration, the surface-averaged
currents induced in the perturbation objects (which could
partially reflect propagating waves and compromise their
absorption in the CML body) are small because they couple to
nonresonant propagating modes of the absorbing or reflecting
body. On the other hand, current components which vary fast
on the wavelength scale can be huge because they couple to
highly resonant CML body. These spatially inhomogeneous
resonant currents on the perturbations provide additional
channels for power exchange between the body and free-space
wave modes, allowing stronger reflections than from an ideal
reflector or more absorption than in the ideal black body.
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Analyzing the far-zone radiation patterns, we see that
there is an analogy between the revealed phenomena and
superdirectivity of antennas [29]. Superdirective radiators can
create a narrow beam with the directivity higher than that of the
same configuration which is uniformly excited [30]. However,
in the configuration which we have introduced here, it appears
that the planar reflector sends superdirective beams nearly
everywhere (pattern oscillations are determined by random
positions of radiation vessels). There is also a connection of
the revealed phenomena to the concept of perfect lens as a
slab of a lossless double-negative material [31]. The perfect
lens operation also exploits resonance of surface modes at an
interface between free space and a double-negative material.
In the perfect lens concept, high-amplitude reactive fields
at the entry interface are focused behind the lens thanks
to interactions between resonant modes of the two parallel
surfaces of the lens. In papers [12,13], it was shown how
the reactive energy of the resonant surface modes can be
fully absorbed. Here, we have shown that this energy can
be launched into space, creating super-reflectors and far-field
superemitters.

This study is relevant also to the technologies of wireless
power transfer. In order to ensure the fastest wireless energy
transfer from a source to the user, one needs to maximize

the channel capacity for power transport. In communications
technologies, the concept of MIMO (multiple input, multiple
output) exploits the idea of sending signals via many different
rays which may reach the receiver. However, if we are
concerned with the task of energy transfer, still only one
mode is conventionally exploited, even if multiple antennas
are used to send power to the receiver. In the near-field
scenario, this is the magnetic dipole mode of receiving coil
antennas. In the far-field scenario, this is the propagating plane
wave (transverse electromagnetic, TEM) mode. Here, we have
shown how a multichannel wireless power transfer can be in
principle realized.

Although in this paper we have considered a particular
realization of surface perturbations in the form of a random
array of thin cylinders, the concept is general and the surface
can be perturbed in many various ways, for instance, simply
making the surface rough at the appropriate wavelength scale.
Likewise, the surface does not have to be planar or infinite:
properly perturbing the surface of a finite-size conjugately
matched body we can dramatically enhance its coupling
to electromagnetic fields in space. Discussed superemission
and superabsorption phenomena can potentially enable new
approaches to optimizing wireless transfer of energy or
information and in radiative heat transfer management.
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