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Kondo effect in a quantum wire with spin-orbit coupling
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The influence of spin-orbit interactions on the Kondo effect has been under debate recently. Studies conducted
recently on a system composed of an Anderson impurity on a two-dimensional electron gas with a Rashba spin
orbit have shown that it can enhance or suppress the Kondo temperature (TK), depending on the relative energy
level position of the impurity with respect to the particle-hole symmetric point. Here, we investigate a system
composed of a single Anderson impurity, side coupled to a quantum wire with spin-orbit coupling (SOC). We
derive an effective Hamiltonian in which the Kondo coupling is modified by the SOC. In addition, the Hamiltonian
contains two other scattering terms, the so-called Dzyaloshinskii-Moriya interaction, known to appear in these
systems, and another one describing processes similar to the Elliott-Yafet scattering mechanisms. By performing
a renormalization group analysis on the effective Hamiltonian, we find that the correction on the Kondo coupling
due to the SOC favors the enhancement of the Kondo temperature even in the particle-hole symmetric point
of the Anderson model, agreeing with the numerical renormalization group results. Moreover, away from the
particle-hole symmetric point, TK always increases with the SOC, accordingly with a previous renormalization
group analysis.
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I. INTRODUCTION

The well-known Kondo effect is a many-body dynamical
screening of a localized magnetic moment by the spins of
itinerant electrons that occurs at temperatures below the
so-called Kondo temperature (TK) [1]. Originally observed in
bulk magnetic alloys [2] with conspicuous transport features,
this effect has been extensively studied in a few magnetic
impurities coupled to one-dimensional (1D) [3–5] and two-
dimensional (2D) [6–8] systems. Recently, a number of studies
has discussed the effect of spin-orbit coupling (SOC) on the
Kondo effect on two-dimensional systems. More specifically,
the question of how the SOC modifies the Kondo effect in
systems with an isolated magnetic impurity has gained more
attention [9–16]. The influence of the effect of SOC on the
Kondo physics has gained major interest mainly because the
former has become remarkably attractive in condensed matter
systems [17,18]. For example, SOC is the basic ingredient
for many different phenomena, extending from the spin
manipulation in the celebrated Datta-Das transistor [19] to
more fundamental physics as in the quantum spin-Hall effect
[20] and Majorana fermions [21].

Since the Kondo effect involves collectively the spins of
the itinerant electrons, it is not surprising that SOC—that
locks the electron spin with their momenta—will modify it.
In fact, while in Ref. [9] there was found to be no change
in the Kondo temperature with SOC, recent studies [10–13]
have found a change in the Kondo temperature due to Rashba
SOC. Apart from Ref. [12] that addresses the Kondo effect in
graphene, the other ones report arguable results about similar
systems. On the one hand, in Ref. [9] it was found that the
Rashba SOC has essentially no effect on TK. On the other,
in Ref. [10], by renormalization group analysis (RGA), and
in Refs. [11,13], using the numerical renormalization group
(NRG), it is reported that TK is dependent on the SOC, although
the actual functional dependency obtained by the NRG seems
to differ from the RGA approach. This controversy can be
attributed to the different regimes in which the analysis was

carried out and to some approximations made in the RGA.
We should stress that Malecki’s idea of studying the effect of
SOC on TK using a standard Kondo model was incomplete.
This became apparent in Ref. [10], in which it was shown that
the standard Kondo model does not include all the scattering
phenomena in the system.

Owing to the various studies discussed above, the effect of
SOC on the Kondo temperature in two-dimensional systems
has been quite well elucidated. In one-dimensional systems,
however, the effect of SOC on the Kondo effect may be even
more important and has yet to be investigated. The expected
importance of SOC on the Kondo effect on 1D systems
can be viewed in a simple way. As mentioned above, the
Kondo effect is based on electron scatterings accompanied
by spin-flip processes involving the spins of the conduction
electrons and those of the local magnetic moments. At very
low temperatures, energy conserving scatterings become more
relevant as compared to nonconserving ones. Contrasting with
the 2D case, in which energy conserving skew scatterings
are also allowed, in 1D only forward or backward scattering
can occur. In situations in which a backward scattering event
suffered by the conduction electrons requires a flip of their
spins, it is expectable that the SOC has a much stronger
influence on the Kondo effect in 1D systems as compared
to the 2D ones. Such spin-momentum locking is known to
occur in strongly spin-orbit coupled 1D systems, such as
InSb nanowires [22] and in the 1D edge states of topological
insulators [23].

Motivated by the aforementioned peculiarities of the SOC
in one-dimensional systems, we investigate the Kondo effect
of a magnetic impurity, side coupled to a quantum wire
with both Rashba [24] and Dresselhaus [25] SOC. For the
impurity, we restrict ourselves to a spin- 1

2 magnetic moment
and model it as a single-level interacting quantum dot that
couples to the conduction electrons in the quantum wire
through tunneling matrix elements. By projecting the total
Hamiltonian of the system onto a singly occupied subspace
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of the impurity, we derive an effective Kondo Hamiltonian,
which contains the known Dzyaloshinskii-Moriya interaction
term and an additional one, analogous to the Elliott-Yafet
spin-flip scattering mechanism induced by the SOC [26–30].
Once we have obtained our effective Kondo-like Hamiltonian,
we perform a renormalization group analysis (similarly to what
was done in Ref. [10]) from which we extract the Kondo
temperature.

Our results show that the dependence of TK with the SOC
strength differs from what was found in Ref. [10]. For instance,
we find that the Kondo temperature always increases, even
when the system is at the particle-hole symmetric point, which
contrasts with the results reported in Ref. [10] but agree with
those found in Refs. [11,13]. The disagreement between our
results and those of Ref. [10] is attributed to the correction
on the effective Kondo coupling due to the SO interaction,
neglected in a previous study. It is also noteworthy that
the dependence of TK with the SO coupling is particle-hole
asymmetric. We show that an extra scattering term in the
effective Hamiltonian is the one responsible for breaking the
particle-hole symmetry of the RG equation.

The remainder of this paper is organized as follows: In
Sec. II we present the model Hamiltonian and derive an
effective Kondo-like Hamiltonian, and in Sec. III we perform
a renormalization group analysis with a numerical solution.
Finally, in Sec. IV, we summarize our main results. Some of
the details of the calculations are shown in the Appendixes.

II. HAMILTONIAN MODEL

For the sake of clarity, we schematically represent our
system in Fig. 1, in which the local magnetic moment is
modeled by a single-level quantum dot occupied by one
electron. The quantum wire is assumed to lie along the x axis
and includes both Rashba [24] and linear Dresselhaus SOC
[25]. Because of the dimensionality of the wire, both SOCs
are treated on the same footing. More formally, our system
is described by an Anderson-like model, H = Hwire + Hdot +
Hdot−wire, where

Hdot =
∑

s

εdd
†
s ds + Un↑n↓ (1)

describes the isolated quantum dot, in which d
†
s (ds) creates

(annihilates) an electron with energy εd and spin s in the dot
and U is the on-site Coulomb repulsion in the quantum dot.
We also have defined the number operator ns = d

†
s ds . The

FIG. 1. Schematic representation of a quantum dot, side coupled
to a quantum wire with spin-orbit interaction. The wire is assumed to
lie along the x direction. Vk represents the hopping of electrons from
the quantum into the wire.

quantum wire is described by

Hwire =
∑

k

[
εkδss ′ + k

(
βσx

ss ′ − ασ
y

ss ′
)]

c
†
kscks ′ , (2)

where k is the momentum along the x axis, and εk = �
2k2/2m∗

the kinetic energy with m∗ representing the effective mass
of the conduction electrons. The operator c

†
ks (cks) creates

(annihilates) an electron with momentum k and spin s in
the wire. The Rashba and the linear Dresselhaus spin-orbit
interaction coupling is parametrized by the interaction strength
α and β, respectively, and σ ν (with ν = x,y,z) represents the
Pauli matrices. Finally,

Hdot−wire =
∑
ks

(Vkc
†
ksds + V ∗

k d†
s cks) (3)

couples the quantum dot to the wire with an overlap matrix
element Vk .

We should keep in mind that we aim to derive an effective
Kondo-like Hamiltonian by projecting out the empty and the
doubly occupied states of the quantum dot. Before doing so,
we want to bring the full Hamiltonian into the single impurity
Anderson model (SIAM) form. To accomplished this, we
diagonalize Hwire by performing the following rotation in the
spin space, (

ck+
ck−

)
= U

(
ck↑
ck↓

)
, (4)

with

U = 1√
2

(
1 e−iθ

−ieiθ i

)
, (5)

where θ = tan−1(β/α). Under this transformation, the Hamil-
tonian Hwire acquires the diagonal form

H̃wire =
∑
kh

εkhc
†
khckh, (6)

in which h = +,− is the helical quantum number and εkh =
�k2/2m∗ + h|γ |k with γ = α − iβ. By applying the same
transformation to the quantum dot operators, we see that the
forms of Hdot and Hdot−wire remain unchanged. Therefore, in
the SO basis, the total Hamiltonian acquires the SIAM form

H̃ =
∑

h

εdd
†
hdh + Un+n− +

∑
kh

εkhc
†
khckh

+
∑
kh

(Vkc
†
khdh + V ∗

k d
†
hckh), (7)

where εkh = εk + h|γ |k. These are the SO bands shown in
Fig. 2(a). We are now ready to derive the effective Kondo-like
Hamiltonian.

The effective Hamiltonian

Since we are interested in the Kondo regime of the system
in which there is a magnetic moment localized in the quantum
dot, we project the Hamiltonian (7) onto the singly occupied
subspace of the quantum dot Hilbert space. We follow the
same strategy described in Hewson’s book [1] (for details,
see Appendix A). The resulting effective Hamiltonian can be
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FIG. 2. (a) Spin-orbit bands for the conduction electrons. At
low temperature, the allowed processes are those involving energies
close to the Fermi level εF (horizontal dashed line). The magenta
and purple arrows exemplify, respectively, the intraband (forward)
and intraband (backward) scatterings. (b) and (c) are representative
scattering diagrams describing typical processes contained in the
Hamiltonians (28) and (30), respectively.

written in the form

Heff = H0 + HK + HDM + HEY. (8)

Here,

H0 =
∑
k,h

εkhc
†
khckh (9)

describes the conduction band on the SO basis,

HK =
∑
kk′

Jkk′[(c†k′+ck+ − c
†
k′−ck−)

× Sz + c
†
k′+ck−S− + c

†
k′−ck+S+] (10)

describes the Kondo coupling, in which

Jkk′ = VkV
∗
k′

Ak + Ak′

2
, (11)

with

Ak = εk − εd

(εk − εd )2 − |γ |2k2
+ εd + U − εk

(εd + U − εk)2 − |γ |2k2
. (12)

Observe that Jkk′ depends on the SO coupling γ . By inspection
we see, in the absence of the spin-orbit interaction (γ = 0),
we recover the conventional Kondo coupling, for which
Ak = (εd + U − εk)−1 + (εk − εd )−1. The last two terms of
the Hamiltonian (8) are given by

HDM =
∑
kk′


kk′(c†k′+ck−S− − c
†
k′−ck+S+) (13)

and

HEY = H
(1)
EY + H

(2)
EY. (14)

In this last expression,

H
(1)
EY =

∑
kk′



(1)
kk′(c

†
k′+ck+ + c

†
k′−ck−)Sz (15)

and

H
(2)
EY =

∑
kk′



(2)
kk′

nd

2
(c†k′+ck+ − c

†
k′−ck−). (16)

The couplings in the Eqs. (13), (15), and (16) can be written
as


kk′ = VkV
∗
k′

B
(+)
k − B

(+)
k′

2
, (17)



(1)
kk′ = −VkV

∗
k′

B
(+)
k + B

(+)
k′

2
, (18)

and



(2)
kk′ = VkV

∗
k′

B
(−)
k + B

(−)
k′

2
. (19)

Here we have defined

B
(±)
k = ±|γ |k

[
1

(εk − εd )2 − |γ |2k2

∓ 1

(εd + U − εk)2 − |γ |2k2

]
. (20)

The Hamiltonian (13) corresponds to the known
Dzyaloshinskii-Moriya interaction while (15) and (16)
describe the Elliott-Yafet-like processes [26,27], responsible
for spin-flip scatterings of the conduction electrons by the
localized magnetic moments [28]. The spin-flip processes
involved in the Hamiltonians (15) and (16) are not apparent
in the SO basis, but are clearly seen when these Hamiltonians
are written in the real spin representation (see Appendix B).

At the low-temperature regimes we can assume that the
scatterings occur only for electrons with momenta close to
Fermi momentum kF . Moreover, for small SO interactions,
such that |γ |kF � �k2

F /2m∗ (or |γ | � �kF /2m∗), we can set
εk ≈ εkF

= 0 and Vk = VkF
≡ V . With this we can make the

approximations

Jkk′ ≈ |V |2
[

εd + U

(εd + U )2 − |γF |2 − εd

ε2
d − |γF |2

]
≡ J, (21)


kk′ ≈ |V |2|γ |k − k′

2

[
1

ε2
d − |γF |2

− 1

(εd + U − εk)2 − |γF |2
]
, (22)



(1)
kk′ ≈ −|V |2|γ |k + k′

2

[
1

ε2
d − |γF |2

− 1

(εd + U − εk)2 − |γF |2
]
, (23)

125115-3



G. R. DE SOUSA, JOELSON F. SILVA, AND E. VERNEK PHYSICAL REVIEW B 94, 125115 (2016)

and



(2)
kk′ ≈ −|V |2|γ | (k + k′)

2

[
1

ε2
d − |γF |2

+ 1

(εd + U − εk)2 − |γF |2
]
. (24)

In the above equations we have defined γF = γ kF . To obtain
expressions (21)–(24) we have replaced k2 and k′2 by k2

F but
we were careful with the linear terms, keeping k and k′ intact.
This is because the sums in the Hamiltonian above run for
positive and negative momenta. Therefore, considering only
scatterings around kF , we can replace |k| and |k′| by kF in the
couplings (22)–(24). With this, the factor k − k′ in Eq. (22)
or k + k′ in Eqs. (23) and (24) can be approximated by zero
or ±2kF , depending on the relative sign between k and k′.
Bearing this in mind, we see that the coupling (22) contributes
only with backward scatterings, whereas Eqs. (23) and (24)
contribute only with forward scatterings. Explicitly, at kF we
can write


 = |V |2γF

[
1

ε2
d − |γF |2 − 1

(εd + U )2 − |γF |2
]

= −
1 (25)

and


2 = −|V |2γF

[
1

ε2
d − |γF |2 + 1

(εd + U )2 − |γF |2
]
. (26)

Inserting these expressions into Eqs. (10), (13), (15), and
(16), we obtain

HK = J
∑
kk′

[(c†k′+ck+ − c
†
k′−ck−)

× Sz + c
†
k′+ck−S− + c

†
k′−ck+S+], (27)

HDM = 

∑
kk′>0

(c†−k′+ck−S− − c
†
k′+c−k−S−

+ c
†
k′−c−k+S+ − c

†
−k′−ck+S+), (28)

H
(1)
EY = 
1

∑
kk′>0

[Sz(c
†
k′+ck+ − c

†
−k′+c−k+)

+ Sz(c
†
k′−ck− − c

†
−k′−c−k−)], (29)

H
(2)
EY = 
2

∑
kk′>0

[
nd

2
(c†k′+ck+ − c

†
k′−ck−)

+ nd

2
(c†−k′−c−k− − c

†
−k′+c−k+)

]
. (30)

Note that it is now explicit that the processes in the
Hamiltonians HDM and in HEY involve only backward and
forward scatterings, respectively. Moreover, we see that the
backward scatterings that occur are interband while the
forward ones are intraband scatterings. These backward
(interband) and forward (intraband) scatterings are exemplified
by the diagrams of Figs. 2(b) and 2(c). Because of these very
well-defined scattering processes, it is convenient to split the
Kondo Hamiltonian (27) likewise. Separating the terms of
Eq. (27) involving definite backward and forward processes,

we obtain

HK = J F
‖

∑
kk′>0
kk′<0

(c†k′+ck+ − c
†
k′−ck−)Sz

+ J B
‖

∑
k>0,k′<0
k<0,k′>0

(c†k′+ck+ − c
†
k′−ck−)Sz

+ J F
⊥

∑
kk′>0
kk′<0

[c†k′+ck−S− + c
†
k′−ck+S+]

+ J B
⊥

∑
k>0,k′<0
k<0,k′>0

[c†k′+ck−S− + c
†
k′−ck+S+]. (31)

As we will see below, because of the SOC, the several Kondo
couplings in Eq. (31) will obey different differential equations
in the renormalization group analysis.

III. RENORMALIZATION GROUP ANALYSIS

To study the low-temperature regime of the system we
perform a poor-man’s scaling analysis of the effective Hamil-
tonian (8). We follow the original Anderson’s approach [31]
to obtain the renormalization equations for the effective
couplings. After a cumbersome but straightforward calculation
(see Appendix C), we find

J̇⊥B = −ρJ⊥F J‖B − ρJ⊥BJ‖F + ρ

1 − ρ

2, (32a)

J̇⊥F = −ρJ⊥F J‖F − ρJ⊥BJ‖B, (32b)

J̇‖B = −2ρJ⊥F J⊥B, (32c)

J̇‖F = −ρJ 2
⊥F − ρJ 2

⊥B − ρ
2, (32d)


̇ = −ρJ‖F 
 + ρJ⊥B
1 − ρJ⊥B
2, (32e)


̇1 = ρJ⊥B
 + ρJ‖F 
2, (32f)


̇2 = ρJ‖F 
1. (32g)

Following standard notation, in the equations above we have
defined Ẋ ≡ dX/d ln �, where � in the reduced bandwidth.
We have also denoted ρ = ρ(0) as the density of states
of the conduction electrons calculated and the Fermi level,
εF = 0. For this we had to assume that the Fermi level
is far above the bottom of the band. In this limit we can
linearize the band about k = kF as schematically shown in
Fig. 2(a).1 We can verify that in the absence of SO interactions
we have the solution for 
 = 
1 = 
2 = 0, provided the
condition has 
(D) = 
1(D) = 
2(D) = 0. With this, by set-
ting J⊥F = J‖F = J⊥B = J‖B = J , the differential equations
above reduce to the usual renormalization equation for J in
the isotropic Kondo model, J̇ = −2ρJ 2, leading to the known
expression for the Kondo temperature, T 0

K = D exp(−1/2ρJ ).

1We should remark here that assuming a constant density of states
for the conduction electrons is not valid, in general. For instance, in
superconducting wires with a gap, multichannel wires with van Hove
singularities near the Fermi level, the conduction band is strongly
energy dependent. In these cases we need to improve the poor-man’s
scaling approach, in a similar manner as in Ref. [33].
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FIG. 3. (a) Scaled Kondo temperature vs γF /U for different
values of εd and U = 0.1. εd = −0.5U corresponds exactly to the
particle-hole symmetric point of the Anderson model. Note the
different behavior of TK for εd above and below 0.05. T 0

K is the
Kondo temperature calculated in the absence of the SO interaction,
γ = 0. (b) log (TK/T 0

K) vs γF /U (symbols). The solid lines show
linear functions connecting the first and the last points of each data
set, serving as a guide to the eyes. These lines suggest that TK depends
on γF exponentially as TK = T 0

K exp (aγ 2
F ), in which a is a function

of εd . (c) a/U 2 vs εd/U extracted from the results of (b).

In the presence of SO interactions, an analytical solution
for the coupled equations (32) is not available. Fortunately,
it can be solved numerically using standard procedures. The
numerical solution provides us with the coupling as a function
of the reduced bandwidth �. As in the conventional Kondo
model, the Kondo couplings diverge as � → 0. It is precisely
this divergence that provides a definition for the Kondo
temperature within the renormalization group analysis. Using
the same idea here, in the presence of the SO interaction,
we take as TK the value of � where the numerical solution
diverges.2

To obtain our results for TK, we set U/ = 20, with
 = πV 2/2D. Here, D is an energy cutoff, within which
the band is linearized around k = kF . In Fig. 3(a) we show
the Kondo temperature TK/T 0

K vs γF /U for three different
values of εd . Here, T 0

K is the Kondo temperature in the
absence of the SO interaction. Note that, similarly to what
was obtained in Ref. [10], TK always increases with γF , but it
is more pronounced for εd �= −U/2 [squares (blue curves)
and diamonds (red curves)]. The increase of TK with γF

for εd = −U/2 contrasts with the results of Ref. [10] that
predict a constant TK using the same approach but agrees
with those obtained in Refs. [11,13,32]. The main reason
for the disagreement with the previous RGA is because they
have neglected corrections in the Kondo coupling J due
to the SO interaction. Another compelling point is that for

2To check if this is a good estimation of TK we have compared our
numerical results with the analytical solution for γ = 0 and found a
perfect agreement.

εd = −0.7U and εd = −0.3U for which the impurity level is
placed symmetrically below and above the particle-hole point,
respectively, the increase of TK with γF is not symmetric. This
behavior disagrees with those of Ref. [10]. This asymmetry
is, however, quite different from asymmetry observed in the
results of Refs. [11,13,32] because while they considered the
Fermi level close to the bottom of the conduction band, here
we assume εF far away from it.

In the absence of an analytical solution for the set of
differential equations (32) we attempt to obtain qualitatively
the dependence of TK on γF . To do so, in Fig. 3(b) we plot
log (TK/T 0

K) vs (γG/U )2 for the same three values of εd as in
Fig. 3(a). The symbols correspond to the numerical results as
shown in Fig. 3(a) while the solid lines correspond to straight
lines connecting the first and the last points of the data. Notably,
these linear functions fit quite well all the data. This suggests
a dependence of TK on γF as TK = T 0

K exp (aγ 2
F ), where a is

a positive function of the Anderson model parameters (e.g.,
,U,εd ). Here, by keeping all the other parameters fixed,
a clearly shows a strong dependence on εd . To extract a
qualitative dependency of a as it varies with εd , in Fig. 3(c)
we plot a vs εd/U . Note that the shape of the curve is almost
parabolic with a minimum close to the particle-hole symmetry.
It is, however, asymmetric about εd = −U/2 because of
the particle-hole asymmetry of the renormalization equation
introduced by the term H

(2)
EY of the effective Hamiltonian.

For a better comprehension of the origin of the particle-hole
asymmetry in the results of Fig. 3, let us take a closer look at
the renormalization equations (32). We will show that, indeed,
the term in the Hamiltonian that breaks particle-hole symmetry
of the renormalization equations is H

(2)
EY, given by Eq. (30). To

this end, let us neglect H
(2)
EY in the renormalization equations

(32). We then remove Eq. (32g) and make 
2 = 0 in all the
other equations of the set (32). Now, remember that 
 and 
1

are odd functions of εd under the change εd = −U/2 + δ to
εd = −U/2 − δ for any δ < U/2. Therefore, for given equal
initial conditions for J ’s (which is the case, since J is even),
we see that by changing εd = −U/2 + δ to εd = −U/2 − δ,
the derivatives of both 
 and 
1 just change their signs. Now,
because the derivatives of the J ’s depend on the product 

1 or
on 
2, which are both even, the resulting value of TK extracted
from the solution of Eqs. (32) is particle-hole symmetric, even
though 
 and 
1 are odd. This shows that indeed it is the
additional term H

(2)
EY that breaks the particle-hole symmetry of

the renormalization equations.

IV. CONCLUSIONS

Summarizing, we have studied the influence of the Kondo
effect of a magnetic impurity side coupled to a quantum
wire with a spin-orbit interaction. We start by modeling the
system with a single impurity Anderson model (SIAM), in
which the conduction electrons move under both Rashba and
Dresselhaus spin-orbit couplings. We then derive an effective
Kondo model that contains the known Dzyaloshinskii-Moriya
(DM) interaction and an additional term describing scattering
processes of the same type of Elliott-Yafet (EY) mechanisms
responsible for spin relaxation in systems with magnetic
impurities. By splitting the total effective 1D Hamiltonian

125115-5



G. R. DE SOUSA, JOELSON F. SILVA, AND E. VERNEK PHYSICAL REVIEW B 94, 125115 (2016)

into forward and backward scatterings, we are able to
perform a poor-man’s scaling, providing a set of renormal-
ization equations for the effective couplings. To obtain a
Kondo temperature that is dependent on the SO coupling
strength, we solve numerically the coupled equations. We
find that the spin-orbit interaction modifies substantially the
Kondo temperature of the system. Our results show that,
even though the DM term vanishes at the particle-hole (p-h)
symmetry of the SIAM, and is known to change the Kondo
temperature only away from the p-h symmetry, our study
shows that the SOC modifies the Kondo temperature even in
the p-h symmetry since it modifies the conventional Kondo
couplings. Moreover, we find that the contribution from
additional EY to the enhancement of the Kondo temperature is
asymmetric with respect to the p-h symmetry. Our study shows
clearly the scattering mechanisms of the conduction electrons
by the magnetic impurity introduced by the SOC in the 1D
system. More importantly, we show how these mechanisms
affect the Kondo temperature of the system. We believe this
work provides a step forward in the comprehension of the
influence of SOC in the Kondo effect and is important for
future studies, specifically in 1D systems.
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APPENDIX A: DERIVATION OF THE EFFECTIVE
HAMILTONIAN

In order to project the total Hamiltonian (7) onto the singly
occupied impurity subspace, we define the projector operators

P0 = (1 − d
†
+d+)(1 − d

†
−d−), (A1)

P1 = d
†
+d+ + d

†
−d− − 2d

†
+d

†
−d−d+, (A2)

P2 = d
†
+d

†
−d−d+. (A3)

The projected Hamiltonian can be written as

Heff = H11 + H10(E − H11)−1H01

+H12(E − H22)−1H21, (A4)

where Hij = PiHPj . More explicitly, in terms of the creation
and annihilation operators, the Hamiltonian (A4) can be
written as

H = H0 +
∑

kk′
hh′

V ∗
k′Vk

2
{[Gh(εd,εk) + Gh′(εd,εk′ )]

× dh̄d
†
h̄
dh̄′d

†
h̄′d

†
hdh′ckhc

†
k′h′ − [Gh(εd + U,εk)

+Gh′ (εd + U,εk′)]ndh̄′c
†
k′h′dh′ndh̄′d

†
hckh}, (A5)

where

Gh(εd,εk) = 1

εd − εk

[
1 − h|γ |k

εd − εk

]−1

. (A6)

In order to perform the summation on h and h′ in Eq. (A6)
we expand the expression above as a power series of x =
h|γ |k(εd − εk)−1. Summing up the infinite terms of the series
we can write

Gh(εd,εk) = εd − εk

(εd − εk)2 − |γ |2k2
+ h|γ |k

(εd − εk)2 − |γ |2k2

= G(e)(εd,εk) + hG(o)(εd,εk), (A7)

where the first term corresponds to the even order of the
series and the second one corresponds to the odd terms.
We also have used the fact that hj = 1 for j even and
hj = h for j odd. It is important to note that the series
converges only for |γ |k < (εd − εk). This naturally imposes
the regime of validity of the expansion, |γ |kF < (εd − εF )
and |γ |kF < (εd + U − εF ). We can now insert expression
(A7) into Eq. (A5) and perform the summation on h and h′.
After lengthy and cumbersome operator algebra we see that
the even terms will renormalize the Kondo coupling while
the odd term will provide additional scattering terms in the
effective Hamiltonian. The resulting Hamiltonian can be split
into three terms, namely, H = H0 + HK + HDM + HEY. The
first describes the free conduction electrons,

H0 =
∑
k,h

εkhc
†
khckh. (A8)

The second term corresponds to the conventional Kondo
Hamiltonian,

HK =
∑
kk′

Jkk′[(c†k′+ck+ − c
†
k′−ck−)Sz

+ c
†
k′+ck−S− + c

†
k′−ck+S+], (A9)

with a renormalized Kondo coupling,

Jkk′ = VkV
∗
k′

Ak + Ak′

2
, (A10)

where

Ak = −G(e)(εd,εk) + G(e)(εd + U,εk)

= εk − εd

(εk − εd )2 − |γ |2k2
+ εd + U − εk

(εd + U − εk)2 − |γ |2k2
.

(A11)

The third term describes the Dzyaloshinskii-Moriya scat-
tering processes and can be written as

HDM =
∑
kk′


kk′(c†k′+ck−S− − c
†
k′−ck+S+), (A12)

where the coupling 
kk′ is given by


kk′ = VkV
∗
k′

B
(+)
k − B

(+)
k′

2
, (A13)

in which we have defined

B±
k = ±G(o)(εd,εk) − G(o)(εd + U,εk)

= ±|γ |k
[

1

(εk − εd )2 − |γ |2k2

∓ 1

(εd + U − εk)2 − |γ |2k2

]
. (A14)
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Finally, the fourth term has the form

H
(1)
EY =

∑
kk′



(1)
kk′(c

†
k′+ck+ + c

†
k′−ck−)Sz, (A15)

H
(2)
EY =

∑
kk′



(2)
kk′(c

†
k′+ck+ − c

†
k′−ck−)

nd

2
, (A16)

with



(1)
kk′ = −VkV

∗
k′

B
(+)
k + B

(+)
k′

2
(A17)

and



(2)
kk′ = VkV

∗
k′

B
(−)
k + B

(−)
k′

2
, (A18)

This term can be thought as describing the Elliott-Yafet-
like scattering processes in which a electron real spin of
the conduction band is flipped upon being scattered by the
magnetic impurity. This can be better seen if we write
the Hamiltonian (A15) in the real spin basis, as shown in
Appendix B.

APPENDIX B: REAL SPIN REPRESENTATION OF THE
SPIN-ORBIT SCATTERING TERMS

It is instructive to see what the effective Hamiltonian looks
like in the real spin basis. To represent the Hamiltonian back
to the real spin basis, we use the inverse of the transformation
(4). Although in this transformation the Kondo Hamiltonian
(10) is invariant, the spin-orbit scattering terms in the effective
Hamiltonian acquire a different form. After some algebra
the spin-orbit scattering terms (A12) and (A15) acquire,
respectively, the form

HDM = i

2

∑
kk′


kk′[(c†k′↑ck↑ − c
†
k′↓ck↓)(e−iθ d

†
↑d↓ + eiθd

†
↓d↑)

− (d†
↑d↑ − d

†
↓d↓)(e−iθ c

†
k′↑ck↓ + eiθ c

†
k′↓ck↑)] (B1)

and

HEY = i

2

∑
kk′

[



(1)
kk′(c

†
k′↑ck↑ + c

†
k′↓ck↓)(e−iθ d

†
↑d↓ − eiθd

†
↓d↑)

+

(2)
kk′(e−iθ c

†
k′↑ck↓ − eiθ c

†
k′↓ck↑)(d†

↑d↑ + d
†
↓d↓)

]
.

(B2)

The phase factor e±iθ appearing in these two last expressions
can be fully gauged away by the gauge transformation ck↑ →
e−iθ/2ck↑ and ck↓ → eiθ/2ck↓. By defining

skk′ = 1

2

∑
ss ′

c
†
k′sτ ss ′cks ′ and S = 1

2

∑
ss ′

d†
s τ ss ′ds ′ , (B3)

with τ being the Pauli matrices including the identity τ 0, we
can finally write

HDM = −2i
∑
kk′


kk′(sk′k × S) · ŷ, (B4)

which is of the usual form of the Dzyaloshinskii-Moriya
interaction, and

HEY = 2
∑
kk′

[



(1)
kk′s

0
k′kS

y + 

(2)
kk′S

0s
y

k′k
]
. (B5)

This expression is similar to the Elliott-Yafet scattering term
studied in spin relaxation processes [29,30]. Note, for instance,
that the second term contains spin-flip scattering of the
conduction electrons without changing the spin of the impurity.

APPENDIX C: POOR-MAN’S SCALING ANALYSIS

In the spirit of Anderson’s perturbative renormalization
group, the renormalization procedure consists of progressively
reducing the bandwidth of the conduction electrons (D) step
by step from its initial value D towards D = 0. Within this
idea, if at a given step the conduction band lies within the
interval [−�,�] (where 0 < � � D), it is reduced to [−(� +
δ�),(� + δ�)] (with δ� < 0). The part of the Hamiltonian
lying within the edges of the conduction band are integrated
out while their effects are taken into account perturbatively
up to second order in the Hamiltonian couplings. Using
the T -matrix formalism, we search for scattering processes
involving the edges of the conduction bands that renormalize
the Hamiltonian, leaving it invariant [31]. Then, if H0 in
the unperturbed Hamiltonian and V is the interaction, up to
second order in the couplings, we can write the renormalized
interaction by

Ṽ = V + V
1

E − H0
V = V + T, (C1)

which has the same form of V . Note that T corresponds to
the change in the T matrix due to all the processes involving
the edge of the conduction band.

Explicitly, we can write

T =
∑
kk′

∑
q |�−δ�<εq <�

q′ |�−δ�<ε
q′ <�

Vk′q ′
1

E − H0
Vqk

+
∑
kk′

∑
q | −�<εq <−�+δ�

q′ | −�<ε
q′ <−�+δ�

Vqk

1

E − H0
Vk′q ′ . (C2)

Note that in the sum above, q represents momentum such that
εq lies within the edge of the conduction bands. The first term is
associated with particle states and the second with hole states,
removed, respectively, from the top and bottom of conduction
band. Even though we follow the standard procedure found in
many textbooks, for the sake of completeness, let us illustrate
the how the term J‖B is renormalized by integrating out the
degrees of freedom “living” at the edge of the conduction band.
Using expression (C2) we see that it rather simple because is
not renormalized by the SO terms but only by the Kondo
coupling terms of the Hamiltonian. To shown an example of
among the many contributions for Eq. (C2), let us calculate
product

HK
⊥F

1

E − H0
HK

⊥B, (C3)

where H0 is given by (9) and H K
⊥F and H K

⊥B represent the third
and fourth terms of the Hamiltonian (31). Although this term
involves only the Kondo coupling, it is instructive to show how
we deal with the various Kondo couplings split into backward
and forward scatterings. For the particlelike
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scattering processes [first term of Eq. (C2)] we have

HK
⊥F

1

E − H0
HK

⊥B = J⊥F J⊥B

⎡
⎢⎣ ∑

q′k′>0
q′k′<0

(c†k′+cq ′−S− + c
†
k′−cq ′+S+)

∑
k>0,q<0
k<0,q>0

1

E − H0
(c†q+ck−S− + c

†
q−ck+S+)

⎤
⎥⎦. (C4)

Here, we have dropped the constraints for q and q ′, but recall that q and q ′ run for all momenta such that εq and εq ′ lie within
the top edge of the conduction band. Since for a S = 1/2, S2

− and S2
+ acting on any impurity state vanish, we can write

HK
⊥F

1

E − H0
HK

⊥B = J⊥F J⊥B

∑
q′k′>0
q′k′<0

∑
k>0,q<0
k<0,q>0

(
c
†
k′+cq ′−

1

E − H0
c
†
q−ck+S−S+ + c

†
k′−cq ′+

1

E − H0
c
†
q+ck−S+S−

)
. (C5)

Using S−S+ = 1/2 − Sz and S+S− = 1/2 + Sz and performing the commutations of c
†
k′+ and cq ′− with (E − H0)−1, we obtain

HK
⊥F

1

E − H0
HK

⊥B = J⊥F J⊥B

∑
q′k′>0
q′k′<0

∑
k>0,q<0
k<0,q>0

(
− c

†
k′+cq ′−c

†
q−ck+

E + εk′+ − εq ′−
+ c

†
k′−cq ′+c

†
q+ck−

E + εk′− − εq ′+

)
Sz. (C6)

In the expression above we have neglected the potential scattering term generated by the commutations and then set H0 to zero.
Now, for the top edge (particlelike scattering) we assume cqsc

†
q ′s ′ = δss ′δqq ′ , with s = ±. Therefore,

HK
⊥F

1

E − H0
HK

⊥B = J⊥F J⊥B

∑
k<0, k′,q>0
k>0, k′,q<0

(
− c

†
k′+ck+

E + εk′+ − εq−
+ c

†
k′−ck−

E + εk′− − εq+

)
Sz. (C7)

Now, since εqs lies within a very narrow energy interval near the edge of the reduced conduction band, we can make εq+ ∼ εq− ∼ �

to obtain

HK
⊥F

1

E − H0
HK

⊥B = −J⊥F J⊥B

∑
k<0, k′,q>0
k>0, k′,q<0

1

E + εk′+ − �
(c†k′+ck+ − c

†
k′−ck−)Sz. (C8)

We now convert the sum in q into an integral and assume a constant density of states ρ for the conduction electrons. Noticing
that the sum in q is constrained by the sign of k′, we can write

HK
⊥F

1

E − H0
HK

⊥B = −J⊥F J⊥B

ρ|δ�|
2

∑
k<0, k′>0
k>0, k′<0

1

E + εk′+ − �
(c†k′+ck+ − c

†
k′−ck−)Sz. (C9)

For processes near the Fermi level we can neglect E and εk+ in the expression, obtaining

HK
⊥F

1

E − H0
HK

⊥B = J⊥F J⊥B

ρ|δ�|
2�

∑
k<0, k′>0
k>0, k′<0

(c†k′+ck+ − c
†
k′−ck−)Sz.

(C10)

Comparing the operators in this expression with those in Eq. (31) we see that this is in fact similar to the second term of Eq. (31).
Therefore, it contributes to a renormalization of J‖B . Another identical contribution is provided by interchanging HK

⊥F and HK
⊥B .

Performing the same analysis for the holelike term in Eq. (C2), one finds an equal contribution. Therefore, the total contribution
is given by

δJ‖B = 2J⊥F J⊥B

ρ|δ�|
�

= −2J⊥F J⊥Bδ ln �. (C11)

The minor sign in the last step came because δ� < 0. In the limit |δ�| → 0 we finally obtain the traditional form

J̇‖B = −2J⊥F J⊥B. (C12)

In the calculation above we have considered only two terms of the Kondo Hamiltonian (31). Interestingly, after checking all
the calculations we see that for J‖B this is the only contribution. Terms involving the SO interaction will renormalize the other
Kondo couplings. For example,

J̇⊥B = −ρJ‖F J⊥B − ρJ‖BJ⊥F + ρ

1 − ρ

2. (C13)

The calculation of all the remaining contributions to the set of differential (32) is lengthy but straightforward.
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