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In this paper, we study the relation between wave-function overlap and adiabatic continuity in gapped quantum
systems. We show that for two band insulators, a scalar function can be defined in the momentum space, which
characterizes the wave-function overlap between Bloch states in the two insulators. If this overlap is nonzero
for all momentum points in the Brillouin zone, these two insulators are adiabatically connected, i.e., we can
deform one insulator into the other smoothly without closing the band gap. In addition, we further prove that
this adiabatic path preserves all the symmetries of the insulators. The existence of such an adiabatic path implies
that two insulators with nonzero wave-function overlap belong to the same topological phase. This relation,
between adiabatic continuity and wave-function overlap, can be further generalized to correlated systems. The
generalized relation cannot be applied to study generic many-body systems in the thermodynamic limit, because of
the orthogonality catastrophe. However, for certain interacting systems (e.g., quantum Hall systems), the quantum
wave-function overlap can be utilized to distinguish different quantum states. Experimental implications are also
discussed.
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I. INTRODUCTION

In quantum many-body systems, quantum phase transitions
are among the most fascinating phenomena [1]. From the
point of the view of adiabatic continuity, a quantum phase
transition can be characterized by the absence of an adiabatic
path between ground states of quantum systems. Consider
two quantum many-body systems in their ground states. If
an adiabatic path can be constructed to smoothly deform
one system into the other without any singularity, these two
quantum states can be classified into the same quantum phase.
On the other hand, if it is impossible to adiabatically deform
one quantum system into the other, without going through
some singular point (or some intermediate phase), these two
quantum states belong to different quantum phases of matter
and the singular point, which arises when we try to deform
one system into the other, is a quantum phase transition
point.

In general, quantum phase transitions can be largely
classified into two categories, Landau-type and topological,
depending on the origin of the singularity. In the first category,
the two quantum phases separated by a quantum phase
transition have different symmetries, i.e., certain symmetry is
broken spontaneously as we move across the phase boundary.
Similar to a classical (thermal) phase transition, the difference
in symmetry implies that it is impossible for these two quantum
states to smoothly evolve into each other without undergoing
a quantum phase transition. In the second category, the two
quantum phases have the same symmetry, but their ground-
state wave functions have different topological structures. For
a gapped quantum system, where a finite energy gap exists
between the ground state and the excited ones, the topology of
the ground state wave function cannot change in any adiabatic
procedure without closing the excitation gap. Thus, if the
ground state wave functions of two gapped quantum systems
have different topology, as we try to deform one into the other,
a singularity point must arise, at which the energy gap closes
and the ground-state wave function changes its topology. This
singular point is known as a topological phase transition. Such

a topological transition can take place even in the absence of
interactions, e.g., in noninteracting band insulators [2–9].

In this paper, we study adiabatic continuity between
quantum states in gapped quantum systems focusing on the
following question: For two (arbitrary) quantum states, how
can we determine whether a gapped adiabatic path between
these two states exists or not? More precisely, we want to
determine, for two quantum states |ψ1〉 and |ψ2〉, whether it is
possible or not to construct a gapped Hamiltonian H (α), where
α is some control parameter, such that as we tune the value of
the control parameter α, the ground state of the Hamiltonian
changes smoothly from |ψ1〉 to |ψ2〉. It must be emphasized
that here we require that the Hamiltonian remains gapped
for this adiabatic procedure, i.e., the energy gap between the
ground and excited states never vanishes. As discussed above,
the answer to this question is of direct relevance to the study of
quantum phase transitions between gapped quantum systems,
including topological phase transitions.

For band insulators, we find that regardless of the symmetry
and microscopic details, as long as the Bloch wave functions
(of the valence bands) of two insulators have finite wave-
function overlap, an adiabatic path can be constructed, con-
necting the two insulators without closing the insulating gap.
For the study of topological band insulators, this conclusion
implies that two band insulators with finite wave-function
overlap must have the same topology, i.e., all topological
indices take the same value in the two insulators. This result
also implies that for two insulators with different topology,
there must exist at least one momentum point in the Brillouin
zone, at which the Bloch waves in these two insulators are
orthogonal to each other, i.e., the wave functions have zero
overlap.

This conclusion can be easily generalized to interacting
systems, i.e., if two quantum states have finite wave-function
overlap, regardless of microscopic details, a gapped adiabatic
path can be defined to connect these two states. However,
as pointed out below, this conclusion cannot be applied to
study generic quantum many-body systems and quantum phase
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transitions, due to the orthogonality catastrophe [10], which
says that in the thermodynamic limit, even for two quantum
states in the same quantum phase, the wave-function overlap
will vanish due to the infinite size of the system. As a
result, the wave-function overlap, which is always zero in
the thermodynamic limit, doesn’t carry useful information
about quantum phases and adiabatic continuity. This is in
sharp contrast to noninteracting systems, e.g., band insulators,
where we can utilize single-particle Bloch waves, which do
not suffer from the orthogonality catastrophe. In this paper, we
show that the problem caused by the orthogonality catastrophe
can be resolved in certain interacting systems, including
integer and fractional quantum Hall systems [11,12], and
integer and fractional Chern insulators [2,13–21], utilizing
various schemes, e.g., by studying systems with finite size
or factorizing the many-body wave function.

In this paper, we study adiabatic continuity in band insula-
tors in Sec. II. Then in Sec. III, we generalize the conclusion
to interacting systems. In Sec. IV, we discuss how to utilize
this result to study quantum phase transitions in the presence
of interactions. Two examples will be discussed. Finally,
we conclude the paper by discussing possible implications
in experimental and numerical studies. Details about the
calculations and proofs are shown in the Appendix.

II. BAND INSULATORS

For band insulators, if we only focus on the qualitative
properties, interactions can often be ignored. Within the
noninteracting approximation, the quantum wave function of a
band insulator is the (antisymmetrized) product of Bloch-wave
states. Because of the lattice translational symmetry, Bloch
states with different crystal momenta decouple from one
another. Therefore, we can examine wave-function overlap
at each momentum point separately.

In this section, we focus on the noninteracting regime. First,
we prove that for two band insulators, the wave-function over-
lap between the many-body ground states factorizes into the
product of (Bloch-wave-function) overlaps at each momentum
point. Then, we will show that if the overlap remains finite for
all momenta, the two insulators are adiabatically connected,
i.e., we can adiabatically deform the wave function of one
insulator into the other without closing the insulating gap or
breaking any symmetries.

This conclusion immediately implies that (a) if two band
insulators belong to two different quantum phases (i.e., it is
impossible to deform one state into the other without closing
the insulating gap), there must exist (at least) one momentum
point k∗, at which the (Bloch-wave-function) overlap between
the two insulators vanishes, and (b) if the Bloch wave functions
of two band insulators have finite overlap at all momenta, these
two insulators must belong to the same quantum phase.

We start the discussion by considering insulators with
only one valence band (Sec. II A). Then in Sec. II B, we
will generalize the conclusions to generic cases with multiple
valence bands.

A. Insulators with one valence band

In this section, we consider two band insulators, dubbed
insulator I and insulator II , each of which has only one

valence band. More generic situations (with more than one
valence bands) will be studied in the next section.

1. Wave-function overlap

Within the noninteracting approximation, the many-body
ground states of these two insulators can be written as

|GI 〉 =
∏

k

c
†
k |0〉 (2.1)

|GII 〉 =
∏

k

d
†
k |0〉 , (2.2)

where |GI 〉 and |GII 〉 are the (many-body) ground states of
the two insulators, respectively. |0〉 represents the vacuum,
i.e., the quantum state with no electrons. c†k (d†

k) is the creation
operator which creates a particle in the Bloch state of the
valence band in insulator I (insulator II ) at crystal momentum
k.

∏
k represents the product over all momenta in the Brillouin

zone.
It is straightforward to verify that the overlap between the

two ground states factorizes as

| 〈GI |GII 〉 | =
∏

k

|φ(k)|, (2.3)

where φ(k) is the overlap between Bloch waves at crystal
momentum k

φ(k) = 〈0|ckd
†
k|0〉 . (2.4)

In the language of first quantization, this Bloch-wave overlap
is

φ(k) = 〈ψI (k)|ψII (k)〉 , (2.5)

where

|ψI (k)〉 = c
†
k |0〉 (2.6)

|ψII (k)〉 = d
†
k |0〉 (2.7)

are the Bloch waves of the valence bands in insulators I and
II , respectively.

2. The adiabatic path between two insulators

Define a Bloch state

|�(k,α)〉 = (1 − α) |ψI (k)〉 + α φ(k)∗ |ψII (k)〉
N . (2.8)

Here, |ψI (k)〉 and |ψII (k)〉 are the Bloch wave functions of the
valence band for insulators I and II , respectively [Eqs. (2.6)
and (2.7)]. φ(k)∗ = 〈ψII (k)|ψI (k)〉 is the complex conjugate
of the overlap between the two Bloch states as defined in
Eq. (2.5). The control parameter α is a real number between 0
and 1. The denominator N is a normalization factor,

N =
√

(1 − α)2 + α(2 − α)|φ(k)|2, (2.9)

which enforces the normalization condition
〈�(k,α)|�(k,α)〉 = 1. It is easy to prove that as long
as the overlap is nonzero φ �= 0, N is positive and thus the
denominator will not introduce any singularity.

When α = 0, the Bloch state defined above coincides with
|ψI (k)〉, i.e., the Bloch state for insulator I . At α = 1, the
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Bloch state becomes that of insulator II , up to an unimportant
phase factor,

|�(k,α = 0)〉 = |ψI (k)〉 (2.10)

|�(k,α = 1)〉 = φ(k)∗

|φ(k)∗| |ψII (k)〉 . (2.11)

Therefore, by varying the parameter 0 � α � 1, Eq. (2.8)
defines a path between the two insulators.

As proved in Appendix B, if insulators I and II preserve
certain symmetries (e.g., the time-reversal symmetry, lattice
symmetries, or some internal symmetries), the Bloch state
|�(k,α)〉 will preserve the same symmetry. In other words,
the path defined above preserves all necessary symmetries.
This is very important for the study of symmetry-protected
topological states.

3. The insulating gap

Now, we explore one key problem for the study of adiabatic
continuity: Is it possible to use the path defined in Eq. (2.8)
to deform insulator I into insulator II without closing the
insulating gap? The answer to this question is yes, as long
as the wave-function overlap remains finite for all momenta,
φ(k) �= 0. To prove this conclusion, we construct the following
Hermitian operator, which will serve as the Hamiltonian for
an insulator,

H (α) = −
∑

k

|�(k,α)〉 〈�(k,α)| . (2.12)

This Hamiltonian has one control parameter 0 � α � 1. It has
one flat band with energy E = −1 and the Bloch waves for this
band is |�(k,α)〉. All other bands in the system have energy
E = 0. If we set the Fermi energy to be between −1 and 0, this
Hamiltonian defines a band insulator with one valence band.
The band gap for this insulator is 1.

When α = 0, the valence band has the same Bloch wave
functions as insulator I , and for α = 1, the valence-band Bloch
wave function coincides with that of insulator II . For 0 < α <

1, the Hamiltonian defines an insulator with a finite insulating
gap, and the gap never closes. As a result, by varying the value
of α, the Hamiltonian shown in Eq. (2.12) defines an adiabatic
path between the two insulators.

In the language of topological phase transitions, this
observation implies that the two band insulators must belong
to the same quantum phase (i.e., have the same topological
indices), as long as the wave-function overlap φ(k) remains
finite for all k. For two insulators with different topology (i.e.,
if some topological index takes different values in the two
insulators), there must be at least one momentum point, at
which the overlap vanishes.

4. The complex U(1) phase

In Eq. (2.8), we introduced a factor φ(k)∗ in the definition
of |�(k,α)〉. This factor is necessary in order to preserve the
U (1) phase symmetry, which is also known as the U (1) gauge
symmetry for band insulators [22]. In a band insulator, it is
known that if we multiply a U (1) phase to a Bloch wave
function, the wave function still describes the same Block state,
i.e. |ψI (k)〉 and eiϕ |ψI (k)〉 describe the same Bloch state in
insulator I , where ϕ is an arbitrary U (1) phase. Similarly,

|ψII (k)〉 and eiϕ′ |ψII (k)〉 correspond to the same Bloch state
in insulator II . In other words, when we write down the
Bloch states |ψI (k)〉 and |ψII (k)〉 for the insulators, there
is a freedom to choose an arbitrary phase factor for each of
these states. In order to ensure that physical observables [e.g.,
the Hamiltonian H (α)] does not depend on this arbitrary phase
choice, the factor φ(k)∗ is necessary. It is straightforward to
verify that with the help of this factor, the Hamiltonian H (α)
defined in Eq. (2.12) is independent of the phase choice, i.e.,
it is invariant under the transformation

|ψI (k)〉 → eiϕ |ψI (k)〉 (2.13)

|ψII (k)〉 → eiϕ′ |ψII (k)〉 . (2.14)

In addition, as shown in Appendix B, this factor φ(k)∗ also
helps to ensure that the adiabatic path preserves the same
symmetries as insulators I and II .

B. Insulators with multiple occupied bands

Now we consider band insulators with more than one
valence bands.

1. Wave-function overlap

For an insulator with N valence bands, in the noninteracting
limit, the ground state wave function is

|GI 〉 =
N∏

n=1

∏
k

c
†
n,k |0〉 . (2.15)

Here, we follow the same convention as utilized in Eqs. (2.1)
and (2.2), except that the creation operators c

†
n,k now have

one extra subindex n, which labels the valence bands (n =
1,2, . . . ,N), and

∏N
n=1 represents the product for all occupied

bands.
Consider another insulator with the same number of valence

band, whose ground state wave function is

|GII 〉 =
N∏

n=1

∏
k

d
†
n,k |0〉 , (2.16)

where d
†
n,k is the creation operator for the Bloch waves in this

insulator. The quantum overlap between the two ground states
of these two insulators factorizes (similar to the case with one
valence band)

| 〈GI |GII 〉 | =
∏

k

|φ(k)|, (2.17)

where the Bloch-wave overlap at each momentum point is

φ(k) = 〈0|
N∏

n=1

cn,k

N∏
m=1

d
†
m,k|0〉 . (2.18)

In the first-quantization language, φ(k) is the determinant of
the overlap matrix F(k)

φ(k) = detF(k), (2.19)

where F(k) is a N × N matrix with matrix elements

Fn,m(k) = 〈0|cn,kd
†
m,k|0〉 = 〈

ψI
n (k)

∣∣ψII
m (k)

〉
, (2.20)
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where ∣∣ψI
n (k)

〉 = c
†
n,k|0〉 (2.21)∣∣ψII

m (k)
〉 = d

†
m,k |0〉 (2.22)

are the Bloch wave functions of the valence bands for insulators
I and II , respectively, and the subindices n and m are band
indices for valence bands in these two insulators.

We emphasize that the overlap matrix F(k) is a function of
the crystal momentum k. However, to simplify the formulas,
in this paper we will use F to represent the matrix without
showing explicitly that this matrix is a function of k.

2. The adiabatic path

In this section, we will assume that the overlap between
the two insulators, i.e., φ(k) defined in Eq. (2.18), is finite
for all momentum points, and then define an adiabatic path
between the two insulators. According to Eq. (2.19), φ(k) �= 0
implies that the overlap matrix F [Eq. (2.20)] has a nonzero
determinant. As shown in Appendix A 2, because FF†

is a Hermitian matrix, we can find a unitary matrix U ,
which diagonalizes FF†, i.e., UFF†U† is a diagonal matrix.
Utilizing the matrices F and U , we can define N quantum
states

|�l(k,α)〉 = (1 − α) U∗
l,n

∣∣ψI
n (k)

〉 + α U∗
l,nF∗

nm

∣∣ψII
m (k)

〉
Nl

,

(2.23)

where ∗ represents complex conjugate; 0 � α � 1 is a control
parameter and the subindex l = 1,2, . . . ,N . In this paper, we
adopt the Einstein summation convention. Unless claimed
otherwise, repeated band indices will be summed over,
and this sum only goes over all valence bands with band
indices between 1 and N , while conduction bands (with band
indices larger than N ) will not be included in the sum. The
denominator Nl is the normalization factor, which ensures that
the quantum state is properly normalized, 〈�l|�l〉 = 1, and
the value of this normalization function is shown in Eq. (A18).
In Appendix A 4, we proved that this normalization factor Nl

never reaches zero, as long as the overlap is nonzero φ(k) �= 0,
which ensures that Eq. (2.23) is singularity free.

We will prove in the next section that as long as the
overlap φ(k) remains finite, the states defined in Eq. (2.23)
are orthonormal

〈�l(k,α)|�l′(k,α)〉 = δl,l′ . (2.24)

As a result, we can design an insulator with N valence bands
and utilize these orthonormal states as the Bloch states of the
valence bands, and this insulator will serve as an adiabatic path
between insulators I and II . Here, we define the Hamiltonian
of this insulator

H (α) = −
N∑

l=1

∑
k

|�l(k,α)〉 〈�l(k,α)| . (2.25)

Because |�l(k,α)〉 are orthonormal for l = 1,2, . . . ,N , it is
straightforward to verify that |�l(k,α)〉 are eigenstates of the
Hamiltonian with eigenenergy E = −1, and all other single-
particle states orthogonal to |�l(k,α)〉 have eigenenergy E =
0, i.e., this Hamiltonian has N (flat) energy bands with energy

E = −1 and all other energy bands have energy E = 0. If the
Fermi energy is between −1 and 0, this Hamiltonian defines
a band insulator with band gap � = 1, and |�l(k,α)〉 are the
Bloch waves of the valence bands. As will be shown in the
next section, for α = 0 (α = 1), the ground state wave function
of this insulator coincides with that of insulator I (insulator
II ). Thus H (α) defines an adiabatic path between the two
insulators.

3. Proof for the adiabatic path

In this section, we prove the conclusions presented in
Sec. II B 2. We will first prove that the quantum states defined in
Eq. (2.23) are indeed orthonormal, i.e., 〈�l(k,α)|�l′ (k,α)〉 =
δl,l′ Then, we will show that the Hamiltonian defined in
Eq. (2.25) is the Hamiltonian for an insulator with N valence
bands, and we will further prove that for α = 0 (α = 1), the
ground state recovers that of the insulator I (II ).

It turns out that it is easier to present the proof using second
quantization, so here we will reformulate the same Bloch states
and the Hamiltonian utilizing creation/annihilation operators
defined in Eqs. (2.15) and (2.16), i.e., the creation operator
c
†
n,k (d†

m,k) adds one electron to the nth (mth) valence band
of insulator I (II ) at crystal momentum k. Since electrons
are fermions, the creation/annihilation operators satisfy the
canonical anticommutation relation

{cn,k,c
†
n′,k′ } = δn,n′δk,k′ (2.26)

{dm,k,d
†
m′,k′ } = δm,m′δk,k′ , (2.27)

where δ is the Kronecker delta. For the anticommutators
between cs and ds, it is straightforward to prove that

{cn,k,d
†
m,k′ } = Fn,mδk,k′ (2.28)

{dm,k,c
†
n,k′ } = F∗

n,mδk,k′ (2.29)

(see Appendix A 1 for details).
Utilizing these creation and annihilation operators, as well

as the matrices F and U defined in Sec. II B 2, we can define
creation operators

a
†
l,k = (1 − α) U∗

l,nc
†
n,k + α U∗

l,nF∗
nmd

†
m,k

Nl

. (2.30)

Here, repeated indices are summed over, same as in Eq. (2.23).
It is straightforward to verify that this creation operator
creates the Bloch state |�l(k,α)〉 defined in Eq. (2.23), i.e.,
|�l(k,α)〉 = a

†
l,k |0〉. In Appendix A 3, we proved that as

long as the overlap φ(k) is nonzero, these a
†
l,k operators,

and the corresponding annihilation operators, satisfy canonical
anticommutation relations

{al,k,a
†
l′,k} = δl.l′ . (2.31)

The anticommutation relation implies that the quantum states
defined in Eq. (2.23) are orthonormal, because

δl,l′ = 〈0|{al,k,a
†
l′,k}|0〉 = 〈�l(k,α)|�l′(k,α)〉 . (2.32)
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Now we examine the Hamiltonian defined in Eq. (2.25) and
rewrite it in the second-quantization language

H (α) = −
N∑

l=1

∑
k

a
†
l,kal,k. (2.33)

Along with the anticommutation relation [Eq. (2.31)], it is easy
to verify that this Hamiltonian describes a band insulator with
N valence bands. a

†
l,k are the creation operators for the Bloch

states in the valence bands (l = 1,2, . . . ,N ). All the valence
bands in this insulator have energy −1, while the conduction
bands have energy 0. Here, we set the Fermi energy into the
band gap, i.e., between −1 and 0. For any values of 0 � α � 1,
the insulating gap never closes and the value remains 1.

For α = 0, we know from Eq. (2.30) that

a
†
l,k = U∗

l,nc
†
n,k. (2.34)

Because U is a unitary matrix (i.e., U∗
l,nUl,n′ = δn,n′ ), the

Hamiltonian at α = 0 is

H (α = 0) = −
N∑

n=1

∑
k

c
†
n,kcn,k. (2.35)

Therefore, the ground state is identical to that of insulator I ,
i.e., all Bloch states created by c

†
n,k for n = 1,2, . . . ,N are

occupied.
For α = 1, Eq. (2.30) implies that

a
†
l,k = 1

Nl

U∗
l,nF∗

n,md
†
m,k. (2.36)

Thus the Hamiltonian becomes

H (α = 1) = −
∑

k

F∗
n,mU∗

l,nUl,n′Fn′,m′

N 2
l

d
†
m,kdm′,k. (2.37)

As proved in Appendix A 2,

F∗
n,mU∗

l,nUl,n′Fn′,m′

N 2
l

= δm,m′ (2.38)

and thus this Hamiltonian can be simplified

H (α = 1) = −
N∑

m=1

∑
k

d
†
m,kdm,k. (2.39)

The ground state for this Hamiltonian coincides with that of
the insulator II , i.e., all Bloch states created by d

†
m,k for m =

1,2, . . . ,N are occupied.

4. Insulators with different numbers of valence bands

Consider two insulators with different numbers of valence
bands. It is easy to realize that these two insulators are not
adiabatically connected, because it is impossible to change the
number of valence bands in a band insulator without going
through a gapless (metallic) state.

At the same time, we know that the overlap function also
vanishes. Utilizing the overlap function defined in Eq. (2.18),
we know that

φ(k) = 〈0|
N∏

n=1

cn,k

N ′∏
m=1

d
†
m,k|0〉 , (2.40)

where N and N ′ are the number of valence bands for the two
insulators, respectively. It is transparent that φ(k) = 0, if N �=
N ′. In summary, for two insulators with different numbers
of valence bands, the two insulators are not adiabatically
connected, and the wave-function overlap is zero.

C. Symmetry protected topological states

As mentioned above and proved in Appendix B, if insulators
I and II preserve certain symmetry, the adiabatic path that we
defined will preserve the same symmetry. This property is very
important for the study of symmetry-protected topological
states, where the topological index can only be defined in
the presence of certain symmetries. There, when we discuss
adiabatic paths that connect two quantum states, we must
ensure that the symmetry that is utilized to define the
topological index is preserved along the path. The adiabatic
path that we constructed above indeed preserves the symmetry,
as long as the symmetry is preserved in insulators I and II .

D. Insulators with different lattice structures

In the previous sections, we assumed that the two insulators
(I and II ) have the same Brillouin zone, and thus we can use
the same momentum points to compute the wave-function
overlap in both insulators. This assumption is not necessary,
and all the conclusions above can be generalized, even if two
insulators have different lattice structures, and thus different
Brillouin zones.

This is because the topology of a band insulator remains
invariant as we adiabatically deform the lattice structure, as
long as the gap remains finite. (For certain topological states,
e.g., topological crystalline insulators [9], the symmetry of the
underlying lattice plays an essential role in the definition of
the topological structure. There, as long as the deformation
of the lattice structure preserves the essential symmetry, the
topological structure also remains invariant.) Thus, we can
deform adiabatically the crystal structure of one insulator into
the structure of the other insulator, and then all the conclusions
above can be generalized.

Finally, we emphasize that the adiabatic deformation
discussed here is not unique. Instead, there exists infinite
different paths to deform the crystal structure. As long as
the deformation is adiabatic, our conclusion will remain the
same. Below, in Sec. II F, we will provide one example on how
to compare the Bloch waves in two insulators with different
lattice structures.

E. Adiabatic band flattening

Above, we defined a Hamiltonian with flat bands to
demonstrate the adiabatic continuity. This band structure
(with flat bands) is different from that of a real insulator,
where the energy bands are in general not flat and not
degenerate. However, for the study of adiabatic continuity
and/or topological phase transitions, this difference doesn’t
play any essential role. This is because in an arbitrary band
insulator, we can adiabatically flatten all the bands and adjust
the energy of each band without changing the Bloch wave
functions. The adiabatic flattening of energy bands are widely
utilized in the study of topological insulator/superconductors,
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and it is known that topological properties remain invariant as
we flatten the bands in a band insulator, as long as the band
gap remains open (see, for example, Refs. [6] and [7]).

F. Examples

In this section, we present examples to demonstrate that
for two insulators with different topology, the Bloch-wave-
function overlap must vanish at certain momentum point in
the Brillouin zone.

1. Insulators with different topology

First, we consider insulators with different topological
structures and show that the wave-function overlap must vanish
at some moment point. We start by considering the model of
Haldane [2]. As pointed out by Haldane, for a honeycomb
lattice, the Dirac band-touching point can be gapped by two
different methods: (1) introducing a magnetic flux pattern,
which breaks the time-reversal symmetry or (2) introducing
a staggered potential, which breaks the degeneracy between
the two sublattices. At half filling, these two approaches
result in two different insulators with different topology, a
topologically-nontrivial Chern insulator and a topologically-
trivial conventional insulator.

Utilizing these two topologically different insulators, we
can compute the overlap between Bloch states in their valence
bands, i.e., φ(k) defined above. As shown in Fig. 1, this overlap
vanishes at the K point, in agreement with our conclusions
above.

For Chern insulators with different Chern numbers, zero
wave-function overlap has been observed and proved in earlier
studies using other approaches [23,24]. Our theorem indicates
that the same conclusions will remain for any types of
topological indices, including symmetry-protected topological

FIG. 1. The absolute value of the Bloch-wave-function overlap
in Haldane’s model. Here, we examined two insulating states in
the model of Haldane with different Chern numbers (+1 and 0).
Utilizing the Bloch waves of the valence bands in the two insulators,
we computed the wave-function overlap φ(k) and plotted its absolute
value as a function of the crystal momentum kx and ky . As shown
in the figure, the overlap vanishes at certain momentum point, which
happens to be the K point for this model.

FIG. 2. The absolute value of the Bloch-wave-function overlap
between the Kane-Mele model and the Bernevig-Hughes-Zhang
model. Here, we compute the wave-function overlap for the quan-
tum spin Hall insulators described by the Kane-Mele model and
the Bernevig-Hughes-Zhang model. Because the two models have
different Brillouin zone, here we used a continuous mapping to
map the Brillouin zone of the Kane-Mele model to that of the
Bernevig-Hughes-Zhang model. The plot shows the absolute value
of the overlap as a function of the crystal momentum (kx,ky). As
shown in the figure, the overlap remains finite indicating that these
two insulators are topologically equivalent.

states. To demonstrate this conclusion, we have also computed
the wave-function overlap in other models with one or more
valence bands (not shown), e.g., the Kane-Mele model [25] and
the Bernevig-Hughes-Zhang model [26]. For insulating states
with different topology, we always find some momentum point
at which the wave-function overlap φ(k) reaches zero.

2. Topologically equivalent insulators with
different lattice structures

Here, we consider two topologically equivalent insulators
with different lattice structures. In this example, we compare
the quantum spin Hall insulators in the Kane-Mele model [25]
and the Bernevig-Hughes-Zhang model [26].

These two models assume very different lattice structures
(honeycomb and square) and thus the Brillouin zones of
these two models have very different geometry. As shown
in the Appendix C, we can use a continuous one-to-one
correspondence to map the Brillouin zone of the Kane-Mele
model to that of the Bernevig-Hughes-Zhang model. (There
exist infinite such mappings, and here we just adopt one of
them to demonstrate the physics). As shown in Fig. 2, despite
differences in lattice structures etc., the quantum-spin-Hall
insulators described by these two different models show finite
wave-function overlap, which implies immediately that they
are topologically equivalent.

III. INTERACTING SYSTEMS

In the presence of interactions, we can no longer utilize
(decoupled) single-particle (Bloch) states to characterize the
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ground state of a many-body quantum system. However, we
can prove a similar theorem for generic quantum systems,
which reveals a universal relation between adiabatic continuity
and the wave-function overlap.

Theorem. For any two quantum states with nonzero over-
lap, i.e., |ψ〉 and |ψ ′〉 with 〈ψ |ψ ′〉 �= 0, a Hamiltonian H (α)
can be defined, such that by tuning the control parameter α,
the ground state of the Hamiltonian evolves adiabatically from
|ψ〉 to |ψ ′〉. During this adiabatic procedure, the energy gap
between the ground and excited states remains finite.

It must be emphasized that although this theorem shares
some similarities with what was discussed above for band
insulators (and the proof is along the same line of thinking as
will be shown below), this theorem is fundamentally different
from the conclusions shown in the previous section. This
theorem covers a wider range of systems (interacting and
noninteracting), but it is a weaker statement in comparison
to what we have proved in the previous section for band
insulators. For noninteracting band insulators, we showed that
the adiabatic path can be achieved using a noninteracting
Hamiltonian. But for more general situations considered in the
theorem above, the Hamiltonian that describes the adiabatic
path may contain interactions, i.e., we have to enlarge the
scope of Hamiltonians in order to construct the adiabatic path
for generic systems. Proving that two states are connected
by a noninteracting Hamiltonian is a stronger statement than
proving that they are connected by a Hamiltonian, without the
noninteracting constraint. Another way to see this difference is
by examining the adiabatic path. As will be shown below, the
Hamiltonian that we constructed to prove this theorem contains
interactions. Even in the noninteracting limit, in general, it
will not recover the noninteracting Hamiltonian utilized in the
previous section.

In this section, we prove this theorem, and its implications
for quantum phase transitions will be discussed in the next sec-
tion. As will be shown in the next section, for topological phase
transitions, there exist major differences between interacting
and noninteracting systems. In particular, in the presence of
strong interactions, the connection between our theorem and
quantum phase transitions becomes much more complicated
in comparison to noninteracting systems discussed in the
previous section. As a result, we can only apply this theorem
for the study of certain interacting topological systems.

A. Adiabatic path connecting two quantum states

Consider two quantum states |ψ〉 and |ψ ′〉. Here |ψ〉 and
|ψ ′〉 are generic quantum states, instead of single-particle
states. We can define overlap between the two states as

φ = 〈ψ |ψ ′〉 . (3.1)

Define a quantum state

|�(α)〉 = (1 − α) |ψ〉 + α φ∗ |ψ ′〉
N , (3.2)

where 0 � α � 1 is a real number between 0 and 1 and φ∗
is the complex conjugate of the wave-function overlap. The
denominator N is a normalization factor,

N =
√

(1 − α)2 + α(2 − α)|φ|2 (3.3)

which ensures the normalization condition 〈�(α)|�(α)〉 = 1.
Utilizing this wave function, we can define a Hermitian
quantum operator

H (α) = − |�(α)〉 〈�(α)| , (3.4)

and this quantum operator will serve as our Hamiltonian.
If H (α) is a Hamiltonian and α is a control parameter, the

energy spectrum of the system can be figured out immediately.
The ground state of the system is |�(α)〉 with eigenenergy −1

H (α) |�(α)〉 = − |�(α)〉 〈�(α)|�(α)〉 = − |�(α)〉 . (3.5)

All other eigenstates of H have eigenenergy 0, which are
the excited states. In other words, this Hamiltonian defines a
gapped system with a unique ground state, while all the excited
states are separated by an energy gap.

When α = 0, the ground state is |�(0)〉 = |ψ〉. At α = 1,
the ground state is |�(1)〉 = |ψ ′〉 up to a phase factor. For
0 < α < 1, the energy gap between the ground and excited
states always remains finite (� = 1), and thus as we tune α

from 0 to 1, it offers an adiabatic path to deform (adiabatically)
a quantum state |ψ〉 into a different quantum state |ψ ′〉 without
closing the excitation gap.

For quantum phase transitions, the existence of such an
adiabatic path implies that |ψ〉 and |ψ ′〉 belongs to the same
quantum phase, i.e., we can go from one to the other without
going through a quantum phase transition. This conclusion
remains valid as long as the overlap remains finite 〈ψ |ψ ′〉 �= 0.
As shown in Appendix B, this adiabatic path preserves the
same symmetry as |ψ〉 and |ψ ′〉.

B. U(1) phase symmetry

In Eq. (3.2), a factor φ∗ = 〈ψ ′|ψ〉 is introduced in the
definition of |�(α)〉. This factor is necessary in order to
preserve the U (1) phase symmetry. Because the proof is
in strong analogy to the noninteracting case discussed in
Sec. II A 4, here we will not repeat the analysis, and it is
straightforward to verify that with this 〈ψ ′|ψ〉 factor, H (α) is
invariant under the transformation

|ψ〉 → eiφ |ψ〉 (3.6)

|ψ ′〉 → eiφ′ |ψ ′〉 . (3.7)

In addition, as shown in Appendix B, this factor φ∗ also helps
to ensure that the adiabatic path preserves the same symmetries
as |ψ〉 and |ψ ′〉.

IV. APPLICATIONS TO QUANTUM PHASE TRANSITIONS

For the study of quantum phase transitions, this theorem has
two immediate implications: (1) if two quantum states belong
to two different quantum phases, and it is impossible to go
from one to the other adiabatically without going through a
quantum phase transition point, the overlap between the two
quantum wave functions must be strictly zero, i.e., the two
wave functions must be orthogonal to each other; and (2) if
two quantum states have finite overlap, they must belong to
the same quantum phase, i.e., one can turn a state into the
other adiabatically without going through a quantum phase
transition.
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This observation enforces a strong constraint on quantum
wave functions in different quantum phases. However, before
we can apply this knowledge to the study of quantum phase
transitions, one challenge has to be resolved, the orthogo-
nality catastrophe. Based on the orthogonality theorem from
Anderson, in the thermodynamic limit, the overlap between
two different quantum wave functions shall vanish due to
the infinite degrees of freedom [10]. To utilize the theorem
discussed above to study quantum phase transitions, it is
necessary to find a way to distinguish zero overlap caused
by Anderson’s orthogonality theorem and zero overlap caused
by the absence of an adiabatic path. There are three ways to
take care of the orthogonality catastrophe:

(i) Utilizing another zero to cancel the zero induced by the
orthogonality theorem. One technique that can achieve this
objective is the strange correlator as shown in Ref. [27].

(ii) Separate an infinite system into smaller subsystems
with finite degrees of freedom, and then investigate the overlap
in each subsystem, which doesn’t suffer from the orthogonality
catastrophe. This technique is applicable for noninteracting
systems and certain interacting systems.

(iii) Study finite-size systems and then extrapolate to the
infinite-size limit via finite-size scaling. This last approach is
directly relevant to numerical studies.

Below, we will explore some examples to demonstrate the
second and the third techniques.

A. Quantum Hall and Chern insulators

For certain topological states, the topological structure is
well defined for both finite and infinite systems. The most
well-known example of this type is the integer and fractional
quantum Hall systems, as well as the integer and fractional
Chern insulators, where the topological index can be computed
using twisted boundary conditions for both finite-size and
infinite systems [28].

1. Definition of topological indices for a finite-size system

Consider a finite-size two-dimensional many-body systems
with size Lx × Ly . We enforce twisted boundary conditions
for many-body wave functions

ψ(. . . ,xi + Lx,yi, . . .) = eiϕx ψ(. . . ,xi,yi, . . .) (4.1)

ψ(. . . ,xi,yi + Ly, . . .) = eiϕy ψ(. . . ,xi,yi, . . .), (4.2)

where ψ is a many-body wave function, while xi and yi are
the x and y coordinates of the ith particle. ϕx and ϕy are two
phase factors. For ϕx = ϕy = 0 (ϕx = ϕy = π ), it recovers the
periodic (antiperiodic) boundary conditions. For other values
of ϕx and ϕy , it is known as the twisted boundary conditions.

We can find the ground state of a quantum system
under twisted boundary conditions |ψ(ϕx,ϕy)〉. In general, the
ground state wave function depends on the values of ϕx and
ϕy . For a gapped system, we can define the following integral

C =
∫ 2π

0
dϕx

∫ 2π

0
dϕy

〈∂ϕx
ψ |∂ϕy

ψ〉 − 〈∂ϕy
ψ |∂ϕx

ψ〉
2πi

. (4.3)

As pointed out in Ref. [28], this integral is a topological
invariant, i.e., the first Chern number, regardless of the size

of the system. In the thermodynamic limit, this topological
index coincides with the Hall conductivity [28]. Because
the definition utilizes many-body wave functions (without
using single-particle Bloch waves), it is applicable for both
interacting and noninteracting systems. In the noninteracting
limit, it recovers the Chern number computed using single-
particle Bloch waves [29].

It is also worthwhile to mention that it is straightforward to
generalize this definition to fractional quantum Hall systems
and fractional Chern insulators. Once topological degeneracy
is taken into account, the integral shown above produces
fractional values, i.e., the fractional Hall conductivity [30].

2. Wave-function overlap and topological index

Consider a 2D finite-size system with Hamiltonian H1

and another 2D system with the same size but a different
Hamiltonian H2. Here, we allow the Hamiltonians to contain
interactions, and we assume that the ground states are gapped
for both Hamiltonians (for any twisted boundary conditions).
We can find the many-body ground states for the two Hamil-
tonians under twisted boundary condition |ψ1(ϕx,ϕy)〉 and
|ψ2(ϕx,ϕy)〉, respectively. Using Eq. (4.3), one can compute
the Chern number for the ground states of both Hamiltonians.

Here, we ask the following question: If the ground states
of the two Hamiltonians have different Chern numbers, what
is the wave-function overlap between the two insulators,
〈ψ1(ϕx,ϕy)|ψ2(ϕx,ϕy)〉? Because we have set the system size
to finite, the wave-function overlap does not suffer from the
orthogonality catastrophe, and thus we can directly apply the
theorem proved above.

Because the two ground states have different Chern num-
bers, it is impossible to adiabatically deform one state into the
other without closing the excitation gap (between the ground
state and the first excited state). This implies that no matter
how we try to deform H1 into H2, adiabatically, the excitation
gap must close for at least one set of ϕx and ϕy . Utilizing
the theorem proved above, this implies that we can find at
least one set of ϕx and ϕy , the wave-function overlap vanishes
〈ψ1(ϕx,ϕy)|ψ2(ϕx,ϕy)〉 = 0. Otherwise, an adiabatic path will
exist, which is in contradiction to the assumption that the two
states have different Chern numbers.

Now we consider the opposite situation, where
〈ψ1(ϕx,ϕy)|ψ2(ϕx,ϕy)〉 �= 0 for all possible values of ϕx and
ϕy . Utilizing the theorem shown above, for any twisted
boundary condition, we can construct an adiabatic path
between these two quantum states without closing the gap.
As a result, the two states must have the same Chern number.

3. Topological phase transitions in interacting systems

Now we study topological phase transitions in a 2D
interacting system. Consider a Hamiltonian H (α), where
α is a control parameter. We assume that by tuning the
control parameter α, the system undergoes a topological phase
transition, where the Chern number changes its value, i.e., the
Hamiltonian has a gapped ground state for both α > αC and
α < αC , but the ground states have different Chern numbers
for α > αC and α < αC . Here again, we consider a finite-size
system, although one can take the thermodynamic limit later
via finite size scaling. As shown above and pointed out in
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Ref. [31], even for finite size systems, the Chern number and
the topological phase transition is well defined.

The ground-state wave function of this Hamiltonian
|ψα(ϕx,ϕy)〉 depends on the value of the control parameter
α, as well as the phases of the twisted boundary conditions
ϕx and ϕy . We can compute the wave-function overlap for the
ground states at different values of α,

φα1,α2 (ϕx,ϕy) = 〈ψα1 (ϕx,ϕy)|ψα2 (ϕx,ϕy)〉 . (4.4)

The conclusions that we proved above indicate immediately
that if this overlap never vanishes for any ϕx and ϕy , H (α1)
and H (α2) describe states in the same quantum phase, i.e.,
α1 > αC and α2 > αC , or α1 < αC and α2 < αC .

Similarly, if we compute the overlap for two wave functions
from two different topological phases, (e.g., α1 > αC and
α2 < αC), then this overlap must vanish for some values of
ϕx and ϕy . A special case of this type has been shown in
Ref. [31], where α1 and α2 are very close to the transition
point, i.e., α1 = αC + ε and α2 = αC − ε where ε is a very
small positive number. There, the vanishing wave-function
overlap results in a singularity (i.e., a Dirac δ-function) in the
fidelity matrix [32–34], which can be used to pin-point the
topological phase transition in a finite-size interacting system.
The results shown above generalize the same conclusion for
any values of α1 > αC and α2 < αC , close or far away from
the topological transition point.

B. Factorized wave-function overlap in certain
interacting systems

In general, a many-body ground-state wave function of
an interacting system cannot be factorized as the product of
single-particle (or few-particle) wave functions, in contrast
to noninteracting systems discussed in Sec. II. However,
for certain interacting systems, such a factorization could
happen, which offers us another way to avoid the orthogonality
catastrophe in the study of wave-function overlap.

Here we consider a (AA-stacked) bilayer Kane-Mele model
as studied in Ref. [35]. For each layer, we have a noninteracting
Kane-Mele model (on a honeycomb lattice), which describes
a Z2 topological insulator. Between the layers, an interlayer
antiferromagnetic spin-spin interaction is introduced between
interlayer nearest neighbors.

In this model, because the z component of the spin is
conserved, the insulating ground state is characterized by an
integer-valued topological index, known as the spin Chern
number. In the noninteracting limit, the topological index
is +2, i.e., the system is topologically nontrivial. Because
there is no interaction, the ground state factorizes as the
antisymmetrized product of Bloch states

|ψI 〉 =
∏

k

c
†
t,kd

†
t,kc

†
b,kd

†
b,k |0〉 (4.5)

where c
†
t,k and d

†
t,k are the creation operators for the two valence

bands in the top layer. Here, the top layer is a noninteracting
Kane-Mele model, which has two valence bands (taking into
account the spin degrees of freedom). The other two creation
operators c

†
b,k and d

†
b,k are for the bottom layer, which is

identical to the top layer.

When the interlayer antiferromagnetic coupling is infinitely
strong, electrons between the two layers form singlet pairs (i.e.,
dimers). At half filling, the dimers fill up the whole system,
and electrons can no longer move, i.e., the system becomes a
topologically-trivial insulator with spin Chern number 0. Here,
the ground state wave function is

|ψII 〉 =
∏

i

(a†
t,i,↑a

†
b,i,↓ − a

†
t,i,↓a

†
b,i,↑)

× (b†t,i,↑b
†
b,i,↓ − b

†
t,i,↓b

†
b,i,↑) |0〉 . (4.6)

Here, a† and b† are the creation operator for the A and
B sublattices of the honeycomb lattice, respectively. The
subindices t and b represent the top and bottom layers, and
i is the index for unit cells. ↑ and ↓ are spin indices (spin
up and down). Here, a

†
t,i,↑a

†
b,i,↓ − a

†
t,i,↓a

†
b,i,↑ and b

†
t,i,↑b

†
b,i,↓ −

b
†
t,i,↓b

†
b,i,↑ create spin singlets (dimers) in the A and B sites of

the ith unit cell.
Because the noninteracting limit and the strong-coupling

limit have different topological indices (+2 and 0), a topo-
logical phase transition must arise as the antiferromagnetic
coupling strength increases. This transition was observed and
studied using quantum Monte Carlo simulations [35].

Here, we focus on the noninteracting limit and the infinite-
coupling limit. As shown above, in both cases, the ground
states are product states. With periodic boundary conditions,
the number of momentum points in a Brillouin zone coincides
with the number of unit cells in the real space. Thus, a one-to-
one correspondence can be defined between the unit cell index
i and crystal momentum k

i → k = ki . (4.7)

For a system with N unit cells, there exist a vast number of
such one-to-one mappings. Here we can choose an arbitrary
one of them, and the conclusions below are independent of
this choice. Utilizing this mapping that we choose, the wave-
function overlap between |ψI 〉 and |ψII 〉 can be factorized

|φ| = | 〈ψI |ψII 〉 | =
∏

i

|φi |, (4.8)

where

φi = 〈0|db,ki
cb,ki

dt,ki
ct,ki

(a†
t,i,↑a

†
b,i,↓ − a

†
t,i,↓a

†
b,i,↑)

× (b†t,i,↑b
†
b,i,↓ − b

†
t,i,↓b

†
b,i,↑)|0〉. (4.9)

Here, for each i, this overlap only involves four creation
(annihilation) operators, and thus φi doesn’t suffer from the
orthogonality catastrophe. Because the two regimes (non-
interacting and infinite-interaction) have ground states with
different topology, we expect at least one i, at which φi

vanishes. This is indeed the case for the model considered
here.

V. DISCUSSION

In this paper, we explored the relation between wave-
function overlap and adiabatic continuity in (noninteracting)
band insulators and interacting quantum systems. Our results

125111-9



JIAHUA GU AND KAI SUN PHYSICAL REVIEW B 94, 125111 (2016)

can be utilized to simplify certain problems in the study
of topological states. For example, in the study of band
insulators, a large number of topological indices have been
introduced (e.g., the Chern number, the Z2 topological index,
the mirror Chern number, the spin Chern number, the Hopf
index), and more topological indices can be defined, if we
enforce additional symmetries (e.g., space-group symmetries).
As a result, to fully determine the topological property of an
insulator becomes a nontrivial task. In principle, it is necessary
to compute all these topological indices in order to achieve
such an objective. The conclusions reported in this paper offer
an alternative approach. Instead of trying to compute all known
topological indices, one can utilize some known insulators
as reference states, whose wave functions and topological
properties are well understood. If the Bloch waves of an
insulator have nonzero overlap with some reference insulator,
we immediately know the topological properties of this
insulator, which must be identical to the reference insulator.
If the insulator has zero Bloch-wave-function overlap with
all known reference insulators, then this insulator might be
a topological state, and it requires further investigation to
understand its topological structure.

It is worthwhile to notice that a nonzero wave-function
overlap is a sufficient condition for topologically equivalence,
but it is not necessary. For example, two topologically equiv-
alent states may accidentally have wave-functions that are
orthogonal to each other. Such an accidental vanishing wave-
function overlap is typically not stable and will be removed
by small perturbations, while the topologically-protected zero
wave-function overlap is stable and cannot be removed.

For interacting systems, our theorem can be easily gener-
alized. However, it cannot be applied to generic interacting
systems because of the orthogonality catastrophe. On the
other hand, in the study of interacting topological states,
many numerical methods can only handle finite-size systems
(e.g., exact diagonalization or density matrix renormalization
group). There, our conclusions will not suffer from the
orthogonality catastrophe and thus could benefit some of the
numerical investigations.

Above, we proved that if we have two insulators with
different topology, there must exist (at least) one momentum
point, at which the overlap of the wave function vanishes.
The vanishing overlap has direct experimental implications,
if we consider tunneling between these two insulators, i.e.
the vanishing wave-function overlap can prohibit tunneling
between the two insulators at a certain momentum point. In
Ref. [23], it is shown that this is indeed the case when one
studies tunneling between Chern insulators and conventional
insulators, and between time-reversal invariant topological
insulators and conventional insulators. Our results suggest
that similar physics could be generalized for more generic
topological states.
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APPENDIX A: INSULATORS WITH MORE THAN ONE
VALENCE BANDS

In this section, we present proofs for conclusions discussed
in Sec. II B.

1. Anticommutators for the c and d operators

We first prove Eqs. (2.28) and (2.29). In general, creation
operators c

†
n and d

†
m are connected by the following unitary

transformation

d
†
m,k =

+∞∑
n=1

〈0|cn,kd
†
m,k|0〉 c

†
n,k (A1)

c
†
n,k =

+∞∑
m=1

〈0|dm,kc
†
n,k|0〉 d

†
m,k. (A2)

We emphasize that in these two equations, the band indices n

and m are summed over all bands (conduction and valence).
Utilizing Eq. (A1), it is straightforward to verify that

{cn,k,d
†
m,k′ } =

+∞∑
n′=1

〈0|cn′,k′d
†
m,k′ |0〉 {cn,k,c

†
n′,k′ }

=
+∞∑
n′=1

Fn′,mδn,n′δk,k′ = Fn,mδk,k′ . (A3)

Similarly, using Eq. (A2), we have

{dm,k,c
†
n,k′ } =

+∞∑
m′=1

〈0|dm′,k′c
†
n,k′ |0〉 {dm,k,d

†
m′,k′ }

=
+∞∑
m′=1

F∗
nm′δm,m′δk,k′ = F∗

n,mδk,k′ . (A4)

2. The F and U matrices

In this section, we prove some properties of the F and U
matrices.

a. The existence of the U matrix

First, we prove the existence of the U matrix. In the main
text, we assumed thatU is a unitary matrix, which diagonalizes
the matrix FF†, i.e., UFF†U† is a diagonal matrix. To prove
that such a U indeed exists, we just need to show that FF†

is a Hermitian matrix, because we know that any Hermitian
matrices can be diagonalized by some unitary matrices. Here,
we compute directly the Hermitian conjugate of FF†,

(FF†)† = (F†)†F† = FF†, (A5)

which indeed recovers itself, i.e., it is a Hermitian matrix. As
a result, there must exist some unitary matrix U , such that

Ul,nFn,mF∗
n′,mU∗

l′,n′ = λlδl,l′ , (A6)

where λl are the eigenvalues of the matrix FF†. In this
formula, we do not sum over l for the right-hand side (same
below).
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b. λl > 0

Now, we will prove that the eigenvalues λl are positive, as
long as detF �= 0, which will be used later in Sec A 4 when
we prove that the normalization factor in the denominator is
nonzero. We first prove that FF† is semi-positive definite (i.e.,
all eigenvalues are non-negative), regardless of the value of
detF . Then, we will further prove that if detF �= 0, the matrix
FF† is positive definite (i.e., all eigenvalues are positive).

Assuming that w is an arbitrary row vector composed by
N complex numbers, and w† is its Hermitian conjugate. We
know that

wFF†w† = wF(wF)† � 0. (A7)

Because this result holds for any w, FF† is semi-positive
definite, i.e., its eigenvalues are non-negative.

If detF �= 0, det(FF†) = | detF |2 �= 0. Because the de-
terminant of a Hermitian matrix equals to the product of all
eigenvalues, this implies that none of the eigenvalues of the
matrix FF† is zero. Thus, this matrix is positive definite and
all eigenvalues are positive.

c.
F∗

n,mU∗
l,nUl,n′ Fn′,m′

N 2
l

= δm,m′

Now we prove that at α = 1,
F∗

n,mU∗
l,nUl,n′Fn′ ,m′
N 2

l

= δm,m′ , which

was utilized to simplify Eq. (2.37) in the main text. First, we
rewrite Eq. (A6) in a matrix form

UFF†U† = D, (A8)

where D is a diagonal matrix

Dl,l′ = λlδl,l′ (A9)

and λl is the lth eigenvalue of the FF† matrix. We compute
the matrix inverse for both sides of Eq. (A8). Because U is a
unitary matrix, U−1 = U†, we have

U(F†)−1F−1U† = D−1 (A10)

and thus

F†U†[U(F†)−1F−1U†]UF = F†U†D−1UF . (A11)

If we simplify this equation, we find that

I = F†U†D−1UF, (A12)

where I is the identity matrix. If we write down the
components for these matrices, we get

δm,m′ = F∗
n,mU∗

l,nD−1
l,l′Ul′,n′Fn′,m′ . (A13)

Utilizing Eq. (A9), it is easy to realize that the inverse of the
diagonal matrix D is

D−1
l,l′ = λ−1

l δl,l′ . (A14)

As shown in Eq. (A18), at α = 1, λ−1
l = 1/N 2

l , and thus we
have

δm,m′ = F∗
n,mU∗

l,n

δl,l′

N 2
l

Ul′,n′Fn′,m′ = F∗
n,mU∗

l,nUl,n′Fn′,m′

N 2
l

.

(A15)

3. Anticommutators

Now, we compute the anticommutators for a and a†,

{al,k,a
†
l′,k′ } = (1 − α)2

|Nl|2 Ul,nU∗
l′,n′ {cn,k,c

†
n′,k′ }

+ (1 − α)α

|Nl|2 Ul,nU∗
l′,n′F∗

n′,m′ {cn,k,d
†
m′,k′ }

+ (1 − α)α

|Nl|2 Ul,nFn,mU∗
l′,n′ {dm,k,c

†
n′,k′ }

+ α2

|Nl|2 Ul,nFn,mU∗
l′,n′F∗

n′,m′ {dm,k,d
†
m′,k′ }

= (1 − α)2

|Nl|2 Ul,nU∗
l′,n′δn,n′δk,k′

+ (1 − α)α

|Nl|2 Ul,nU∗
l′,n′F∗

n′,m′Fn,m′δk,k′

+ (1 − α)α

|Nl|2 Ul,nFn,mU∗
l′,n′F∗

n′,mδk,k′

+ α2

|Nl|2 Ul,nFn,mU∗
l′,n′F∗

n′,m′δm,m′δk,k′

= (1 − α)2

|Nl|2 Ul,nU∗
l′,nδk,k′

+ α(2 − α)

|Nl|2 Ul,nFn,mF∗
n′,mU∗

l′,n′δk,k′ . (A16)

In the first term, because U is a unitary matrix, we have
Ul,nU∗

l′,n = δl,l′ . For the second term, we have shown in
Eq. (A6) that Ul,nFn,mF∗

n′,mU∗
l′,n′ = λlδl,l′ , where λl is the lth

eigenvalue of the matrix FF†. As a result,

{al,k,a
†
l′,k′ } = (1 − α)2 + α(2 − α)λl

|Nl|2 δl,l′δk,k′ . (A17)

If we set the normalization factor

Nl =
√

(1 − α)2 + α(2 − α)λl (A18)

the canonical anticommutation relation is proved

{al,k,a
†
l′,k′ } = δl,l′δk,k′ . (A19)

4. Normalization factor

In this section, we prove that the normalization factor
defined in Eq. (A18) never becomes zero. Because this
normalization factor is used as a denominator in the definition
of a

†
l,k, the fact that Nl �= 0 ensures that a

†
l,k is not singular.

In Sec. A 2, we have proved that as long as the overlap
function is nonzero, λl is positive. For a positive λl and 0 �
α � 1, it is easy to verify that (1 − α)2 + α(2 − α)λl > 0.
Thus, according to Eq. (A18), we proved that Nl > 0.

APPENDIX B: SYMMETRY OF THE ADIABATIC PATH

In this section, we prove that for two quantum states with
finite wave-function overlap, the adiabatic path defined in the
main text preserves all the symmetries of the two quantum
states.
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1. Interacting systems

We start by examining the symmetry of the adiabatic path
defined in Eq. (3.4). Here, we consider unitary symmetries,
but all the conclusions can be easily generalized to antiunitary
symmetries. In quantum mechanics, a symmetry in a quantum
state implies that the wave function must remain invariant
under certain transformation (e.g., translation, space inversion,
etc.) up to some possible U (1) phase factor

|ψ〉 → eiϕ |ψ〉 (B1)

|ψ ′〉 → eiϕ′ |ψ ′〉 . (B2)

If these relations hold for |ψ〉 and |ψ ′〉, it is straightforward to
prove that under the same transformation, the wave function
defined in Eq. (3.2) transforms as

|�(α)〉 → eiϕ |�(α)〉 , (B3)

same as the state |ψ〉. The corresponding bra vector transforms
as

〈�(α)| → e−iϕ 〈�(α)| , (B4)

where the complex phase takes the opposite sign. As a result,
the Hamiltonian defined in Eq. (3.4) is invariant under this
transformation, because the phase factors from the bra and ket
vectors cancel each other, i.e., the Hamiltonian preserves this
symmetry.

2. Band insulators with one valence band

Now we consider band insulators with one valence band,
i.e., the Hamiltonian Eq. (2.12). Again, we consider unitary
symmetries, but all the conclusions can be easily generalized
to antiunitary symmetries. Assume that insulators I and II

preserve some symmetry. Under the symmetry transformation,
we assume that the momentum points are transformed as

k → k′, (B5)

and the Bloch waves are transformed according to certain
unitary matrices. Because the insulator is invariant under the
transformation, this unitary matrix will not mix conduction
and valence bands. Since we have only one valence band, the
Bloch waves of the valence band can only change by a phase
shift under this symmetry transformation

|ψI (k)〉 → eiϕ(k) |ψI (k)〉 . (B6)

Because the insulator is invariant under this transformation, we
know that eiϕ(k) |ψI (k)〉 must be identical to the Bloch wave
of the valence band at k′

|ψI (k)〉 → |ψI (k′)〉 = eiϕ(k) |ψI (k)〉 . (B7)

For insulator II , the wave function satisfies the same
relation, but the phase factor could be different

|ψII (k)〉 → |ψII (k′)〉 = eiϕ′(k) |ψII (k)〉 . (B8)

As a result, the overlap function must satisfy

φ(k′) = ei[ϕ′(k)−ϕ(k)]φ(k). (B9)

It is easy to verify that for the Bloch state |�(k,α)〉 defined in
Eq. (2.8), we have

|�(k,α)〉 → |�(k′,α)〉 = eiϕ(k) |�(k,α)〉 , (B10)

same as |ψI 〉. Thus the Hamiltonian that we defined for the
adiabatic path [Eq. (2.12)] remains invariant, i.e., it preserves
the symmetry

H (α) → H (α). (B11)

3. Band insulators with more than one valence bands

In this section, we consider more generic band insulators
with multiple valence bands. Assume that insulators I and
II preserve some unitary symmetry and under the symmetry
transformation the momentum points transform as

k → k′. (B12)

Because insulator I preserves the symmetry, under the sym-
metry transformation, Bloch waves of the valence bands must
satisfy, ∣∣ψI

n (k)
〉 → ∣∣ψI

n (k′)
〉 = U I

n,n′ (k)
∣∣ψI

n′ (k)
〉
, (B13)

where U I (k) is some unitary matrix that describes the transfor-
mation of the Bloch waves under the symmetry transformation.
For insulator II , if the same symmetry is preserved, the wave
function is transformed in a similar way, but the unitary matrix
could be different∣∣ψII

m (k)
〉 → ∣∣ψII

m (k′)
〉 = U II

m,m′(k)
∣∣ψII

m′ (k)
〉
. (B14)

As a result, the overlap matrix Fn,m = 〈ψI
n |ψII

m 〉 satisfies

Fk′ = (
U I

k

)∗Fk
(
U II

k

)T
, (B15)

where ∗ and T stand for complex conjugate and transpose,
respectively. Here, we write the momentum as a subindex to
simplify the formula (same below).

As a result, we know that

Fk′F†
k′ = (

U I
k

)∗FkF†
k

(
U I

k

)T
. (B16)

In the main text, we defined a U matrix at each momentum
point to diagonalize the FF† matrix. The relation above
implies that

Uk′ = Uk
(
U I

k

)T
(B17)

up to some unimportant gauge choice (i.e., phase factors).
Utilizing Eqs. (B15) and (B17), we can verify easily that for

the valence-band Bloch states defined in Eq (2.23), |�(k,α)〉 =
|�(k′,α)〉 up to a gauge choice. Thus, the insulator that we
defined as the adiabatic path preserves the correct symmetry.

APPENDIX C: WAVE-FUNCTION OVERLAP BETWEEN
DIFFERENT MODELS

For the Kane-Mele model, we consider a honeycomb
lattice with lattice constant set to unity. For this lattice, the
Hamiltonian can be written as

HKM = d1I2×2 ⊗ τ1 + d2I2×2 ⊗ τ2 + d3σ3 ⊗ τ3, (C1)
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where I2×2 is the two-by-two identity matrix. σi and τi

represent Pauli matrices, and

d1 = −t1[1 + cos(k1) + cos(k2)]; (C2)

d2 = −t1[sin(k1) + sin(k2)]; (C3)

d3 = −2t2 sin(φ)[sin(k1) − sin(k2) − sin(k1 − k2)]; (C4)

where k1 = 1
2kx +

√
3

2 ky , k2 = − 1
2kx +

√
3

2 ky . t1 and t2 are
the nearest-neighbor and next-nearest-neighbor hopping
strengths, and φ is the phase change along with the next-
nearest-neighbor hopping. The Brillouin zone for this model
can be chosen as a rhombus formed by reciprocal lattice vectors
4π√

3
(
√

3
2 , ± 1

2 ).
For the Bernevig-Hughes-Zhang model, we use the follow-

ing Hamiltonian

HBHZ = sin(kx)σ3 ⊗ τ1 + sin(ky)I2×2 ⊗ τ2

+ [2 − m − cos(kx) − cos(ky)]I2×2 ⊗ τ3. (C5)

The first Brillouin zone is a square region (−π,π ] × (−π,π ].

Notice that for both models, we choose the gauge such
that the Hamiltonians remain invariant when we shift the
momentum by a reciprocal lattice vector. For control pa-
rameters, we set t1 = 3, t2 = 1, φ = π/2 for the Kane-Mele
model and m = 1 for the Bernevig-Hughes-Zhang model.
When we fill the lowest two of the four bands, the ground
states for both models share the same spin Chern number,
i.e., the two insulators are topologically equivalent. In order
to compare the wave functions for these two insulators, we
map the Brillouin zone of the Kane-Mele model to that of the
Bernevig-Hughes-Zhang model using the following mapping

(kx,ky) →
(

− π + 1

2
kx +

√
3

2
ky, − π + 1

2
kx −

√
3

2
ky

)
.

(C6)

It is worthwhile to emphasize that there are other ways to map
the Brillouin zone of one model to that of the other. As long
as the mapping is a continuous bijection, it can be used to
compute the wave-function overlap.

With this mapping, we can now compute the wave-function
overlap for each momentum point, using the technique
discussed above. The result for these two models is shown
in Fig. 2, where the overlap remains finite and never reaches
zero.
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