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For arbitrary space dimension d , we investigate the quantum phase transitions of two paradigmatic spin models
defined on a hypercubic lattice, the coupled-dimer Heisenberg model and the transverse-field Ising model. To this
end, high-order linked-cluster expansions for the ground-state energy and the one-particle gap are performed up
to order 9 about the decoupled-dimer and high-field limits, respectively. Extrapolations of the high-order series
yield the location of the quantum phase transition and the correlation-length exponent ν as a function of space
dimension d . The results are complemented by 1/d expansions to next-to-leading order of observables across
the phase diagrams. Remarkably, our analysis of the extrapolated linked-cluster expansion allows to extract the
coefficients of the full 1/d expansion for the phase-boundary location in both models exactly in leading order
and quantitatively for subleading corrections.
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I. INTRODUCTION

Zero-temperature phase transitions [1–3] are a central topic
in many domains of modern physics, in particular in correlated-
electron systems. Such a quantum phase transition (QPT),
driven by varying a nonthermal parameter like magnetic
field, pressure, or doping, implies a qualitative change of
the system’s ground state. Near a continuous QPT one
observes unconventional finite-temperature behavior, which
is universal, i.e., independent of microscopic details.

Quantum magnets are a perfect playground, both experi-
mentally and theoretically, to investigate quantum criticality
and the associated universal behavior. Here, theoretical in-
vestigations can mainly be distinguished in two groups. The
first studies continuum-limit quantum field theories using,
e.g., renormalization-group techniques—these are designed
to access the long-wavelength behavior near criticality. The
second works with lattice models, which are analyzed using
approximate analytical or numerical techniques—such ap-
proaches capture microscopic aspects of the problem at hand,
but are often unsuitable to describe critical behavior.

One powerful technique to study quantum lattice models
and QPTs are linked-cluster expansions (LCEs) [4]. Here
high-order series expansions are derived at zero temperature in
the thermodynamic limit for relevant physical quantities of the
microscopic model under consideration. The obtained series
can then be extrapolated, giving access to quantum critical
points and critical exponents. In practice, LCEs are done most
efficiently via a full graph expansion, i.e., the topologically
distinct fluctuations are determined on finite graphs and are
then embedded directly into the thermodynamic-limit system.
LCEs therefore consist of two independent steps: the explicit
calculation on graphs and the embedding procedure. The
latter is essentially the combinatorial problem to find the
number of possible embeddings of a graph on the infinite
lattice.

LCEs are usually performed for a microscopic lattice
Hamiltonian in fixed space dimension d. However, since it
is only the embedding procedure and the selection of graphs
which depend explicitly on d, it is also possible to realize
LCEs for arbitrary d so that the high-order series of physical

quantities contain d, a free parameter. Such LCEs for general
d have been set up for classical Ising and Potts models on the
hypercubic lattice in Refs. [5,6]. Recently, we have extended
such expansions to ground-state energies and one-particle
dispersions for quantum lattice problems in Ref. [7] where
they were mainly used as cross-check of the 1/d expansion
methodology developed there.

It is the purpose of this paper to study QPTs of quantum
magnets on the hypercubic lattice for arbitrary d using LCEs.
We have pushed the series expansions for general d to
considerably higher orders, which allows us to investigate
the QPT of both the coupled-dimer Heisenberg model (like
in Ref. [7]) and the transverse-field Ising model. Specifically,
we calculate high-order LCEs for the ground-state energy and
for the one-particle gap about the decoupled dimer (high-field)
limit for both models. Extrapolations of these quantities allow
us to determine the location of the phase boundary as function
of d and to predict the behavior of the leading coefficients of the
full 1/d expansion. Surprisingly, the first-order coefficient can
be extracted exactly from the extrapolation. We complement
the LCE results by those from a systematic 1/d expansion
to next-to-leading order in both the disordered and ordered
phases: such an expansion has been developed for coupled
dimers in Refs. [7,8] and is extended here to the transverse-field
Ising model.

The paper is organized as follows. In Sec. II, we introduce
the two microscopic models studied in this work. The technical
aspects including the high-order series expansions for the
ground-state energy and the one-particle gap as well as their
extrapolation are contained in Sec. III, while details of the 1/d

expansions are given in Sec. IV. The physical implications and
findings are discussed in Sec. V and we conclude our work in
Sec. VI.

II. MODELS

We consider two archetypical models on the hypercubic
lattice with dimension d: (i) a coupled-dimer Heisenberg
magnet (CDHM) of spins 1/2 and (ii) the transverse-field
Ising model (TFIM). In both cases, an infinite-d limit exists,
which features a nontrivial QPT.
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A. Coupled-dimer Heisenberg model

The CDHM is a model of dimers, i.e., pairs of spins 1/2,
on the sites i of a hypercubic lattice. The Hamiltonian reads

HCDHM = J
∑

i

�Si1 · �Si2 +
∑
〈ij〉

(K11 �Si1 · �Sj1 + K22 �Si2 · �Sj2),

(1)

where
∑

〈ij〉 denotes a summation over pairs of nearest-
neighbor dimer sites i,j , and 1,2 refer to the individual spins on
each dimer. We restrict our attention to the symmetric case of
K11 = K22 ≡ K . For d = 1 and 2, the spin lattice of HCDHM

in Eq. (1) corresponds to the much-studied two-leg ladder and
square-lattice bilayer magnets, respectively.

A nontrivial limit d → ∞ is obtained if the inter-dimer
coupling constant K is scaled as 1/d in order to preserve a
competition between the K and J terms in (1). For d � 2 and
K,J > 0, the dimensionless parameter

qCDHM = Kd

J
(2)

controls a QPT between a singlet paramagnet with gapped
triplon excitations [9] at small q and a gapless antiferromagnet
with ordering wave vector �Q = (π,π, . . .) at large q. For d =
2, this transition occurs at [10] qc = 0.793, while qc = 0.620
has been found recently for d = 3 in Ref. [11].

The upper critical dimension of the QPT, with O(3) order
parameter, is d = 3. Consequently, the critical exponents
take mean-field values α = 0, β = 1/2, γ = 1, δ = 3, and
ν = 1/2 for all dimensions d � 3. In contrast, one expects
continuously varying anomalous exponents for 1 < d < 3.
For d = 3, one finds multiplicative logarithmic corrections
to mean-field behavior [11–13].

B. Transverse-field Ising model

The TFIM is described by the Hamiltonian

HTFIM = −h
∑

i

σ x
i − J

∑
〈ij〉

σ z
i σ z

j , (3)

where
∑

〈ij〉 denotes a summation over nearest-neighbor spins
i,j on the hypercubic lattice and σα

i with α ∈ {x,y,z} are
Pauli matrices representing spin-1/2 degrees of freedom. In the
following, we assume a ferromagnetic Ising exchange J > 0,
but our results are equally valid for the antiferromagnetic case,
since both cases can be mapped onto each other via a sublattice
rotation on the hypercubic lattice.

A nontrivial limit d → ∞ is obtained again by scaling
the Ising coupling constant J with 1/d. For d � 1, the
dimensionless parameter

qTFIM = Jd

h
(4)

controls the QPT between two gapped phases, the field-
polarized phase at small q and the ordered ferromagnetic state
with broken Z2 symmetry at large q. For d = 1, this model
reduces to the well-known Ising chain in a transverse field,
with the transition located at qc = 1. For d = 2, the quantum
critical point has been determined by series expansions and
quantum Monte Carlo and is known to be qc ≈ 0.657 [14–18].

For the simple cubic lattice (d = 3), series expansions and
quantum Monte Carlo finds qc ≈ 0.582 [17,19].

The order-parameter symmetry of the TFIM is Z2. The
upper critical dimension is d = 3 as well, implying mean-
field exponents for d � 3, continuously varying exponents
for 1 � d < 3 (different from the ones of the CDHM), and
multiplicative logarithmic corrections [19–22] for d = 3.

III. LINKED-CLUSTER EXPANSION FOR ARBITRARY d

In this section, we provide the relevant technical aspects
with respect to linked-cluster expansions for arbitrary dimen-
sion d for the disordered phases of the CDHM and the TFIM
on the hypercubic lattice. In practice, we calculated high-order
series expansions for the ground-state energy per dimer (spin)
and for the one-particle gap up to order 9 in the relative strength
of the interdimer (intersite) coupling k = K/J (k = J/h) for
the CDHM (TFIM).

A. Method

We start by sketching the underlying method of the
expansion; for details we refer the reader to Refs. [23–25].
The expansion’s reference point corresponds to k = 0. Here
the ground state is given by a product state in both models.
For the CDHM, there are singlets on the dimers, and ele-
mentary excitations are local triplets with excitation energy
	CDHM/J = 1. In contrast, the TFIM is in the fully polarized
state with all spins pointing along x̂, and the elementary
excitations are local spin flips corresponding to a spin along
−x̂ with excitation energy 	TFIM/2h = 1.

After a global energy shift, we can rewrite both models in
the form

H = H0 + k V̂ , (5)

where H0 has an equidistant spectrum bounded from below
counting the number of excitations, namely triplets (spin flips)
for the CDHM (TFIM). The perturbing parts can then be
written as

V̂ = T̂−2 + T̂0 + T̂2 , (6)

where T̂m changes the total number of excitations by m ∈
{±2,0}. Note that only terms with even m appear in V̂ due
to the exact reflection symmetry of both models leading to a
conserved parity quantum number.

Each operator T̂m is a sum over local operators connecting
two nearest-neighbor sites (either dimers or spins). One can
therefore write

T̂m =
∑

l

τ̂m,l , (7)

with τ̂m,l effecting only the two sites connected by the link l

on the lattice.
The perturbative continuous unitary transformations

(pCUTs) [23–25] map the original Hamiltonian to an effective
quasiparticle conserving Hamiltonian of the form

Ĥeff(k) = Ĥ0 +
∞∑

n=1

kn
∑

dim(m)=n

M(m)=0

C(m) T̂m1 . . . T̂mn
, (8)
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where n reflects the perturbative order. The second sum
is taken over all possible vectors m≡ (m1, . . . ,mn) with
mi ∈ {±2,0} and dimension dim(m) = n. Each term of this
sum is weighted by the rational coefficient C(m) ∈ Q,
which has been calculated model-independently up to high
orders [23]. The additional restriction M(m) ≡ ∑

mi = 0
reflects the quasiparticle-conserving property of the effective
Hamiltonian, i.e., the resulting Hamiltonian is block-diagonal
in the number of quasiparticles [Ĥeff,Ĥ0] = 0. Each quasipar-
ticle block can then be investigated separately which repre-
sents a major simplification of the complicated many-body
problem.

The operator products T̂m1 . . . T̂mn
appearing in order n

can be interpreted as virtual fluctuations of “length” l � n

leading to dressed quasiparticles. According to the linked-
cluster theorem, only linked fluctuations can have an overall
contribution to the effective Hamiltonian Ĥeff. Hence the
properties of interest can be calculated in the thermody-
namic limit by applying the effective Hamiltonian on finite
clusters.

Considering all linked fluctuations on the lattice (for
arbitrary d), it becomes clear that the contribution of each
fluctuation only depends on its topology. The calculation
separates therefore into two independent steps. (i) The model-
dependent part of the calculation is performed on the finite set
of topologically distinct graphs. (ii) The model-independent
part corresponds to the combinatorial problem of how many
times the contribution on the graphs has to be embedded into
the lattice in order to extract thermodynamic-limit properties.
For the calculation in d dimensions, it is the second model-
independent part which represents the real challenge. As a
consequence, we reach the same maximum order 9 for both
models, both for the ground-state energy and the one-particle
gap.

B. Ground-state energy

In the following, we discuss the calculation of the ground-
state energy per dimer (spin) εCDHM

0 (εTFIM
0 ) for the hypercubic

CDHM (TFIM) for arbitrary d. The calculation is performed
up to order k9, using pCUTs and a full graph decomposition.
The first step of the calculation is conventional and it is part of
any LCE. One determines the (reduced) contributions to the
ground-state energy ε0,n, which is done in pCUTs by simply
applying Eq. (8) to the zero-particle state on the relevant
graphs. In order to avoid double counting of contributions,
the reduced contribution ε0,i to ε0 of each graph Gi has to be
calculated by subtracting the contributions of all subgraphs.

Up to perturbative order n, only graphs up to n links have to
be considered due to the linked-cluster theorem. Additionally,
it is useful to check whether the graphs fit onto the lattice and
whether each graph has a finite contribution in the order under
consideration. The latter depends on both, the model and the
observable. In the case of the ground-state energy, one has a
specific selection rule for both models that each link has to be
touched twice by the perturbation as long as it is not part of a
closed loop of links [7]. This property drastically reduces the
total number of graphs which one has to treat.

The embedding factor νi(d) for graph Gi , being the number
of possible embeddings of Gi on the lattice, is a function

of the spatial dimension d. The ground-state energy in the
thermodynamic limit is then given by

ε0 =
∑

i

νi(d) ε0,i . (9)

The determination of the embedding factors νi(d) for arbitrary
d is the most challenging part of the calculation. Note that
the embedding factors νi(d) are exactly the same for both
models; only the contributions ε0,i are model-dependent. To
determine the embedding factor in d dimensions, we apply a
scheme similar to the one presented in Ref. [6]. Each graph
can be associated with a dimension defined by the number
of dimensions that the graph can maximally occupy. The d-
dependent embedding factor is then given by a polynomial in d

of degree mmax, which is determined by the embedding factors
of the graph in dimension d = 1, d = 2, . . . ,d = mmax.

In order to determine the embedding factors, it is necessary
to divide the number of naive embeddings by the symmetry
factor Si of Gi . Otherwise one overcounts contributions, since
embeddings connected by a symmetry mapping of the graph
represent exactly the same fluctuation on the lattice in the
thermodynamic limit.

Following these principles, we find the following ground-
state energy per dimer for the CDHM:

εCDHM
0

J
= −3

4
− 3

8
d k2 − 3

16
d k3 +

(
21

128
d − 9

64
d2

)
k4

+
(

57

256
d − 3

64
d2

)
k5 +

(
−2781

1024
d + 273

64
d2

− 357

256
d3

)
k6 +

(
−73293

16384
d + 53205

8192
d2

− 8499

4096
d3

)
k7 +

(
1151577

32768
d − 2270385

32768
d2

+ 687885

16384
d3 − 8313

1024
d4

)
k8 +

(
80239263

1048576
d

− 75882381

524288
d2 + 21745125

262144
d3 − 490731

32768
d4

)
k9,

(10)

and the ground-state energy per spin for the TFIM:

εTFIM
0

2h
= −1

2
− 1

8
k2d +

(
13

128
d − 7

64
d2

)
k4

+
(

−367

512
d + 311

256
d2 − 1

2
d3

)
k6

+
(

7031

512
d− 947263

32768
d2+ 321187

16384
d3− 4535

1024
d4

)
k8.

(11)

One can easily check that these results match the ones
from literature for specific dimensions. For d = 1, this formula
reduces to the known results for the CDHM on a two-leg
ladder [26] and for the TFIM on a chain [4,27]. For d = 2,
we reproduce the numerical results of the ground-state energy
for the square-lattice Heisenberg bilayer [28] and the square
lattice TFIM [14]. For d = 3, the series expansion for the
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TFIM is known [19] while for the CDHM the high-order series
expansion was unknown.

C. One-particle gap

For the one-particle dispersion ω�k , the embedding proce-
dure is more demanding, since each embedding is associated
with different hopping elements in the thermodynamic limit.
However, if one is only interested in the one-particle gap,
which is located at �k = �Q for the CDHM and at �k = 0 for
the TFIM, it is possible to apply a similar scheme as for the
ground-state energy:

The hypercubic lattice is bipartite, i.e., it can be divided into
two sublattices. The hopping elements can then be classified
into hopping elements on the same sublattice and hopping
elements between both sublattices. At �k = 0, relevant for the
TFIM, the contribution of all hopping elements is simply
given by the embedding factor. However, at �k = (π,π, . . . ,π),
relevant for the CDHM, only hopping elements on the same
sublattice are given by the embedding factor, while the
contribution of hopping elements between different sublattices
must be modified with an additional sign due to the gap
momentum. Consequently, the one-particle gap 	 of the
CDHM is given by

	 =
∑

i

νi(d)	Gi (12)

with

	Gi =
∑
l,m

σl,mt
(i)
l,m, (13)

where the double sum runs over all sites of the graph Gi ,
t

(i)
l,m corresponds to the (reduced) one-particle hopping element

from site l to site m determined by the pCUT calculation, and
σl,m = 1 (σl,m = −1) if the number of links between sites l

and m is even (odd). The latter represents the additional sign
to account for the momentum �Q of the one-particle gap in the
case of the CDHM.

The resulting one-particle gaps for both models are given
by

	CDHM

J
= 1−dk +

(
d − 1

2
d2

)
k2 +

(
1

4
d + 1

2
d2 − 1

2
d3

)
k3

+
(

−5

4
d + 3

4
d2 + d3 − 5

8
d4

)
k4

+
(

29

128
d − 5

2
d2 + 9

8
d3 + 7

4
d4 − 7

8
d5

)
k5

+
(

17169

1024
d − 12585

512
d2 + 1429

256
d3 + 17

64
d4

+ 25

8
d5 − 21

16
d6

)
k6 +

(
−1845

4096
d + 94275

4096
d2

− 29833

1024
d3 + 4117

1024
d4 − 213

256
d5 + 91

16
d6

− 33

16
d7

)
k7 +

(
−31976937

65536
d + 30652045

32768
d2

− 133669

256
d3 + 580521

8192
d4 + 553

512
d5 − 4059

1024
d6

+ 21

2
d7 − 429

128
d8

)
k8 +

(
−128426725

524288
d

− 36029001

262144
d2 + 110976899

131072
d3 − 34605481

65536
d4

+ 491585

8192
d5 + 11615

8192
d6 − 47333

4096
d7

+ 627

32
d8 − 715

128
d9

)
k9 (14)

for the CDHM and

	TFIM

2h
= 1 − dx +

(
1

2
d − 1

2
d2

)
k2 +

(
−1

4
d + 3

4
d2

− 1

2
d3

)
k3 +

(
−5

8
d + 1

4
d2 + d3 − 5

8
d4

)
k4

+
(

5

4
d − 5

2
d2 + 1

2
d3 + 13

8
d4 − 7

8
d5

)
k5

+
(

3873

512
d − 5577

512
d2 + 273

128
d3 − 39

128
d4 + 45

16
d5

− 21

16
d6

)
k6 +

(
−9635

512
d + 95253

2048
d2 − 72089

2048
d3

+ 3165

512
d4 − 841

512
d5 + 161

32
d6 − 33

16
d7

)
k7

+
(

−7102997

32768
d + 13840105

32768
d2 − 970563

4096
d3

+ 205211

8192
d4 + 21305

4096
d5 − 9695

2048
d6 + 147

16
d7

− 429

128
d8

)
k8 +

(
67215987

131072
d − 12296139

8192
d2

+ 205457057

131072
d3 − 5394851

8192
d4 + 2336733

32768
d5

+ 134797

16384
d6 − 96289

8192
d7+ 1089

64
d8− 715

128
d9

)
k9

(15)

for the TFIM. As for the ground-state energy, these results
match with the ones known from literature [4,14,19,26,28] for
specific values of d.

D. Extrapolation

The obtained LCEs for the physical quantities have to be
extrapolated in order to locate quantum critical points and
to determine the associated critical exponents. For a general
review on series extrapolation, we refer to Ref. [29]. Here
we give the relevant information on the specific extrapolation
techniques we applied.

One expects the following critical behavior close to a QPT:

∂2e0

∂k2
∝ (k − kc)−α 	 ∝ (k − kc)zν, (16)
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where α, z, and ν are the specific-heat, dynamic, and
correlation length exponents, respectively. The models under
consideration have z = 1.

Our series are all of the form

F (k) =
m∑

n�0

ank
n = a0 + a1k + a2k

2 + · · · amkm, (17)

with k ∈ R and ai ∈ R. If one has power-law behavior near
a critical value kc like in Eq. (16), the true physical function
F̃ (k) close to kc is given by

F̃ (k) ≈
(

1 − k

kc

)−θ

A(k), (18)

where θ is the associated critical exponent. If A(k) is analytic
at k = kc, we can write

F̃ (k) ≈
(

1 − k

kc

)−θ

A|k=kc

[
1 + O

(
1 − k

kc

)]
. (19)

Near the critical value kc, the logarithmic derivative is then
given by

D̃(k) := d
dk

ln F̃ (k) ≈ θ
kc−k

[1 + O(k − kc)]. (20)

In the case of power-law behavior, the logarithmic derivative
D̃(k) is therefore expected to exhibit a single pole.

The latter is the reason why the so-called Dlog-Padé
extrapolation is often used to extract critical points and
critical exponents from high-order series expansions. Dlog-
Padé extrapolants of F (k) are defined by

dP [L/M]F (k) = exp

(∫ k

0
P [L/M]D dk′

)
(21)

and represent physically grounded extrapolants in the case of
a second-order phase transition. Here, P [L/M]D denotes a
standard Padé extrapolation of the logarithmic derivative,

P [L/M]D := PL(k)

QM (k)
= p0 + p1k + · · · + pLkL

q0 + q1k + . . . qMkM
, (22)

with pi ∈ R and qi ∈ R and q0 = 1. Additionally, L and M

have to be chosen so that L + M − 1 � m. Physical poles
of P [L/M]D(k) then indicate critical values kc, while the
corresponding critical exponent of the pole kc can be deduced
by

θ ≡ PL(k)
d

dk
QM (k)

∣∣∣∣
k=kc

. (23)

If the exact value (or a quantitative estimate from other
approaches) of kc is known, one can obtain better estimates
of the critical exponent by defining

θ∗(k) ≡ (kc − k)D(k) ≈ θ + O(k − kc),

where D(k) is given by Eq. (20). Then

P [L/M]θ∗ |k=kc = θ (24)

yields a (biased) estimate of the critical exponent.
At the upper critical dimension d = 3, both models display

multiplicative corrections to Eq. (16) close to the quantum

critical point so that one expects the following critical
behavior:

F̄ (k) ≈
(

1 − k

kc

)−θ[
ln

(
1 − k

kc

)]p

Ā(k), (25)

where kc (θ ) are the associated critical point (exponent) as
before while p yields the power of multiplicative logarithmic
corrections. Clearly, the extraction of p from a high-order
series expansion is very demanding. The only reasonable
approach is to bias the extrapolation by fixing kc and θ , e.g., the
critical exponents θ are given by the well-known mean-field
values.

Assuming again that the function Ā(k) is analytic close to
kc, Eq. (19) transforms into

F̄ (k) ≈
(

1 − k

kc

)−θ[
ln

(
1 − k

kc

)]p

Ā|k=kc

×
[

1 + O
(

1 − k

kc

)]
. (26)

and the logarithmic derivative Eq. (20) becomes

D̄(k) ≈ θ

kc − k
+ −p

ln(1 − k/kc)(kc − k)
+ O(k − kc).

One can then estimate the multiplicative logarithmic correction
p by defining

p∗(k) ≡ − ln(1 − k/kc)[(kc − k)D(k) − θ ]

≈ p + O(k − kc),

and by performing Padé extrapolants of this function

P [L/M]p∗|k=kc = p. (27)

IV. 1/d EXPANSION

Utilizing the limit of large spatial dimension d, an analytic
1/d expansion for spin models with order-disorder QPT was
developed in Refs. [7] and [8]. In the limit d → ∞, nonlocal
fluctuations are suppressed, such that a suitable product-state
wave function can be used as a reference state. The 1/d

expansion is obtained from a theory of interacting bosons
which capture fluctuations on top of the product state; in this
theory, factors of 1/d do not appear in the Hamiltonian but are
generated via momentum summations. For large d, critical
exponents take mean-field values which allows one to identify
observables, which are analytic even at the quantum critical
point. This paves the way to a fully analytic description across
the QPT.

References [7] and [8] developed and applied this method-
ology to a model of coupled dimers on the hypercubic lattice.
In the present paper, we will make use of those results in
Sec. V below. In addition, we apply and extend the 1/d

expansion method to the transverse-field Ising model via a
suitable auxiliary-boson description. In this section, q ≡ qTFIM

is the tuning parameter defined in Eq. (4).

A. Quantum paramagnetic phase

Let us first discuss 1/d expansion in the quantum param-
agnetic phase of the TFIM, where a suitable reference state is
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given by

� =
∏

i

|0〉i , |0〉i = |↑〉i + |↓〉i√
2

, (28)

where i denotes lattice site and |0〉i is an eigenstate of σx
i with

an eigenvalue 1. A local excitation is given by

|T 〉i = |↑〉i − |↓〉i√
2

, (29)

which is an eigenstate of σx
i with an eigenvalue −1. We can

introduce an auxiliary boson to efficiently describe this process
as follows:

T
†
i |0〉i = |T 〉i ; Ti |0〉i = 0 , (30)

such that it satisfies the usual bosonic commutation relations.
The physical Hilbert space on each lattice site consists of
only two states. This implies a hard-core constraint for the
Ti bosons, which we implement by introducing a projection
operator [30]

Pi = 1 − T
†
i Ti , (31)

which is then used to express the spin operators in terms of Ti

bosons:

σx
i = 1 − 2T

†
i Ti , (32)

σ
y

i = ı(PiTi − T
†
i Pi ) , (33)

σ z
i = PiTi + T

†
i Pi . (34)

Note that the usual spin commutation relations are satisfied
within the physical Hilbert space.

Now, substituting Eqs. (32)–(34) in the spin Hamilto-
nian (3), we obtain an interacting boson Hamiltonian (see
Appendix A). We use diagrammatic perturbation theory to treat
the interacting boson piece in the Hamiltonian. In the large-d
formalism, corrections to observables due to these terms are
suppressed in powers of 1/d, thereby leading to a systematic
1/d expansion. This follows from the fact that due to particular
momentum-summation properties of the Fourier-transformed
interaction, all self-energy diagrams can be expressed as a
series in 1/d in the limit d → ∞. The diagrammatic treatment
in this case is similar to the one discussed in Ref. [7]. We will
therefore only quote the 1/d expansion of relevant observables
here while relegating technical details and relevant expressions
to Appendix A.

Let us begin with the mode dispersion ��k corresponding
to the single-particle excitation. Since the critical exponents
ν and z have mean-field values 1/2 and 1, respectively, the
square of the excitation-energy gap is analytic at the critical
point. We therefore have an analytic 1/d expansion for the
square of the mode dispersion as follows:

�2
�k

4h2
= 1 − 2γ�kq + q2

4d
(4 + 2γ�kq). (35)

Here,

γ�k = 1

d

d∑
i=1

cos ki (36)

is the interaction structure factor such that γ�k ∈ [−1,1]. The
leading part, i.e., O(1/d0) result in Eq. (35) arises from the
noninteracting boson piece (harmonic approximation) in the
Hamiltonian, while contribution from the boson-interaction
terms start at O(1/d). Despite its appearance to this order, this
is not an expansion in q. As discussed at length in Ref. [7],
one can as well convert Eq. (35) into a 1/d expansion for ��k ,
but this will not be well-defined at the QPT for �k = �Q = 0.

The minimum of the mode dispersion (35) is at �Q. Thus
the excitation energy gap is given by 	 = � �Q. Substituting
γ �Q = 1 in Eq. (35), we obtain the 1/d expansion for the energy
gap:

	2

4h2
= 1 − 2q + q2

4d
(4 + 2q) . (37)

As for the dispersion, a 1/d expansion for 	 can be written
away from the QPT. In particular, in the small-q limit, the 1/d

expansion of 	 matches with the LCE result (15). Since the
single-particle excitation gap vanishes at the quantum critical
point, we can use this criterion to obtain the 1/d expansion for
the phase boundary to the ferromagnetic phase,

qc = 1

2
+ 5

32d
+ O

(
1

d2

)
. (38)

Next, we consider the ground-state energy. In this case, the
harmonic approximation itself leads to an expression to order
1/d, while the diagrammatic contribution starts at O(1/d2).
After collecting all the contributions we obtain the following
expression for the ground-state energy per site:

Eg

2hN
= −1

2
− q2

8d
− 7q4

64d2
+ O

(
1

d3

)
. (39)

This expression matches with the LCE result Eq. (11).

B. Ferromagnetic phase

We now discuss the symmetry-broken ferromagnetic phase,
realized for q > qc. Beyond the quantum critical point,
the auxiliary boson introduced earlier is condensed. As a
consequence, a suitable reference state in the ordered phase
is [31]

�0 =
∏

i

|0̃〉i , |0̃〉i = |0〉i + λ|T 〉i√
1 + λ2

. (40)

In this case, λ is the condensation parameter which takes
values between 0 and 1 (alternatively, −1 for the other Z2

symmetry related choice of reference state) as a function of
the tuning parameter q. Obviously, �0 in the limit λ → 1 is
the fully polarized ferromagnet. Apart from our reference state
we have one more state in the physical Hilbert space, which is
orthonormal to the above state and is given by

|T̃ 〉i = −λ|0〉i + |T 〉i√
1 + λ2

. (41)

This is a local spin-flip excitation on top of the reference state.
Again we introduce auxiliary bosons T̃ such that

T̃
†
i |0̄〉i = |T̃ 〉i ; T̃i |0̄〉i = 0, (42)

which obey the usual bosonic commutation relations. As
above, the hard-core constraint is implemented by introducing
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the projection operator

P̃i = 1 − T̃
†
i T̃i . (43)

The spin operators, expressed using the rotated excitation
operators T̃ , read

σx
i = 1

1 + λ2
((1 − λ2)(1 − 2T̃

†
i T̃i ) − 2λ(T̃ †

i P̃i + P̃i T̃i)),

(44)

σ
y

i = ı(P̃i T̃i − T̃
†
i P̃i ), (45)

σ z
i = 1

1 + λ2
(2λ(1 − 2T̃

†
i T̃i ) + (1 − λ2)(T̃ †

i P̃i + P̃i T̃i)).

(46)

Also, for λ = 0, we recover the spin representation (32)–(34)
in the paramagnetic phase. Parenthetically we note that local
spin flips correspond to elementary excitations of the ordered
phase only for d > 1, whereas domain-wall excitations are
relevant in d = 1. Since we are interested in the large-d limit,
this is not an issue.

The calculation in the ordered phase is similar to that in the
paramagnetic phase, with one important complication: The
condensation parameter λ itself has a 1/d expansion, which
is another source for 1/d corrections to other observables.
A detailed discussion regarding the corrections to λ and its
influence can be found in Ref. [8]. We will now straightaway
proceed to 1/d expansion of observables in this phase.
Technical details can be found in Appendix B.

We begin by quoting the single-particle (i.e., spin-wave)
dispersion:

�̃2
�k

4h2
= 4q2 − γ�k − 1

d

1

128q4(12q2 + γ�k)

[
2γ 3

�k

+ 1536q6(1 + γ�k) + 4γ�kq
2
(
1 − 4γ 2

�k
)

+ 16q4
(
2γ 3

�k + 2γ 2
�k − 16γ�k − 15

)]
. (47)

We obtain the excitation-energy gap 	̃ = �̃ �Q by substituting
γ �Q = 1 in the above expression:

	̃2

4h2
= 4q2 − 1 − 1

d

1

128q4(12q2 + 1)
[2

− 12q2 − 432q4 + 3072q6] + O
(

1

d2

)
. (48)

Again, demanding that the gap vanishes at the quantum critical
point, we obtain the same phase boundary (38) as before.

Unlike the paramagnetic phase, the ground-state energy in
this phase is evaluated only to order 1/d, because the next order
would require corrections to λ to order 1/d2, which are beyond
the scope of this work. The 1/d expansion of the ground-state
energy per site is then given by

Eg

2hN
= −4q2 + 1

4q
− 1

d

1

256q3
+ O

(
1

d2

)
. (49)

Note that at the quantum critical point given by Eq. (38), above
expression matches the ground-state energy (39) calculated in
the paramagnetic phase to order 1/d.

The ferromagnetic phase is characterized by the nonzero
value of the order parameter, which is magnetization. It is zero
at the quantum critical point, while in the limit h → 0, it takes
the value 1 (or −1 for the other choice of symmetry-broken
state) corresponding to the fully polarized state. Since the
mean-field critical exponent β = 1/2, we have an analytic 1/d

expansion for the square of magnetization per site as follows:

M2 = 4q2 − 1

4q2
− 1

d

5

128q4
+ O

(
1

d2

)
. (50)

Note that using the condition of vanishing magnetization at the
quantum critical point we again get the phase boundary (38).

V. RESULTS FOR THE QUANTUM PHASE TRANSITION
IN ARBITRARY d

In the following, we use the high-order LCE to estimate
the location of the QPT—as the point where the gap of the
symmetric (paramagnetic or field-polarized) phase closes—for
both models and arbitrary d. Furthermore, we aim at extracting
the correlation-length exponent as well as multiplicative
logarithmic corrections at the upper critical dimension d = 3.
Finally, we use the extrapolation of the series expansions about
the d = ∞ limit to predict the leading coefficients of the full
1/d expansion.

A. Coupled-dimer Heisenberg model

The most reliable way to locate the QPT is the use of
Dlog-Padé extrapolation Eqs. (21) and (22) for the one-triplon
gap 	CDHM given in Eq. (14). To this end, we set the inverse
of dimension 1/d to fixed values in [0,0.5] and extract the
critical point kc. Representative Dlog-Padé extrapolants as well
as known literature values for d = 2 and 3 are displayed in
Fig. 1.

One observes that the extrapolants vary smoothly with 1/d

and agree well with the literature values for d = 2 and 3 as well

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
q

0

0.1

0.2

0.3

0.4

0.5

1/
d

Dlog[4,4]
Dlog[3,5]
1/d expansion
QMC d=2
QMC d=3

quantum paramagnet Neel order

O(3)
O(2)

O(1)

FIG. 1. Critical point vs inverse dimension 1/d for the CDHM on
the hypercubic lattice. Red diamond (green triangle) corresponds to
the critical value obtained from quantum Monte Carlo simulations in
Ref. [10] (Ref. [11]) for d = 2 (d = 3). Green dashed lines represent
the estimated full 1/d expansion Eq. (52) up to order O(n) with
n ∈ {1,2,3}.
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0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
 ν

0

0.1

0.2

0.3

0.4

0.5

1/
d

Dlog[4,4]
Dlog[3,5]
mean field
QMC d=2

FIG. 2. Critical exponent ν vs inverse dimension 1/d for the
CDHM on the hypercubic lattice. Dot-dashed line indicates the mean-
field exponent ν = 1/2 and the red diamond corresponds to the
critical exponent obtained from quantum Monte Carlo simulations
in Ref. [32] for d = 2.

as with the known d = ∞ limit. As one important example,
where especially no series expansion for fixed dimensions
is available, let us focus on d = 3. If we average over
all Dlog-Padé extrapolants P [L/M]D with L + M = 8 and
L,M � 2, we obtain qCDHM

c = 0.6206(5), which is in excellent
agreement with qCDHM

c = 0.620 from quantum Monte Carlo
simulations [11].

Next, we investigate the behavior of the critical exponent ν

of the one-triplon gap (recall z = 1) close to the quantum
critical line as a function of 1/d using Eq. (23). The
corresponding results are given in Fig. 2.

Above the upper critical dimension, d � 3, mean-field
behavior with ν = 1/2 is expected, whereas for 3 > d � 2 one
expects a continuously varying critical exponent. In particular,
ν = 0.7113(10) for d = 2 [32]. Semiquantitatively, this be-
havior is reproduced by the Dlog-Padé extrapolants. However,
for d = 2, the extrapolated critical exponent overshoots the
correct value ν ≈ 0.71. This difference can be attributed to
the maximal order nine of our series expansion. Indeed, if
one performs high-order series expansions for fixed dimension
d = 2, one is able to reach order 11, which yields a critical
exponent much closer to ν ≈ 0.71 [28].

The other issue is the behavior close to the upper critical
dimension d = 3. By construction, the series expansion cannot
be expected to give a constant value for d � 3; it will
rather yield a smooth behavior ν(d). Nevertheless, it may be
surprising that sizable deviations from mean-field behavior
are visible already for d � 6. We attribute this behavior to a
combination of small scaling dimension and large prefactor
of the leading irrelevant perturbation for d � 3, which in
turn spoils the estimate of the critical exponent from series
expansions.

As described in Sec. III D, it is also possible to estimate the
multiplicative logarithmic corrections at d = 3 using Eq. (27).
To this end, we fix the critical exponent to 1/2 and the critical
point to qCDHM

c = 0.6206. The corresponding values of pCDHM
gap

as a function of perturbative order L + M are displayed in
Fig. 3 together with the exact value [33] (−5/22) derived

1 2 3 4 5 6 7 8 9 10
L+M

-0.25

-0.2

-0.15

-0.1

-0.05

0

p ga
p

C
D

H
M

Dlog[n,n]
Dlog[n+1,n]
Dlog[n,n+1]
Dlog[n+2,n]
p=-5/22

FIG. 3. Multiplicative logarithmic correction pCDHM
gap vs pertur-

bative order L + M used in the Dlog-Padé extrapolation Eq. (27)
with qCDHM

c = 0.6206 for the CDHM on the hypercubic lattice.
Extrapolants with constant c = L − M with c ∈ {−1,0,1,2} are
shown with the same black symbols. Dashed line indicates the exact
exponent [33] (−5/22).

from perturbative renormalization-group (RG) calculations.
Averaging over Dlog-Padé extrapolants with L + M � 7 and
M − L � 2 yields pCDHM

gap = −0.19(2). Let us stress that these
value are quite sensitive to the critical value qCDHM

c entering
the extrapolation. If one uses the value qCDHM

c = 0.620 from
quantum Monte Carlo simulations [11], the value for the
multiplicative logarithmic correction changes to pCDHM

gap =
−0.18(3). Nevertheless, as can be seen from Fig. 3, the
extrapolation tends to decrease with increasing perturbative
order so that our results are in full agreement with the exact
value (−5/22).

B. Transverse-field Ising model

Let us turn to the TFIM on the hypercubic lattice. For this
model, one expects a second-order QPT for all dimensions
d � 1, separating the gapped polarized phase present at
large fields from the gapped symmetry-broken phase for
dominating Ising exchange. We have again used Dlog-Padé
extrapolation to estimate the location of the QPT as a function
of 1/d. Dlog-Padé extrapolants as well as the known results
from literature are shown in Fig. 4.

Overall, the series expansion yields convincing results
capturing quantitatively the exactly known cases 1/d = 1 [27]
and 1/d = 0 as well as the estimates of series expansions
with higher maximal order for fixed dimensions d = 2 and
d = 3. The associated critical exponent ν (z = 1 for the
TFIM) as a function of 1/d is displayed in Fig. 5. In certain
regimes in 1/d (the two shaded areas in Fig. 5), we found no
consistent Dlog-Padé extrapolation, since there are two poles
close to each other on the real axis in the denominator of
Eq. (20), which spoil the extrapolation scheme. Similarly to
the CDHM, one observes deviations from mean-field behavior
for 3 < d � 6. As above, we believe that these are caused by
large subleading corrections with small scaling dimension.

For the TFIM, we do not analyze the multiplicative
logarithmic corrections the gap behavior, since Ref. [19]
already performed such an analysis with the high-order
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0.7

0.8

0.9

1

1/
d

Dlog[4,4]
Dlog[5,3]
Dlog[3,5]
exact d=1
SE/QMC d=2
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1/d expansion

quantum paramagnet ordered phase

O(1) O(2) O(3)

FIG. 4. Critical point vs inverse dimension 1/d for the TFIM on
the hypercubic lattice. Red diamond (green triangle) corresponds to
the critical value obtained from series expansion (SE) in Ref. [14]
(Ref. [19]) for d = 2 (d = 3) and quantum Monte Carlo (QMC)
simulations from Ref. [17] (the two techniques fully agree on the
displayed scale and are therefore shown together as a single symbol).
Blue square corresponds to the exact solution for d = 1 [27]. Green
dashed lines represent the estimated full 1/d expansion Eq. (53) up
to order O(n) with n ∈ {1,2,3}.
series expansion of order 13 for d = 3. This gives
pTFIM

gap = −0.143(5) which is consistent with the exact
value [19–22] (−1/6) from perturbative RG.

C. Large-d limit

Up to now, we have studied the one-particle gap for
both models by fixing the dimension d and using Dlog-Padé
extrapolation to extract critical points and associated critical
exponents. In this part we use the extrapolation of the high-
order series expansion in k to get an estimate for the quantum

FIG. 5. Critical exponent ν vs dimension for the TFIM on the
hypercubic lattice. Dot-dashed line indicates the mean-field exponent
ν = 1/2. The red diamond corresponds to the critical exponent
obtained from quantum Monte Carlo simulations in Ref. [16] for
d = 2. The blue square illustrates the exact value for d = 1 [27]. In
the shaded regions, no consistent extrapolation has been achieved due
to spurious poles in the Dlog-Padé extrapolation.

critical line about the 1/d = 0 limit in powers of 1/d, i.e., we
are interested in determining the coefficients cn in

qc = c0 + c1

(
1

d

)
+ c2

(
1

d

)2

+ c3

(
1

d

)3

. . . . (51)

In a first approach, we used various Dlog-Padé extrapolants for
small values of the inverse dimension 1/d = 0,ε,2ε, . . . and
we fitted the polynomial (51) to determine the coefficients cn.
We observed that the coefficients cn converged reliably under
the variation of ε and for different Dlog-Padé extrapolants, and
our numerical estimates for c0 and c1 approach the exact value
from the analytic 1/d expansion.

The latter findings motivate the second approach, where the
cn are obtained as fractions from the DlogPadé extrapolation.
To this end, we did not fix the value of the dimension in
the DlogPadé extrapolation, but we keep it general when
calculating the Padé of the logarithmic derivative Eq. (22).
In a next step, we determine the pole of the denominator,
corresponding to the critical point, as a Taylor series in 1/d

which exactly yields a polynomial of the form Eq. (51). And
indeed, we find that the leading coefficients c0 and c1 do not
depend on the specific DlogPadé extrapolant used and, more
importantly, the values correspond exactly to the values from
the analytical 1/d expansion. In contrast, the higher orders c2

and c3 do depend on the specific extrapolant, but the obtained
values are very close to each other numerically and consistent
with the values from the first approach.

One then obtains the following expressions for the 1/d

expansion up to order three:

qCDHM
c = 1

2
+ 3

16

(
1

d

)
+ 0.2311

(
1

d

)2

+ 0.1233

(
1

d

)3

. . . (52)

for the CDHM and

qTFIM
c = 1

2
+ 5

32

(
1

d

)
+ 0.1383

(
1

d

)2

+ 0.0643

(
1

d

)3

. . .

(53)

for the TFIM. These results are also illustrated in the phase
diagram of the CDHM (TFIM) in Fig. 1 (Fig. 4). One observes
that the full 1/d expansion for both models is well behaved
in the sense that all deduced coefficients are positive and one
therefore approaches the correct quantum critical line at finite
dimensions steadily with increasing order in 1/d.

VI. CONCLUSION

We used high-order series expansions for arbitrary di-
mensions d to study the dimensional dependence of the
quantum critical line for two paradigmatic models in quantum
magnetism, namely the transverse-field Ising model and the
coupled-dimer Heisenberg model on the hypercubic lattice. In
both cases we reached order 9 perturbation theory about the
decoupled-dimer (high-field) limit for the ground-state energy
per dimer (site) as well as for the one-particle gap for general
dimension d. This is achieved by a full graph decomposition
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in linked graphs keeping in mind that the dimension d enters
only in the combinatorical embedding factor of the graphs.

We focused on analyzing for both models the behavior of
the one-particle gap about the decoupled-dimer (high-field)
limit. In both cases, the continuous critical line of the LCE
is in quantitative agreement with the known results for fixed
finite dimensions as well as with the leading orders of the
1/d expansion. For the CDHM, the series expansion for fixed
dimension d = 3 were to the best of our knowledge unknown
and the extrapolated critical point is found to be in quantitative
agreement with QMC simulations [11]. Furthermore, we also
extracted the multiplicative logarithmic correction for this
case, which is fully consistent with the value from perturbative
renormalization group calculations.

Finally, we used the LCEs to predict the coefficients of the
full 1/d expansion of the quantum critical line. It is found that
the series in 1/d up to order 3 has only positive coefficients for
both models and therefore approach monotonously the correct
values. These subleading corrections are however not small.
In our opinion the most remarkable finding is that the Dlog-
Padé extrapolation of the gap series yields exactly the leading
coefficients (1/d)0 and (1/d)1 of the full 1/d expansion. It
would be interesting to study this issue in other models in
future studies.
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APPENDIX A: 1/d EXPANSION DETAILS: QUANTUM
PARAMAGNETIC PHASE

Inserting Eqs. (32)–(34) in the spin Hamiltonian (3), we
obtain the following interacting boson Hamiltonian:

H = −J
∑
〈ij〉

(PiTiPjTj + T
†
i Pi Pj Tj + H.c.)

−h
∑

i

(1 − 2T
†
i Ti ). (A1)

Further, inserting the explicit expression for the projection
operator (31) we can write down the various pieces Hn, where
n denotes the number of T operators. In this case, we have only
even-ordered Hn. It turns out that to order 1/d calculation we
need terms only upto H4. We therefore present the explicit
expressions of the relevant terms below:

H0 = −Nh, N is the number of lattice sites, (A2)

H2 = −J
∑
〈ij〉

(TiTj + T
†
i Tj + H.c.) + 2h

∑
i

T
†
i Ti , (A3)

H4 = 2J
∑
〈ij〉

(T †
i Ti Ti Tj + T

†
i T

†
i Ti Tj + H.c.). (A4)

Let us first solve the bilinear part (A3), which we call
the harmonic approximation. Utilizing the lattice translation
symmetry, it is convenient to work in the Fourier space by

introducing

Ti = 1√
N

∑
�k

T�ke
−ı�k·�ri . (A5)

In terms of the Fourier transformed operator, T�k , the bilinear
part of the Hamiltonian is given by

H2 =
∑

�k

[
A�kT

†
�k T�k + B�k

2
(T�kT−�k + H.c.)

]
, (A6)

where

A�k = 2h + B�k, B�k = −γ�kq . (A7)

The above Hamiltonian piece can be diagonalized by intro-
ducing bosonic Bogoliubov transformation,

T�k = u�kτ�k + v�kτ
†
−�k . (A8)

Here, u�k and v�k are the Bogoliubov coefficients such that
u2

�k − v2
�k = 1, and the τ operators obey the usual bosonic

commutation relations. Within the harmonic approximation,
the mode energy is given by

ω�k =
√

A2
�k − B2

�k = 2h
√

1 − 2γ�kq , (A9)

and the Bogoliubov coefficients are given by

u2
�k,v

2
�k = 1

2

(
A�k
ω�k

± 1

)
; u�kv�k = − B�k

2ω�k
. (A10)

Having solved the bilinear piece of the Hamiltonian, we
shall treat it as the unperturbed part and take into account
the interaction terms perturbatively. To set up the method, we
must first normal-order our Hamiltonian with respect to the τ

operators. Upon normal ordering, H4 will generate additional
bilinear terms, which are expressed below:

H′
2b =

∑
�k

[
C�kτ

†
�k τ�k + D�k

2
(τ�kτ−�k + H.c.)

]
, (A11)

where

C�k = 4qh
[(

u2
�k + v2

�k
)
(γ�kR1 + 2γ�kR2 + 2R3)

+ 2u�kv�k(γ�kR1 + 2γ�kR2 + R3)
]
, (A12)

D�k = 4qh
[(

u2
�k + v2

�k
)
(γ�kR1 + 2γ�kR2 + R3)

+ 2u�kv�k(γ�kR1 + 2γ�kR2 + 2R3)
]
. (A13)

Following are required expressions of R’s to order 1/d in the
large-d limit:

R1 = 1

N

∑
�k

u�kv�k = q2

4d
+ O(d−2), (A14)

R2 = 1

N

∑
�k

v2
�k = q2

8d
+ O(d−2), (A15)

R3 = 1

N

∑
�k

γ�ku�kv�k = q

4d
+ O(d−2), (A16)

R4 = 1

N

∑
�k

γ�kv
2
�k = O(d−2). (A17)
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Thus the normal ordered bilinear piece is sum of the un-
perturbed part and the above contribution: H′

2 = H′
2a + H′

2b

where,

H′
2a =

∑
�k

ω�kτ
†
�k τ�k (A18)

is the unperturbed piece.
Now we quote the normal ordered quartic term:

H′
4 = 1

N

∑
1234

[
δ1+2+3+4�

d
41(τ †

1 τ
†
2 τ

†
3 τ

†
4 + τ1τ2τ3τ4)

+ δ1+2−3−4
(
�d

42τ
†
1 τ

†
2 τ3 τ4 + �d

43τ
†
1 τ

†
2 τ3 τ4

)
+ δ1+2+3−4�

d
44(τ †

1 τ
†
2 τ

†
3 τ4 + τ

†
4 τ3 τ2 τ1 )

]
, (A19)

with the relevant vertex functions given by

�d
41 = 2qh[γ4u1v2v3v4 + γ4v1u2u3u4

+ (γ1 + γ4)u1u2v3v4], (A20)

�d
44 = 2qh[(2γ3 + γ4)u1v2v3u4 + (2γ3 + γ4)v1u2u3v4

+ γ3v1v2v3v4 + γ3u1u2u3u4

+ (2γ1 + γ3 + γ4)u1u2v3u4

+ (γ1 + 2γ3 + γ4)u1v2v3v4]. (A21)

The self-energy diagrams constructed using these quartic
vertices along with the bilinear vertices coming from (A11) are
suppressed as 1/d. After inserting the self-energy in the Dyson
equation and identifying the pole of the Green’s functions, we
obtain the dispersion (35). The diagrammatic expansion for the
ground-state energy works along similar lines, and we refer to
Ref. [7] for more details.

APPENDIX B: 1/d EXPANSION DETAILS:
FERROMAGNETIC PHASE

Using Eqs. (44)–(46), the Hamiltonian in the ordered phase
is

H = − J

(1 + λ2)2

∑
〈ij〉

[(1 − λ2)2(P̃i T̃i P̃j T̃j +T̃
†
i P̃i P̃j T̃j +H.c.)

+ 4λ2(1 − 2T̃
†
j T̃j − 2T̃

†
i T̃i + 4T̃

†
i T̃i T̃

†
j T̃j )

+ 2λ(1 − λ2)(T̃ †
i P̃i − 2T̃

†
i P̃i T̃

†
j T̃j + T̃

†
j P̃j

− 2T̃
†
j P̃j T̃

†
i T̃i + H.c.)] − h

1 + λ2

∑
i

[(1 − λ2)

× (1 − 2T̃
†
i T̃i) − 2λ(T̃ †

i P̃i + H.c.)]. (B1)

To order 1/d, we need only terms up to fourth order in T̃

operators. Inserting the explicit expression of the projector op-
erator (43), we can write the relevant pieces in the Hamiltonian
as follows:

H0 = − 4Nqhλ2

(1 + λ2)2
− Nh(1 − λ2)

1 + λ2
, (B2)

H1 =
[

2hλ

1 + λ2
− 4hqλ(1 − λ2)

(1 + λ2)2

] ∑
i

(T̃ †
i + T̃i), (B3)

H2 = − J

(1 + λ2)2

∑
〈ij〉

[(1 − λ2)2(T̃i T̃j + T̃
†
i + H.c.)

− 8λ2(T̃ †
i T̃i + T̃

†
j T̃j )] + 2h(1 − λ2)

1 + λ2

∑
i

T̃
†
i T̃i , (B4)

H3 = 4Jλ(1 − λ2)

(1 + λ2)2

∑
〈ij〉

(T̃ †
i T̃

†
i T̃i + 2T̃

†
j T̃

†
i T̃i + H.c.)

− 2hλ

1 + λ2

∑
i

(T̃ †
i T̃

†
i T̃i + H.c.), (B5)

H4 = 2J

(1 + λ2)2

∑
〈ij〉

[(1 − λ2)2(T̃ †
i T̃i T̃i T̃j + T̃

†
i T̃

†
i T̃i T̃j +H.c.)

− 8λ2T̃
†
i T̃

†
j T̃i T̃j ]. (B6)

Again note that for λ = 0, we recover the Hamiltonian in the
disordered phase in terms of T operators.

Vanishing of H1 (B3) gives the leading order λ, denoted by
λ0 and is given in terms of q as

λ0 =
√

2q − 1

2q + 1
. (B7)

Using this, we will separate the unperturbed piece from the
bilinear Hamiltonian (B4) in the Fourier space, which is given
by

H(0)
2�k =

∑
�k

[
Ã

(0)
�k T̃

†
�k T̃�k +

B̃
(0)
�k
2

(T̃�kT̃−�k + H.c.)

]
(B8)

with

Ã
(0)
�k = h

q
+ h(4q2 − 1)

q
+ B̃�k, B̃

(0)
�k = −γ�kh

2q
. (B9)

It is then diagonalized using bosonic Bogoliubov transforma-
tion

T̃�k = ũ�kτ̃�k + ṽ�kτ̃
†
−�k, (B10)

with the Bogoliubov coefficients having a similar expression
to Eq. (A10) in terms of Ã

(0)
�k , B̃

(0)
�k , and ω̃�k , with

ω̃�k = 2h

√
4q2 − γ�k . (B11)

The perturbation strategy is then same as in the paramagnetic
phase with complications arising from 1/d expansion of λ. A
detailed account on how to proceed with the diagrammatics
in the presence of a 1/d expansion to λ can be found in
Ref. [8]. Now we quote the expressions for normal-ordered
Hamiltonian in the τ̃ basis, relevant to order 1/d. The bilinear
piece has three contributions: (i) unperturbed (diagonal) piece
H′

2a , (ii) bilinear terms, H′
2b, arising from normal ordering of

quartic terms, and (iii) order 1/d terms, H′
2c, arising from (B4)

due to 1/d corrections to λ. So normal-ordered bilinear
Hamiltonian is H′

2 = H′
2a + H′

2b + H′
2c. We now quote the
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explicit expressions as follows:

H′
2a = ω̃�kτ̃

†τ̃ , (B12)

H′
2b =

∑
�k

[
C�kτ

†
�k τ�k + D�k

2
(τ�kτ−�k + H.c.)

]
, (B13)

H′
2c =

∑
�k

[((
ũ2

�k + ṽ2
�k
)
Ã

(1)
�k + 2ũ�kṽ�kB̃

(1)
�k

)
τ
†
�k τ�k

+
(
ũ2

�k + ṽ2
�k
)
B̃

(1)
�k + 2ũ�kṽ�kÃ

(1)
�k

2
(τ�kτ−�k + H.c.)

]
, (B14)

where

C�k = 4qh

(
1 − λ2

1 + λ2

)2[(
ũ2

�k + ṽ2
�k
)
(γ�kR1 + 2γ�kR2 + 2R3)

+ 2ũ�kṽ�k(γ�kR1 + 2γ�kR2 + R3)
]

− 16λ2qh

(1 + λ2)2

[
2
(
ũ2

�k + ṽ2
�k
)
R2 + 4ũ�kṽ�kγ�kR3

]
, (B15)

D�k = 4qh

(
1 − λ2

1 + λ2

)2[(
ũ2

�k + ṽ2
�k
)
(γ�kR1 + 2γ�kR2 + R3)

+ 2ũ�kṽ�k(γ�kR1 + 2γ�kR2 + 2R3)
]

− 32λ2qh

(1 + λ2)2

[(
ũ2

�k + ṽ2
�k
)
γ�kR3 + 2ũ�kṽ�kR2

]
, (B16)

Ã
(1)
�k = −2h

q
(R2 + R3)(1 + γ�k),

B̃
(1)
�k = −2γ�kh

q
(R2 + R3). (B17)

The expressions for R’s are as follows:

R1 = 1

N

∑
�k

ũ�kṽ�k = 1

256q4d
+ O(d−2), (B18)

R2 = 1

N

∑
�k

ṽ2
�k = 1

512q4d
+ O(d−2), (B19)

R3 = 1

N

∑
�k

γ�kũ�kṽ�k = 1

32q2d
+ O(d−2), (B20)

R4 = 1

N

∑
�k

γ�kṽ
2
�k = O(d−2). (B21)

Now, the normal-ordered cubic terms and relevant vertex
functions are as follows:

H′
3 = 1√

N

∑
123

[
δ1+2+3�

o
31(τ̃ †

1 τ̃
†
2 τ̃

†
3 + τ̃1τ̃2τ̃3)

+ δ1+2−3�
o
32(τ̃ †

1 τ̃
†
2 τ̃3 + τ̃

†
3 τ̃2τ̃1)

]
, (B22)

with

�o
31 = (2J1γ1 − h1)(ũ1ũ2ṽ3 + ṽ1ṽ2ũ3), (B23)

�o
32 = 2J1[γ1(ũ1ũ2ũ3 + ṽ1ṽ2ṽ3)

+ (γ1 + γ3)(ũ1ṽ2ṽ3 + ṽ1ũ2ũ3)], (B24)

where

h1 = 2hλ

1 + λ2
− J1, and J1 = 4qhλ(1 − λ2)

(1 + λ2)2
. (B25)

Normal ordering of cubic terms also lead to additional linear
terms, which together with H1 (B3) must vanish. This gives
the 1/d expansion of λ as follows:

λ2 = 2q − 1

2q + 1
− 1

64q3d

1 + 16q2

(2q + 1)2
. (B26)

Again, using the condition that λ vanishes at the quantum
critical point, we obtain the same phase boundary (38).

Lastly, we quote the normal-ordered quartic term and the
relevant vertex functions:

H′
4 = 1

N

∑
1234

[
δ1+2+3+4�

o
41(τ̃ †

1 τ̃
†
2 τ̃

†
3 τ̃

†
4 + τ̃1τ̃2τ̃3τ̃4)

+ δ1+2−3−4
(
�o

42τ̃
†
1 τ̃

†
2 τ̃3τ̃4 + �o

43τ̃
†
1 τ̃

†
2 τ̃3τ4

)
+ δ1+2+3−4�

o
44(τ̃ †

1 τ̃
†
2 τ̃

†
3 τ̃4 + τ̃

†
4 τ̃3τ̃2τ̃1)

]
, (B27)

with

�o
41 =

(
1 − λ2

1 + λ2

)2

2qh[γ4ũ1ṽ2ṽ3ṽ4 + γ4ṽ1ũ2ũ3ũ4

+ (γ1 + γ4)ũ1ũ2ṽ3ṽ4] − 16λ2qh

(1 + λ2)2
ũ1ũ2ṽ3ṽ4γ2−4,

(B28)

�o
44 =

(
1 − λ2

1 + λ2

)2

2qh[(2γ3 + γ4)ũ1ṽ2ṽ3ũ4

+ (2γ3 + γ4)ṽ1ũ2ũ3ṽ4 + γ3ṽ1ṽ2ṽ3ṽ4 + γ3ũ1ũ2ũ3ũ4

+ (2γ1 + γ3 + γ4)ũ1ũ2ṽ3ũ4+(γ1+2γ3 + γ4)ũ1ṽ2ṽ3ṽ4]

− 16λ2qh

(1 + λ2)2
[(γ2−4 + γ2+3)ũ1ũ2ṽ3ũ4

+ (γ3−4 + γ1+3)ũ1ṽ2ṽ3ṽ4]. (B29)

The diagrammatics to evaluate the dispersion and ground-
state energy is same as in the paramagnetic phase, with the
additional contribution from the cubic vertices.
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