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Phase transitions in ensembles of solitons induced by an optical pumping or a strong electric field
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The latest trend in studies of modern electronically and/or optically active materials is to provoke phase
transformations induced by high electric fields or by short (femtosecond) powerful optical pulses. The systems
of choice are cooperative electronic states whose broken symmetries give rise to topological defects. For typical
quasi-one-dimensional architectures, those are the microscopic solitons taking from electrons the major roles as
carriers of charge or spin. Because of the long-range ordering, the solitons experience unusual super-long-range
forces leading to a sequence of phase transitions in their ensembles: the higher-temperature transition of the
confinement and the lower one of aggregation into macroscopic walls. Here we present results of an extensive
numerical modeling for ensembles of both neutral and charged solitons in both two- and three-dimensional
systems. We suggest a specific Monte Carlo algorithm preserving the number of solitons, which substantially
facilitates the calculations, allows to extend them to the three-dimensional case and to include the important
long-range Coulomb interactions. The results confirm the first confinement transition, except for a very strong
Coulomb repulsion, and demonstrate a pattern formation at the second transition of aggregation.
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I. INTRODUCTION

A. Solitons via doping or pumping

A new trend in controlling cooperative states of interacting
electronic systems is applying either very short (tens of
femtoseconds) powerful optical pulses or very high (up to
107 V/cm) electric fields (“the electrostatic doping”), see
Refs. [1–6]. These impacts result in a very high (up to 10%
per lattice site) concentration of excitations or charge carriers.
There are convincing arguments that these states will not
resemble ensembles of electrons and/or holes like for optical
pumping or field-effect injection in conventional semiconduc-
tors and can include superconductivity, antiferromagnetism,
ferroelectricity, charge order, charge- and spin-density waves,
Mott and Peierls insulators. The reason is that the commonly
exploited strongly correlated electronic systems show various
types of symmetry breaking giving rise to degenerate ground
states. The degeneracy allows for topologically nontrivial
configurations exploring the possibility of traveling through
different allowed ground states. Their most known forms
are plain domain walls, stripes, vortex lines, or dislocations,
which are still macroscopic objects extending in one or two
dimensions. Most importantly, there are also totally localized
and truly microscopic objects whose energies and quantum
numbers are on the one-electron scale. These anomalous
particles—the solitons—can determine the observable prop-
erties, which are usually ascribed to conventional electronic
excitations, see Refs. [7,8] for early theory reviews and
Refs. [9–11] for updates.

The fact that the solitons have quantum eigenvalues (charge
or spin) makes it possible to control and monitor their
concentration. The electrostatic doping (see the review Ref. [4]
and updates in Refs. [5,6]) should give rise to a stable 2D

ensemble of similarly charged kinks in a thin, sometimes
atomically narrow, surface layer. The optical pumping should
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give rise firstly to an equal number of oppositely charged
solitons, whose collisions will work to convert them secondly
to an ensemble of neutral spin-carrying solitons (which usually
have lower energy than the charged ones [12]). Inevitably, re-
combination will follow, possibly via the formation of excitons
as pairs of oppositely charged kinks [13]. However, the optical
emission will take long (more than nanoseconds) time, which
can be further prolonged by the intermediate conversion to
neutral spin-carrying solitons, which can recombine only via
triplet channels—the effect is well documented in the optics
of conducting polymers [12,14]. Then, for a typically very fast
pump-induced phase transition experiment, even the system of
oppositely charged solitons, and even more of spin-carrying
ones, can be treated as quasistationary, with only slowly de-
creasing number of particles. This number is exactly conserved
and monitored in experiments with the electrostatic doping.

Such ensembles of solitons are expected to have a peculiar
phase diagram, with several lines of phase transitions, which
are inevitably crossed in the course of the evolution or
monitoring the concentration and the temperature. The study
of these transitions is the main goal of this paper. In the
next section of Introduction, we shall summarize modern
experimental and theoretical evidences in favor of existence
of solitons in electronic systems. In Sec. II, we shall give a
qualitative picture of phase transitions in ensembles of neutral
and charged solitons. The central issue is the confinement
interaction specific to solitons in contrast to conventional
electrons. In Sec. III, we shall introduce the basic model,
which is mapped onto the constrained Ising model, and
also present some analytical results. In Sec. IV, we shall
present the results of extensive numerical modeling, which
was challenging for three-dimensional systems, particularly
in presence of Coulomb interactions (CI). We shall observe
a high-temperature transition of confinement of solitons into
pairs and a particularly rich and interesting low-temperature
transition of soliton aggregation into domain walls transvers-
ing the sample. Section V is devoted to discussion and
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summary. Appendices contain estimations for the aggregation
transition for neutral and charged solitons.

B. New accesses to microscopic solitons in
quasi-one-dimensional electronic systems

There are growing experimental evidences on existence of
microscopic solitons and their determining role in electronic
processes of quasi-1D systems: conjugated polymers (see
Ref. [8] on theory and Ref. [15] on experiment), spin-Peierls
chains [16], donor-acceptor stacks including “electronic ferro-
electrics” [17,18], and families of the so-called “electronic
crystals”, particularly charge density waves (CDW) and
charge-ordered Mott insulators (see reviews [9,10,19]). Soli-
tons take over band electrons in roles of primary excitations—
charge or spin carriers, since their activation energies are
typically lower than gaps opened in the electronic spectra. The
solitons feature self-trapping of electrons into midgap states
and separation of spin and charge into spinons and holons,
sometimes with their reconfinement at essentially different
scales. Thus the ferroelectric charge ordering in organic
conductors (see a review [19]) gives access to several types of
solitons observed in conductivity (holons) and in permittivity
(polar kinks), to soliton bound pairs in optics, to compound
charge-spin solitons. In CDWs [20] and in surface nanowires
[21], the individual solitons, which are the amplitude kinks,
have been visually captured in STM experiments; this is the
most remarkable new achievement in proving the existence of
solitons. The resolved subgap tunneling spectra [22] recover
presumably the same solitons in dynamics. The tunneling
creation of soliton pairs describes nonlinear transport in CDWs
[23] and polymers [24,25]. The solitons can be also viewed as
nucleus of the melted stripe phase in doped Mott insulators or
of the FFLO phase in spin polarized superconductors [26,27].
On this basis, one can extrapolate to a picture of combined
topological excitations in general strongly correlated systems:
from doped antiferromagnets to strong-coupling and spin-
polarized superconductors [10].

II. INTERACTIONS AND PHASE TRANSITIONS IN
ENSEMBLES OF SOLITONS

A. Interactions of solitons

Following the above quoted experimental confirmations
and theoretical results, we shall consider a system where the
solitons serve as the lowest (with respect to band electrons)
energy forms of storage of the charge or the spin. We shall
restrict the study to the case of a discrete symmetry breaking,
which is a very common phenomenon of a dimerization of
bonds (the family of Peierls-like transitions) or of sites (the
family of transitions with charge ordering or disproportiona-
tion). Such a system possesses typically three types of solitons:
spinless ones with charges ±e and a neutral one with the
spin 1/2. In ferroelectric systems (see a recent review [28])
all solitons should carry noninteger charges. With passing of
such a soliton, the order parameter changes the sign, hence the
nickname “the amplitude kink”, or just the “kink” or the soli-
ton, which we shall use in the following. Cases of continuous
symmetries like incommensurate CDWs, spin density waves
and superconductors, require special consideration.

FIG. 1. High temperature T > T1. Solitons exist as individual
entities. They already experience long-range attraction towards
binding them into pairs at the same chain (a) or to walls at neighboring
chains (b). Horizontal black lines correspond to ground states with
the order parameter ±1, vertical lines represent kinks, arrows show
forces acting upon the kinks.

The solitons are subject to all kinds of interactions, among
themselves and also with the lattice, known for conventional
electrons. The important CI can be screened or not screened
by external carriers and we shall consider both cases. But
beyond that, there is the unusual super long-range interaction
specific to the solitons as topologically nontrivial objects. The
soliton is a 1D domain boundary that interrupts the proper
interchain arrangement. That gives rise to the confinement
energy F l, with the constant confinement force F , growing
linearly with the distance between solitons l–see Fig. 1.
This energy dominates at long distances even if it can be
unimportant locally for a crystal of weakly interacting chains.

In some special cases, the ground-state degeneracy can be
lifted by an internal effect globally—for the whole system. A
bright example is the cis-polyacetylene [7,13,15], where the
solitons are always confined in pairs. In cases of continuous
symmetries, the ordering violated by the amplitude kink can
be restored by changes in the phase of the complex order
parameter �(x), localized in the tails of a soliton of length
lphase ∼ T −1

c , where Tc is the temperature of the long-range
ordering due to the interchain coupling. But universally, except
truly 1D systems like isolated atomic chains [21], there
is a local lifting of degeneracy that comes from interchain
interactions, which are responsible for establishing the long-
range 2D or 3D ordering. Namely, the interchain ordering
energy J⊥ (per longitudinal lattice unit of the length a‖) is
paid when adjacent domains at neighboring chains are not
rightly correlated. The confinement interaction determines
the intermediate phases and the kinetics of aggregation of
nonequilibrium (e.g., optically induced) domains into the
long-range ordered phase.

B. Qualitative description of phase transitions in the ensemble
of neutral solitons

Consider the influence of weak ordering interaction be-
tween chains (2D or 3D coupling) on the state and statistical
properties of the kinklike solitons [29]. The weak interchain
coupling does not affect substantially the structure of the
soliton core, but below the 2D or 3D ordering temperature
T1, its role turns out to be fundamental at large distances.
Since each kink separates different states of the system, the
correlation between the chains is violated in its vicinity. As a
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result, the system loses an energy 2J⊥ per site, which increases
proportionally to the distance from the soliton. As we see from
Fig. 1, the energy grows both with separation of two solitons
on one chain and among solitons at neighboring chains, hence
the tendencies to either formation of on-chain bikinks or the
interchain aggregation of solitons into walls. As a result of
these contradictory tendencies, as temperature lowers, the
system passes through two phase transitions: the coupling of
solitons into pairs at T = T1, and aggregation of pairs between
the chains at lower T = T2 � T1. For a three-dimensional
system, the temperature T2 is a phase-transition point, below
which plane domain walls appear in the system passing
through the entire cross section. For a two-dimensional system,
this is not the distinct phase transition; instead a gradual
increase of the transverse dimension of the paired walls takes
place at T < T2. For a finite system, like in our modeling,
there is a sample dependent temperature TF where the first
wall crosses the whole sample even in D = 2.

This qualitative picture is based upon an exact solution
available for a 2D system of neutral solitons with some
qualitative extensions to the 3D case [29]. The case of
charged solitons has been addressed in Ref. [31,32], but with
a restrictive constraint: the bisoliton pairs were not supposed
to move from one chain to another. Here we shall present the
results of unrestricted numerical modeling performed for the
challenging case of a 3D system, both for neutral and charged
ensembles of solitons.

In short, the picture of equilibrium states is the following.
With lowering T at a given concentration of kinks ν, the
system passes through a sequence of two phase transitions (at
T = T1,T2) and a crossover in between (at T = J⊥), which
are determined by three scales of energy: J⊥ as the local
energy of the interchain ordering, the bigger T1 ∝ J⊥/ν as the
nonlocal energy of soliton confinement, and the smaller T2 ∝
J⊥/ ln(1/ν) as the characteristic energy of soliton transverse
aggregation.

(I) T1 ∝ F l ∝ J⊥/ν (see Fig. 2). For the order parameter,
this is the conventional 3D ordering transition realized in
a quasi-1D system. However, for the ensemble of solitons,
this is a confinement transition, which takes place when the
temperature decreases below the mean interchain interaction
F l at the mean distance l = a||/ν between the solitons. Below
that at T < T1, individual on-chain solitons cannot exist, they
are confined into loose pairs, which form strings of size lbs

with energy F lbs among them (T1 can be also defined by
the condition lbs ∼ l, when confined pairs dissociate). With

FIG. 2. Intermediate temperatures within T1 > T > T2. There are
no more individual solitons, but a gas of their confined pairs. The pair
lengths are loose and fluctuate at T1 > T > J⊥ (a); they are tight at
J⊥ > T > T2 (b).

FIG. 3. Low temperatures T < T2. aggregation of pairs into
growing bikink walls (a) and then their disintegration into isolated
walls of kinks (b).

lowering T , the pairs become progressively more confined at
the thermal length lT = T/F � l, with rare collisions among
the pairs. At T � J⊥, the pairs become tightly bound, their
spacing does not fluctuate anymore. The confinement energy is
reduced from the high-T scale J⊥ per unit cell to J⊥ per kinks’
pair. Actually, the pair length lbs shrinks from the thermal one
lT to the quantum zero point limit lq such that F lq ∼ �

2/Ml2
q

(M is an effective mass of the soliton).
Thus the energy T1 has two faces. For the order parameter,

this is just the transition temperature T1 = Tc of the second-
order phase transition to the state with its nonzero mean
value at T < Tc. However, for solitons, this is the confinement
transition temperature, below which they become bound into
pairs—the bisolitons.

(II) T2 ∝ J⊥/ ln(1/ν) < J⊥ (see Fig. 3). This temperature
can be viewed as the onset of aggregation of solitons when first
domain walls appear crossing the whole sample or forming
macroscopic bubbles. As the temperature lowers beyond J⊥,
the bisolitons start to aggregate in transverse disks, and finally
at T2 these disks cross the entire sample. Aggregation to
domain walls gains the confinement energy, which now is
not lost at all—the neighboring chains are always in the right
arrangement. However, the entropy is lost, and this balance
determines T2. The pairs still coexist with walls below T2, but
with further decreasing T they vanish providing the material
for building more macroscopic walls.

The T2 transition can be viewed similarly to a vapor con-
densation in a given volume when the first appearing wetting
fixes the chemical potential (the saturation pressure) of the gas.
Another analogy is the Bose-Einstein condensation, but in real,
instead of the reciprocal, space. Indeed, below J⊥, there is the
gas of “confined pairs” (bisolitons) with energy Wbs = F lbs,
whose chemical potential μbs is adjusted to maintain the given
total concentration νbs(μbs,T ) = exp[(μbs − Wbs)/T ] = ν/2.
When the first macroscopic domain walls appear, they serve
as a reservoir of kinks fixing their chemical potential—ideally
at μs = 0, hence μbs = 2μs = 0. Then the concentration of
pairs is νbs(0,T ) = exp(−Wbs/T ), and this number falls below
the total available νbs = ν/2, which happens at T < T2. The
deficit δν = ν − 2νbs(0,T ) gives the number of solitons that
have been used to build the domain walls, with a||/δν giving
the mean period of the stripe array of domain walls. Notice a
curious behavior: with lowering T below T2, the mean value
of the order parameter over the bulk disappears, while it is
present over each cross-section. The T2 transition is the one
where the effective dimensionality of the system D is reduced
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FIG. 4. The phase diagram of the soliton ensemble in variables
temperature vs concentration. Thick solid lines show the phase
transitions T1 and T2, the vertical dashed line shows a crossover
at T ≈ J⊥, the dashed arrowed lines give schematically the trajectory
of the pumping and subsequent relaxation (decrease of the total ν and
the cooling).

by 1! We shall see this explicitly via the effective Ising model
with constraints.

C. Evolution after the optical pumping.

After the optical pulse has created the ensemble of solitons,
their mean concentration ν starts to evolve as ν(t) both to
thermal equilibrium at a given T and also together with the
temperature T (t). On this way, the system will pass through
a sequence of phase transitions or at least of crossovers
among different regimes which have been classified above.
The trajectory is summarized in Fig. 4.

Before the pumping, at the equilibrium ambient temper-
ature Teq, the solitons are present either as free particles, if
Teq > T1eq, or as confined pairs if Teq < T1eq, where T1eq =
T1(νeq) ≈ Es/ ln(Es/J⊥) is the ordering transition temperature
without pumping (here Es is the soliton’s core energy).
However, in any case, the equilibrium concentration of kinks is
low: νeq ∼ exp(−Es/T ) at Teq > T1eq or νbs ∼ exp(−2Es/T )
at Teq < T1eq, because now the total big activation energy Es

of the soliton is to be paid in comparison with the relatively
small scale of the interchain energy J⊥ when the number of
solitons is controlled.

Just after the pumping, the initial concentration of kinks ν0

is very high and the initial temperature T0 > Teq is also high
(it can even further increase at intermediate times because
of the energy release from relaxation of excitations [18]).
Suppose that ν0 > J⊥/T0 so that we are in the disordered
phase above T1(ν0) ∝ J⊥/ν0–the pumping has destroyed the
long-range order, the solitons are not confined in pairs. With
time, both ν(t) and T (t) decrease, so the two sides of the last
inequality move towards each other, the transition is inevitably
reached at some time t1 when ν(t1) = J⊥/T (t1). Recall that
this temperature is well below the thermodynamical transition
temperature T1eq since the number of solitons is still strongly
enhanced.

The situation looks, at first sight, a bit less certain for
the lower transition because its expected temperature T2(ν) =
J⊥/ ln(1/ν) falls with decreasing ν(t), unlike T1(ν). However,
T2(ν) decreases very slowly, e.g., ∼ 1/t for the exponential

decay of ν, which is, slower than any expected decrease
of T (t). So the second phase transition will also happen at
a certain moment t2 of time, when T (t2) = J⊥/ ln (1/ν(t2)),
then the confined pairs of solitons will start to aggregate into
macroscopic domain walls of solitons. The T2 transition line
will be crossed back (via evaporation of domain walls) in the
course of returning the temperature to the ambient one and the
full annihilation of excess solitons.

III. THE BASIC MODEL

A. Mapping to the constrained Ising model

For a generic (no CIs) model, the configurational energy
for the order parameter ηα(x) at the point x of the chain α is

H0 =
∫

dx

⎧⎨
⎩−

∑
〈α,β〉

V⊥ηα(x)ηβ(x)

+
∑

α

[U (ηα(x)) + C(η′
α(x))2]

⎫⎬
⎭, (1)

where V⊥ is the interchain ordering energy per unit longi-
tudinal length (actually, 2ZV⊥ is the confinement force F ,
where Z = 2,4 is the number of nearest neighboring chains
for D = 2,3) and U (η) is a double-well potential with two
symmetrical minima normalized to ±1, which determines
the two possible equivalent ground states. The soliton is a
trajectory, taking the energy cost Es , which commutes between
these two minima, e.g., η(x) = ± tanh(x/a) or whatever is
the antisymmetric solution determined by the competition of
second and third terms in (1). It is convenient to quantize the
chain length as x ⇒ xn = na|| in some units a|| well exceeding
the intrinsic width a of the soliton (we take a|| to be equal
to the quantum zero point limit size lq–the minimal size of a
bisoliton, see Sec. II B) and to introduce the Ising spin variable
as Sn,α = ηα(xn). Then the solitons, with the linear density
cα(x), are seen as sharp kinks whose number per site is given
by the lattice function ρn,α such that [29]

cα(x)a|| = ρn,α = 1
2 (1 − Sn,αSn+1,α),

(2)
〈ρn,α〉 = ν = Ns/LHD−1,

where ν is the mean concentration of solitons per site, Ns

is their total number, L × HD−1 are the dimensions of the
sample in units of a|| and a⊥, respectively. Representation
(2) underlines the fact that a soliton is present at the site
n,α of the dual lattice only if Sn,α = 1 and Sn+1,α = −1 or
vice versa. In the single chain limit, Sn and ρn play the roles
of complementary order and disorder parameters (see, e.g.,
Ref. [30]). The mean density can be controlled by the chemical
potential μs and we arrive at the Gibbs energy H̃0 for the grand
canonical ensemble of solitons [29]:

H̃0 = H0 − μsNs

= −V⊥
∑
〈α,β〉

∫
dx ηα(x)ηβ(x) + (Es − μs)Ns

= −J⊥
∑

〈α,β〉n
Sn,αSn,β − J||

∑
α,n

(Sn,αSn+1,α − 1),

where J⊥ = V⊥a||,J|| = (Es − μs)/2 (3)
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In a number of cases, particularly in application to doping, the
solitons can possess an electric charge. If screening by external
carriers is strong enough, these solitons behave as neutral
ones. However, in case of intermediate or weak screening, the
charges of solitons must be considered explicitly. Therefore,
taking into account the CI, we can add also [31] the Coulomb
energy HC to the Hamiltonian:

H̃ = H̃0 + HC, HC = e2

2ε

∑
n,m;α,β

(ρn,α − ν)(ρm,β − ν)

|rn,α − rm,β | ,

(4)

where e is the electron charge and ε is the dielectric constant,
taken here to be isotropic. It is known that competing short-
range attractive and long-range repulsive forces may result
in the formation of a diverse variety of patterns [33–36]. In
Sec. IV, we shall describe Monte Carlo modeling for both
neutral and charged cases.

It is remarkable that controlling the chemical potential,
the grand canonical ensemble of solitons in a D-dimensional
system can be described by the D-dimensional Ising model,
while the canonical ensemble is described by the stack of
noninteracting (D − 1)-dimensional models with an overall
constraint. In this anisotropic model, only the interchain
coupling constant J⊥ has a physical origin and is frozen,
while the on-chain constant J|| is determined by the chemical
potential. Since the physical situations of interest correspond
to controlling the concentration ν, then the price, and the
source, of the most interesting behavior come from the
self-consistency condition to invert the function ν(μ,T ) to
μ(ν,T ), hence traveling over a special line on the surface
of Ising model parameters. In this way, we can take a good
advantage (without CI) of notion on the Ising models (full
for D = 2 and qualitative at least for D = 3). On the other
hand, as we shall demonstrate in the following, a numerical
procedure can be constructed which allows to directly keep the
constraint on the total number of solitons. Then working with
the canonical ensemble we get a good advantage to deal with
(D − 1)-dimensional systems with only physical interchain
interaction being present.

B. Estimations based on the effective Ising model for a neutral
system

Consider the effective Ising model with adjustable J|| =
J||(T ,ν) in D dimensions. The concentration of solitons is
always supposed to be small ν � 1. Here we find the adjusted
values of J||(T ,ν) in 2D and 3D for limiting cases of high and
low temperatures and make estimations for T1(ν) and T2(ν).

In the high-temperature limit T � T1 � J⊥, the system is
effectively one-dimensional; the energy of one soliton is 2J||
and the probability to find a soliton at a given point of the dual
lattice is exp(−2J||/T ) ≈ ν, then

J||(T ,ν) ≈ T

2
ln

1

ν
(5)

is the effective on-chain coupling, hence, from (3), the soliton
chemical potential increases with decreasing T . Extrapolating
this expression down to T1, we find an estimate for T1.
For D = 2, we deduce from Onsager’s exact result [37]

sinh(2J⊥/T1) sinh(2J||/T1) = 1 that T1 ∼ 2J⊥/ν, which up
to a numerical factor, agrees with the result of Ref. [29]:
T1 ≈ 2J⊥/πν (see also Appendix A). For D = 3, we can
use the approximation, where the on-chain interaction is
treated exactly while the interchain one is taken into account
using the mean-field theory. For the critical temperature of
anisotropic 3D Ising model, this approach gives [38,39]
T1 ≈ 8J⊥ exp (2J||/T1), from which we get T1 ∼ 8J⊥/ν. We
see that both in 2D and 3D the Ising critical temperature
behaves as T1 ∼ J⊥/ν at ν → 0, which justifies treating T1 as
the confinement transition.

Consider now the opposite limit of low temperatures T �
J⊥. It looks, at first sight and wrongly, that at low temperatures,
the system persists in a very simple form of one spin-ordered
domain impregnated by a dilute gas of spin-reversed sites,
which are our tightly bound bisolitons with the energy 2ZJ⊥.
Taking into account the chemical potential and neglecting the
excluded volume corrections, the concentration of bisolitons
is

νbs = exp

(
−4J|| + 2ZJ⊥

T

)
. (6)

Since this number is fixed at νbs = ν/2, then lowering T

must be compensated by the decrease of J||, which is limited
to be positive J|| � 0: a negative J|| < 0 would switch the
system to an “antiferromagnetic” ground state with spins
alternation at each site in the chain direction, hence the infinite
number of kinks. Hence a new reservoir for the storage of
solitons must be opened when T falls below T2(ν) such that
ν = 2 exp(−2ZJ⊥/T2), i.e.,

T2 ≈ 2ZJ⊥
ln(2/ν)

, (7)

which agrees with both the estimation (A4) for 2D (with
logarithmic accuracy) and with the exact solution (A10)
accessible in 3D. This new reservoir can be viewed as a
system of stripes (lines in 2D or planes in 3D), which cross the
whole sample separating the bulk in noninteracting domains
of alternating magnetization. A more thorough analysis [29]
shows that T2 must be indeed a sharp phase transition at D = 3,
while at D = 2, it is only a crossover for growing rods of a
finite extent. Only for a finite 2D system of width H , the
rods pass through the entire cross-section of the sample at
TF ≈ 4J⊥/ ln(H/2ν).

Estimates for J||(T ,ν) can also be found at T � J⊥. For
D = 2 as T → 0 and D = 3 as T → T2 + 0, we find that
J|| → 0 as (details of derivations are given in the Appendix A)

J||(T ,ν) ∝ T exp(−2J⊥/T )/
√

ν (2D),

J||(T ,ν) ∝ ν ln(1/ν) (T − T2) (3D). (8)

Below T2 in 3D, transverse layers do not interact and J||
remains 0.

This picture, and its strong complication by long-range CIs
will be numerically verified and expanded in the next section.
Some analytical results for both neutral and charged systems
are also given in the appendices.
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FIG. 5. Three types of elementary MC movements (a)–(c). Left
panes show the state of the system before the movement and right
panes—after it. Dashed lines show the difference between old and
new configurations.

IV. NUMERICAL APPROACH

A. Monte Carlo simulation details

In this section, we consider the Monte Carlo (MC)
simulation of the ensemble of solitons. We have studied the
statistical properties of the canonical ensemble of solitons over
broad temperature ranges in two and three dimensions for both
neutral and charged solitons.

In the numerical simulations, it is more efficient to keep
a fixed number of solitons rather than using self-consistent
J||(T ,ν) as we did in the previous section. Here then, we shall
work with the canonical ensemble of solitons keeping fixed
their overall number, while the number of solitons at a given
chain can vary (in contrary to the more restrictive prescription
employed in Refs. [31,32]).

The MC simulation was performed with the use of the
standard Metropolis algorithm with three types of unit move-
ments: moving a single soliton along the chain [Fig. 5(a)],
moving a soliton pair along [Fig. 5(b)], or across the chains
[Fig. 5(c)]. The type-(b) movement is a superposition of two
type-(a) movements, but it is useful to consider the type-(b)
movement explicitly since it improves the low-temperature
acceptance rate of the algorithm.

For the case of charged solitons, we need to take into
account the long-range CI, which is always a formidable
task, and even more here for the system prone to pattern
formation, owing to the appearance of locally noncompensated
charges at a growing scale. Since we are interested in the
wall formation process, and for an infinite charged wall
the electric potential grows linearly with the distance, then
correctly imposing periodic boundary conditions for the CI
becomes very important. We use the periodic version of the
Coulomb Hamiltonian (4) (for simplicity, we put a|| = a⊥ in
the simulation), where the summation goes over not only all
pairwise interactions within a computational cell, but also
between solitons and their images and between images and
the neutralizing negative background. In practice, this is done
by the technique of Lekner [40] for both 2D [41] and 3D

[42] cases. This technique allows to efficiently calculate the
force acting on a given particle from another particle and all its
images and, and by integrating the force, to obtain the effective
pairwise potential. Finally, we tabulate this potential for fast
computations.

Since the CI is the long-range one, the calculation of the
energy change �EC at each MC step can be time consuming.
To deal with this, we use two different approaches. When the
MC acceptance rate is high, we employ the first (standard)
approach: at each MC trial step we recalculate the CI energy
of the shifted soliton with respect to other solitons. However,
at low temperatures, when the MC acceptance rate becomes
low, it turns out that this approach is ineffective, since many
calculations are wasted to compute �EC for rejected steps.
Therefore, at low temperatures (and low MC acceptance rates),
we use another algorithm [43,44]: instead of recalculating the
interaction energy of the shifted soliton with every soliton
in the system at each trial MC step [computational cost
of which is O(Ns × Ntrial steps)], we introduce an electric
potential φ and use it to calculate the Coulomb energy
change: �EC � e(φ(rnew) − φ(rold)), the computational cost
of which is only O(Ntrial steps). However, now we have to update
the potential after every accepted step at each site of the
system, which costs O(Volume × Naccepted steps). This means
that this approach works better when the acceptance rate is
low. Combining these two approaches allows us to effectively
perform simulations for the system with long-range CI at both
high and low temperatures and even in 3D space.

B. Numerical results for 3D case

In this section, we shall describe our main results: the
evolution of the system with lowering temperature in different
regimes. We shall use several presentations: images for
distributions of solitons and spins. These pictures will be
further characterized by plotting the numbers of nearest spins
or solitons.

1. Condensation of solitons into walls for neutral solitons

Here we consider a system with a size 50 × 8 × 8 sites and
a concentration of neutral solitons ν = 0.08. To demonstrate
explicitly the formation and multiplication of domain walls, we
shall show the patterns of soliton density [Figs. 6(a), 6(c), and
6(e)], which is of our direct interest, and also the patterns of the
reversed spins of the effective Ising model [Figs. 6(b), 6(d),
and 6(f)], which give a useful complementary insight. Here
and below, the sites with the major orientation of spins will be
left as blank space, while the sites with reversed spins will be
marked in black. The edges of black areas in the longitudinal
(chains’) direction indicate the positions of kinks.

At higher temperatures [T = 2.1J⊥ > T2, Figs. 6(a) and
6(b)], we observe an ordered state impregnated by the gas
of bisolitons. When the first pair of walls condenses [at
T = 2.0J⊥ ≈ T2, Figs. 6(c) and 6(d)], the concentration of
noncondensed solitons drops, then with decreasing tempera-
ture it further decreases gradually, to cure the defects in already
existing walls, then it drops sharply again with the formation
of the next pair of walls [T = 1.6J⊥ < T2, Figs. 6(e) and
6(f)]. Meanwhile, the initial pair of walls diverges loosing the
mutual correlation and opening the whole domain of reversed
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FIG. 6. Process of wall formation in a system 50 × 8 × 8 with
ν = 0.08. In (a), (c), and (e), the circles indicate the positions of
solitons. In (b), (d), and (f), the circles indicate the positions of the
reversed spins. (a) and (b) T = 2.1J⊥, no walls. (c) and (d) T =
2.0J⊥, 2 soliton walls. (e) and (f) T = 1.6J⊥, 4 soliton walls

spins in between. Comparing the distributions of Ising spins
and solitons at different temperatures, we see that the number
of reversed Ising spins is not conserved (which means that the
Ising magnetization can drastically drop below T2 and take any
value between 0 and 1 − ν), whereas the number of solitons is
preserved.

Interestingly, the second pair of walls nucleates in the
vicinity of the first one: the incipient second pair of walls
is more stable there. It happens because the movements of
solitons intending to build the second wall are prohibited
towards the first one, which twice reduces their escape
probability, hence promoting the aggregation. For systems

FIG. 7. Plot of magnetization m of Ising spins vs temperature
(in units of J⊥) for systems with sizes 100 × 20 × 20 (circles) and
50 × 8 × 8 (triangles), with ν = 0.08.

with smaller sizes, we can perform long enough simulations,
when this transient effect vanishes. However, we believe that
since our elementary soliton movements are chosen in a natural
way, similar to a real time soliton dynamics, then this effect of
correlated emergence of walls can take place in real systems.

2. Integrated characteristics for the neutral system

The obtained patterns and their evolution show up also
in integrated characteristics, which are more accessible for
measuring. Thus we have calculated the temperature depen-
dencies of the Ising spin magnetization and of the number of
transverse neighbors. Here we consider 3D systems with sizes
50 × 8 × 8 and 100 × 20 × 20 sites for the concentration of
neutral solitons ν = 0.08.

First, consider the Ising magnetization m(T ) dependence,
which is shown in Fig. 7. Excluding the low-temperature
region, this dependence is very similar to the standard plot for
the Ising model with the transition temperature T1 ≈ 30J⊥.
The transition is smeared due to the finite-size effects.

Apparently, even this not very small fixed concentration of
solitons does not affect much the high-T properties, unlike the
drastic effect we see at low T . The T2 phase transition happens
with the dimensionality reduction of the system. From the
thermodynamical point of view, when the interaction between
layers vanishes (J|| = 0), the magnetization must drop to 0.
Below we explain why it may not drop to 0 in a numerical
simulation.

For the smaller system 50 × 8 × 8 with lowering tem-
perature, we see a sharp drop in the m(T ) dependence
at T ≈ 2J⊥. This reflects the wall formation transition at
T2: as it was explained in Sec. II B and was demonstrated
explicitly in Sec. IV B 1, the bisolitons aggregate into walls,
then these bisoliton walls divide into single-soliton ones, and
the Ising spin magnetization drops. Depending on a numerical
experiment, m picks a random value between 0 and 1 − ν

when the system freezes at T = 0, which is a finite-size effect
associated with the finite length of the sample L. For a sample
of a macroscopic length, however, it must be m(0) = 0 since
spin-up and spin-down domains are equally probable.

For the bigger system 100 × 20 × 20, we have observed
that the walls appear in pairs, with only one reversed spin per
chain, and a long time is necessary for the walls to diverge,
opening a growing domain of reversed spins in between.
Typical times of the simulation are not big enough to observe
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FIG. 8. Average number of transverse neighbors vs temperature
(in units of J⊥) in a system 50 × 8 × 8 with ν = 0.08; for the reversed
spins, it is shown with squares, for solitons it is shown with circles.

the wall splitting. This happens because in order for the
bisoliton wall to divide, the system must pass through an
energetically unfavorable state: when the incipient layer of
new domain grows to a disk of radius r , the energy increases
by 2πr · 2J⊥. If the transverse size H is big enough, this
high energy state cannot be reached during the time of the
simulation, and the system cannot skip from one energy
minimum to another with the shifted wall. Therefore, for such
big systems, only bisoliton walls are observed and the Ising
magnetization does not decrease at low temperatures.

Second, we consider another integrated characteristics—
the average number of transverse neighbors, which describes
the transverse correlations in the system. It is particularly
interesting to do so near T = T2. Since T2 � T1, then in the
vicinity of T2 only a relatively small number of reversed spins
is left, being dispersed within the major domain of aligned
spins.

Thus, in order to characterize the degree of aggregation,
we calculate for each reversed Ising spin (or each soliton)
the number of its neighboring reversed spins (or neighboring
solitons) in the transverse direction. Since for the domain-
wall phase the number of bulk spins is much greater than
the number of spins at the interfaces, then the number of
reversed spins’ neighbors must jump to approximately 4 at
T = T2. However, for solitons, when T decreases below T2, a
substantial number of them also condenses into walls, but this
number is comparable with the number of the noncondensed
solitons, therefore the jump must be not that big as for the
Ising spins.

This reasoning is confirmed by Fig. 8, which shows the
temperature dependence of the average number of neighbors
for Ising spins and for solitons. With lowering temperature,
at T � 2.0J⊥, we see a sudden jump of the number of the
reversed spins’ neighbors from ∼1 to ∼4, which indicates the
formation of domain walls as it is explicitly confirmed in Fig. 6.
The observed transition temperature is in good agreement with
the theoretical prediction (7): T2 ≈ 1.98J⊥. The corresponding
plot for solitons also shows a jump, however, not that big: from
∼1 to ∼2 average number of neighbors. At T > T2, the two
plots essentially coincide since almost all bisoliton pairs have
the minimal size of 1 site.

3. Intermediate Coulomb interaction

Now we consider the case of electrically charged solitons
for a system of 50 × 8 × 8 sites with ν = 0.08. The weak CI

FIG. 9. Disintegration of domain walls as CI increases. Ising spin
representation of a system 50 × 8 × 8 with ν = 0.08 at T = 0.1J⊥ for
different values of the Coulomb parameter. The closed dots indicate
the positions of the reversed spins.

(according to estimates, given in the Appendix B) with the
Coulomb parameter VC = e2/εa⊥ � J⊥/H 2 does not affect
the system qualitatively. For example, for VC = 0.01J⊥, it
only lowers the temperature of condensation of solitons into
walls by 10% down to T ′

2 ∼ 1.8J⊥
Therefore, in this section, we focus on a more interest-

ing case of intermediate values of the Coulomb parameter
J⊥/H 2 � VC � J⊥. In this case, the Coulomb interaction is
weak enough locally, so it does not prevent the binding of
solitons into bisolitons, and even does not destroy the initial
correlation of bisolitons at neighboring chains. However, it
affects the large-scale structures such as domain walls, since
for VC � J⊥/H 2 the wall formation becomes energetically
unfavorable.

In contrast to the cases of neutral solitons (Fig. 8) and weak
CI, we do not observe sharp wall formation transition for the
intermediate values of the CI—the temperature dependence
of the average number of neighbors does not show any
jumps. When VC becomes larger than J⊥/H 2, we still observe
bisoliton walls at nonzero temperature, which now have defects
(holes). As T goes to 0, these defects are grouping and can cut
a wall along one of the transverse directions [Fig. 9(a)].

As VC further increases, we do not observe plane walls,
but only filamentary stripes, which are infinite along one
transverse direction and finite along the other [Fig. 9(b), recall
that periodical boundary conditions are imposed]. However,
it is clear that an infinite system cannot possess such infinite
stripes, because they are inefficient in terms of the interchain
energy J⊥.

Our interpretation for formation of lines rather than planes
is that here the system demonstrates an extreme sensitivity
of CIs to the transverse finite-size geometry of the sample.
A charged wall would create a constant electric field E =
4πe/(ε||a2

⊥) in the chains’ x direction, whose repulsive force
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eE would oppose directly the attractive confinement force J⊥
overpassing it at the intermediate CI, hence no stable planes
could exist. However, forming the stripes (in one transverse y

direction) at the expense of the part of the confinement energy
(lost in the other transverse direction z), the system generates
a decreasing electric field E ∝ 1/

√
x2 + z2 which falls below

the confinement force at sufficiently large distances, hence
preserving this partial aggregation.

Therefore, in finite systems, the disintegration of plane
walls happens via formation of linear structures. For infinite
systems, we expect that these structures will further disinte-
grate into finite disks (similar to described in the next paragraph
ones).

If we choose higher value of the Coulomb parameter,
the formation of stripes even for a finite system becomes
also energetically unfavorable and we observe only disks
of bisolitons [Fig. 9(c)]. Observed disklike formations are
consistent with the analytical results presented in Appendix
B, where it is shown that the maximum radius of the disks is
R∗ ∼ √

J⊥/VC .

4. Strong Coulomb interaction

Here we consider a system of 100 × 20 × 20 sites with
ν = 0.026 (the parameters were chosen in order to compensate
incommensurateness effects, as explained below). Strong CIs
VC � J⊥ affect the local bisoliton pairing. The transverse disks
shrink to the minimum size of 1 bisoliton. When VC further
increases, these bisolitons form a Wigner “liquid” [Fig. 10(a)]
(with a short-range order of individual solitons—contrarily
to a Wigner crystal with a long-range order). It is known
that the ground-state distribution of charges must form a
triangular lattice in 2D [45] and a body-centered cubic lattice
in 3D [46]. However, for systems with finite discretization, the
commensurateness effects become very important: even small
incommensurateness destroys the long-range order, while the
short-range order persists [47].

For even higher VC , the Coulomb force starts to compete
locally with the confinement force and the size of a bisoliton

FIG. 10. Ising spin representation of four neighboring 100 × 20
slices of a 100 × 20 × 20 system, which are projected onto the xy

plane. Reversed spins from four projected planes are marked in
different shades of gray. For VC = 10J⊥ (a), we observe a “liquid”
of the reversed Ising spins (bisolitons at the minimal distance);
for VC = 100J⊥ (b), we see that the bisoliton size increases (here
T = 0.1J⊥ for both cases).

FIG. 11. System 100 × 20 × 20 for VC = 1000J⊥, T = 0.1J⊥.
(a) Ising spin representation of 100 × 20 slice of the system. The
Ising order is destroyed. (b) Soliton representation of 100 × 20 × 3
slice, which is projected on xy plane, solitons from different planes
are marked in different shades. The solitons are deconfined, a “liquid”
of an individual soliton rather than bisolitons is observed.

starts to grow [Fig. 10(b)]. Neglecting the interaction between
bisolitons we can estimate their size. A bisoliton elongates
until the Coulomb force is balanced by the confinement force:
VC/l2

bs ∼ 8J⊥, therefore lbs ∼ √
VC/8J⊥. This estimate holds

as long as the average bisoliton size is much less than the
distance between them: lbs � ν

−1/3
bs . When lbs ∼ ν−1/3 (which

happens at VC ∼ 8J⊥ν−2/3 ∼ T1ν
1/3), this size becomes com-

parable to the distance between solitons, interactions between
them become important. Increasing the CI to the highest
values, we observe that the Ising order is destroyed in favor of
a Wigner “liquid” of individual solitons, rather than bisolitons
[Figs. 11(a) and 11(b)].

C. Numerical results for the 2D case

1. System of neutral solitons

In this section, we consider a 2D system with the size
of 200 × 25 sites and concentration of neural solitons ν =
0.03. As discussed in Sec. II B, well below the Ising transition
temperature T1 (for the considered system T1 ≈ 20J⊥), there
exists a characteristic temperature T2 at which perpendicular
rods start to form with their characteristic length gradually
increasing with lowering T . For our finite samples, there is
also a width H dependent temperature TF (H ) at which these
rods become long enough to pass across the entire sample.

Figure 12 shows the Ising spin representation of the
system’s evolution with lowering T . For T = 28J⊥ > T1,
the Ising disordered phase is observed [Fig. 12(a)]. At T =
10J⊥ < T1, we observe the Ising ordered phase with bound
pairs of bikinks [Fig. 12(b)]. These pairs shrink when T

lowers [Fig. 12(c)]. Then the rods of reversed spins change
the predominant orientation from the longitudinal one at high
temperatures to the transverse one at low T [Fig. 12(d)].
The first case indicates the regime of loosely bound on-chain
pairs of kinks, while the second case indicates the transverse
aggregation of tightly bound kinks. Finally, at the lowest
considered T [Fig. 12(e)], the aggregated rods cross the entire
sample and domains are created.

125108-9



P. KARPOV AND S. BRAZOVSKII PHYSICAL REVIEW B 94, 125108 (2016)

FIG. 12. Neutral solitons: the Ising spin representation of a 2D

system with 200 × 25 sites and ν = 0.03 for different temperatures.

As in Sec. IV B, TF lies deeply below the Ising transition
temperature, only a relatively small number of reversed spins
is left, being dispersed within the major domain of aligned
spins; therefore we characterize the degree of aggregation, by
calculating for each soliton (or each Ising spin) the number
of its interchain neighbors. For the domain wall phase, the
number of reversed spins’ neighbors must be approximately 2.

Figure 13 shows the temperature dependence of the average
number of neighbors of the reversed Ising spins. It shows
that upon cooling from the Ising transition temperature (T1 ≈
20J⊥), we arrive firstly at some characteristic temperature
(T2 ≈ 2.5J⊥) when the average number of neighbors starts to
grow. On further cooling, another characteristic temperature
(TF ≈ 0.75J⊥) is reached when the average number of
neighbors suddenly changes from ∼1.2 to ∼2, which indicates

FIG. 13. Neutral solitons: average number of the reversed spins’
neighbors vs temperature in a system with 200 × 25 sites and ν =
0.03. The inset shows temperature range T = 0.4J⊥..1.5J⊥

FIG. 14. Neutral solitons: the average number of soliton inter-
chain neighbors vs temperature, in a system with 200 × 25 sites and
ν = 0.03.

the wall formation process. Figure 14 shows the temperature
dependence of the average number of soliton interchain
neighbors. We see that their number increases gradually with
lowering temperature and shows no peculiarities. This means
that the transition at TF is due to finite-size effects and in an
infinite sample we shall observe the condensation of solitons
into infinite lines only at T = 0.

2. System of charged solitons

Here we consider a similar system, but now with charged
solitons. For VC = 0.01J⊥ (Fig. 15), the temperature TF is
lowered with respect to the case VC = 0 (Fig. 13)—now
the wall formation transition is observed at the lower T ′

F ≈
0.69J⊥. Increasing the Coulomb parameter up to VC = 0.03J⊥
(Fig. 15), we see that the wall formation transition temperature
is further lowered down to T ′′

F ≈ 0.5J⊥.
With increasing VC , TF eventually decreases to 0. For

some critical value of the Coulomb parameter, we get TF = 0,
in which case rods grow up only to a maximum size l∗ ∼
J⊥/VC � 1 (see Appendix B for the details of analytical
estimations). However, precise observation of this critical
value of VC is difficult, since the acceptance rate of the
algorithm exponentially vanishes to 0 as T → 0.

For strong CI VC � 1, the behavior of the 2D system is
qualitatively the same as for 3D. The transverse rods shrink to
the minimum size of 1 bisoliton, then the CIs start to compete
with the confinement force, so bisolitons start to elongate and,
at some VC , the Ising order is destroyed. For the highest values

FIG. 15. Charged solitons: average number of reversed spins’
neighbors vs temperature in a system with 200 × 25 sites and ν =
0.03 for VC = 0.01J⊥ (circles), VC = 0.03J⊥ (triangles), and VC =
0.05J⊥ (squares).
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of CIs a Wigner “liquid” of individual solitons is observed,
which case was studied in Refs. [48–50].

V. DISCUSSION AND CONCLUSIONS

We have presented numerical and qualitative analysis of
phase transitions in ensembles of solitons as they can be created
and studied in experiments on optical pumping and field effect
doping in systems with cooperative electronic states. For 3D

systems of neutral solitons, as temperature lowers, we observe
two phase transitions. The first transition at T1 reflects the spin
ordering of the equivalent Ising model. In terms of the original
solitons, T1 is the temperature, below which individual solitons
become confined into bisoliton pairs. With further decreasing
temperature, the size of a pair decreases, reaching the minimal
value of 1 at T ∼ J⊥, when a gas of bisolitons forms. With
further cooling of the system, the bisolitons start to aggregate
into transverse disklike formations. Finally, at some critical
temperature T2, the second phase transition occurs: these disks
cross the entire sample, domain walls are formed, and the Ising
magnetization drops to 0. The dimensionality of the system
effectively reduces to D = 2.

For 3D systems of charged solitons, the locally small CI
(when VC � J⊥) can nevertheless affect the T2 transition,
where macroscopic patterns are created. This happens because
a large scale structure, such as a domain wall, gives rise
to a high long-range electric field, which erases the gain
of the confinement energy reached by the wall formation.
For a macroscopic system without an external screening,
even an arbitrary small Coulomb parameter VC �= 0 destroys
the walls, only disklike formations with the maximum size
R∗ ∝ √

J⊥/VC are observed. However, if the screening is
present and the screening length ls < R∗, then these domain
walls still cross the entire sample (in our numerical study the
sample width H plays a role of the screening length ls).

For high values of the CI, the disklike formations disinte-
grate into separate bisolitons. When the CI is further increased,
bisolitons arrange in a Wigner liquid state. Further, bisolitons
start to elongate and when their size becomes comparable with
the interpair distance, the Ising order breaks and a Wigner
liquid of individual solitons is observed.

Neutral 2D systems behave qualitatively similar to the
3D case at high and intermediate temperatures, the Ising-like
transition at T1 still exists. However, an important distinction
is that T2 is rather a crossover temperature in 2D: the growing
rods do not cross the entire sample for a macroscopic system.
However, for a finite one, there still exists some temperature
TF of domain wall formation. For charged 2D system, TF

lowers with the increase of the CI and, when it reaches 0, only
rods of finite transverse length l∗ ∝ J⊥/VC are observed even
at T = 0.

The presented results of the MC simulation for neutral
solitons agree with the earlier predictions [29] (for both 2D

and 3D cases). However, the results for charged solitons do not
completely agree with the previous work [31], performed only
for the 2D case. There it was observed that with increasing
VC at T = 0, domain walls are not destroyed by the CI,
but they are rather roughened. This difference in the results
occurs presumably because in [31] the ensemble of solitons
was treated with preserving number of bisolitons at each

chain, rather than only globally. This limitation is overcome
in our treatment, which also has employed a more efficient
algorithm allowing for modeling of 3D systems, even for
charged particles. This approach matches the condition of
relaxation of a soliton system after a fast optical pumping or
an impact of a strong electric field, considered in the present
work: only bisolitons can jump between the chains. Actually,
there are electron pairs that jump while the order parameter is
adjusted to their presence or absence.

For the experiments with optical pumping to the gas of
solitons, we predict that along the equilibration trajectory the
system will experience two phase transitions: confinement of
solitons at high T and their aggregation to the stripe phase
at lower T . The presented theoretical picture should find its
experimental realization. There can be traditional, already
verified methods of solitons identifications (recall the discus-
sion and references in Sec. I B). Not all of them, particularly
the latest and most spectacular direct visualizations by the
STM, can be applied in conditions of pump- or field-induced
experiments, but they will serve as a preliminary assurance for
the correctly chosen system. Among traditional techniques, the
pump-and-probe optics can trace the time evolution of solitons
via their associated spectral features; that have been already
so efficiently exploited in conducting polymers [12,14]. In the
modern, and closer to our discussion, context of the fast optical
pumping with optical probes, the solitons appeared already in
studies of neutral-ionic transitions [17,18,51,52]. The state
of an ensemble of solitons, particularly the aggregation into
regular stripes, may be traced by methods of the time-sliced
diffraction. Recently, the time resolution of the electron- and
x-ray diffraction (see the latest publications [53–55] and
references therein) has been pushed to the subpicosecond
scale, which makes it very promising to study the induced
phase transitions accompanied by the structural aggregation.

We mention finally that the studied here phase transitions
with confinement and with segregation in the ensemble of
topologically nontrivial excitations may serve as elementary
illustrations to unresolved yet issues in high-energy physics
(confinement of quarks) and cosmology (phase transitions in
the early universe).

APPENDIX A: ANALYTICAL RESULTS FOR A NEUTRAL
SYSTEM

1. 2D case

Consider the high-temperature regime T � T1. The exact
expression for the soliton concentration at the critical temper-
ature is [29]

ν(T1,J⊥) = 1

2
− 1

π
cosh

2J⊥
T1

arctan
1

sinh 2J⊥/T1
,

then for the case ν � 1, we get

T1 ≈ 2J⊥
πν

. (A1)

Now consider the low-temperature regime T � J⊥. In this
limit, all bisoliton pairs are shrunk to the minimal size of
one reversed spin, then the magnetization is m = 1 − 2νbs =
1 − ν. Using the exact expression for magnetization in the 2D
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Ising model [56]

m2D(T ,J⊥,J||) =
[

1 −
(

sinh
2J⊥
T

sinh
2J||
T

)−2]1/8

, (A2)

we find that

J||(T ,ν) = T

2
arcsinh

1

sinh(2J⊥/T )
√

1 − (1 − ν)8

≈ T exp(−2J⊥/T )

2
√

2ν
. (A3)

Crossover from the bikinks gas state to the state of growing
transverse rods occurs when J||(T ,ν) becomes of order of J⊥.
Then from (A3) for ν � 1, we get with logarithmic accuracy

T2 ≈ 4J⊥
ln(1/ν)

. (A4)

2. 3D case

To find an estimation for J||(T ,ν) at low temperatures
T � J⊥, we employ an approximation where interactions in
the transverse planes are considered exactly while the weak
interactions between planes are taken into account using the
mean-field theory.

In this approximation, the in-chain interaction energy terms
per spin Sn,α becomes

− 1
2J||Sn,α(Sn+1,α + Sn−1,α) ≈ −J||Sn,αm ≡ −HSn,α, (A5)

where H is an effective magnetic field. Therefore the magne-
tization for 3D case is simply given as the magnetization of
the 2D Ising model in the weak effective magnetic field:

m(T ) ≈ m2D(T ) + χ (T )H, (A6)

where χ (T ) is the susceptibility of the 2D Ising model. Using
(A2) and (A6), we get

m(T ) ≈ (1 − (sinh 2J⊥/T )−4)1/8(1 + χ (T )J||). (A7)

Now we link the magnetization m to the soliton con-
centration. Since all layers are magnetized in one direction,
we introduce deviations from mean magnetization δSn,α =
Sn,α − m, so that 〈Sn,αSn+1,α〉 = m2 + 〈δSn,αδSn+1,α〉.

If T → T2 then J|| → 0 and 〈δSn,αδSn+1,α〉 → 0, so we can
expand the latter in powers of J||:

〈δSn,αδSn+1,α〉 = α(T ,J⊥)J|| + O(J 2
|| ). (A8)

Using (2), (A7), and (A8), we get

J||(T ,J⊥,ν) = 1 − 2ν − (
1 − sinh−4 2J⊥

T

)1/4

2χ (T ,J⊥)
(
1 − sinh−4 2J⊥

T

)1/4 − α(T ,J⊥)
.

(A9)

From the condition J||(T2,J⊥,ν) = 0, we rederive the result of
Ref. [29]

T2 = 2J⊥
arcsinh{[1 − (1 − 2ν)4]−1/4} ≈ 8J⊥

ln 2/ν
. (A10)

To estimate J||(T ,J⊥,ν), we assume that there is no special
reasons for the denominator of (A9) being small. So, up to a
factor of order of 1, we can neglect α in (A9).

For χ (T ,J⊥), we use the results of Refs. [57,58], where it
was shown that χ can be decomposed to a well convergent
series

χ (T ) = m2

T

∞∑
n=1

χ̂ (2n)(T ),

χ̂ (2) = (1 + k2
<)E(k<) − (1 − k2

<)K(k<)

3π (1 − k<)(1 − k2
<)3/4

. (A11)

Here, E and K are the complete elliptic integrals of the
first and the second kind, k< = (sinh 2J||/T sinh 2J⊥/T )−1.
For T � J⊥, k< ≈ exp(−4J⊥/T ) � 1, therefore χ̂ (2) ≈ 1

4k2
<,

and we estimate χ as

χ (T ,J⊥) ∝ m2 exp(−8J⊥/T )

4T
∝ exp(−8J⊥/T )

4T
. (A12)

Expanding (A9) in the vicinity of T = T2 and using (A12), we
get the desired estimation:

J||(T ,J⊥,ν) ∝ 64J⊥ exp(−8J⊥/T2)

T2
(T − T2)

∝ 4ν ln
2

ν
(T − T2). (A13)

We see that J⊥ dependence is contained only in T2 and the
slope of the line depends only on ν.

APPENDIX B: ANALYTICAL RESULTS FOR A CHARGED
SYSTEM

Here we present estimations and qualitative arguments on
effects of CIs.

1. 2D case

Consider first the 2D case. According to our modeling
and following the exact results for the neutral system [29],
we suggest that the basic units are still the straight lines
(rods) of unseparated bikinks; their lengths l will be taken
as dimensionless; the physical scale is a⊥.

The CI energy of a line of bikinks is

4e2

εa2
⊥

∫∫
dydy ′

|y − y ′| exp

(
− |y − y ′|

lsa⊥

)
≈ 4VCl ln min{l,ls},

where VC = e2/εa⊥, lsa⊥ is the screening length by remnant
or external carries; it appears for l > ls . Our assumption of
intermediate CIs is that locally they are weak, i.e., VC � J⊥,
but become effective for aggregates when VC ln l∗/J⊥ is not
small, i.e., VC � Vinter = J⊥/ ln l∗ (l∗ is the characteristic rod
length).

Because of the equilibrium between rods with respect to
exchange of building units—the bikinks, their partial chemical
potentials μl are related as μl = 2lμ∗; here we include to the
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definition of 2μ∗ not only the soliton energy 2Es but also
the CI energy of the elementary pair e2/εa||, so that μ∗ =
μs − Es − e2/2εa||. The distribution of segments is

n(l) = exp ( − 4βJ⊥ + 2βμ∗l − 4βVCl ln(min{l,ls})).
The parameter μ∗(ν) is to be determined from the self-
consistency condition

ν = 2
∑

l

n(l)l

= 2 exp(−4βJ⊥)
∑

l

l exp[β(2μ∗l − 4VCl ln(min{l,ls}))].

(B1)

Approaching the regime of stripe formation, the sum is deter-
mined by large l, then the summation can be approximated by
integration over l.

Consider, first, the case without screening, when the
characteristic rod length l∗ � ls . Now,

ν exp(4βJ⊥) = 2
∫

dl l exp (β(2μ∗l − 4VCl ln l)). (B2)

The exponent S(l) = β(2μ∗l − 4VCl ln(l)) in (B2) is rapidly
decreasing at large l and the integral is convergent, because
of the V term, at any—even positive–μ∗. For negative μ∗, it
decreases rapidly at all l and the sum is saturated already by
n(1) = exp (β(−4J⊥ + 2μ∗)) with ν ≈ n(1). With decreasing
T , μ∗ increases, it reaches zero with no qualitative effect
unlike the case of neutral systems, and finally becomes
positive when S(l) acquires the rising part at 1 < l < l∗
where the maximum position given by dS/dl = 0 is l∗ ≈
C exp(μ∗/2VC), which makes precise the definition of l∗. The
saddle-point approximation for the integral over l gives

ν exp(4βJ⊥) ≈ 2

(
2π

|d2S/dl2|
)1/2

l∗ exp (S(l∗))

∝
(

T

VC

)1/2

l∗3/2 exp(−4J⊥/T ) exp(C̃VCl∗/T )

Neglecting pre-exponential numerical coefficients an inversion
of this relation to l∗(ν) and hence to μ∗(ν) in the leading
dependence for T → 0 yields

C̃l∗ ≈ J⊥
VC

+ T

8VC

ln

(
ν2V 4

C

T J 3
⊥

)
, μ = 2VC ln

J⊥
V

.

It gives the saturated value of the rods length l∗(T → 0) �
J⊥/VC , which is finite but large by our definition of the
intermediate CI. The chemical potential saturates at the
positive value. This behavior is different from the one in
the neutral system in both D = 2 and 3 dimensions. If
we now try to find Vinter = J⊥/ ln l∗, we get an equation
ln(C̃ · J⊥/Vinter) = J⊥/Vinter which possesses only solutions
J⊥/Vinter ∼ 1. This means that if we use l∗ as a characteristic
length, then there is no intermediate CI regime in 2D in the
unscreened case.

If the screening is more efficient, such that ls < l∗, then ln l

saturates to ln ls and the CIs just shift the chemical potential
as μ∗ ⇒ μ̃ = μ∗ − 2VC ln ls . Then we get from (3), (A3),

and (B1)

ν ≈ 1

2
exp

(
−4J⊥

T

)(
T

μ̃

)2

, μ̃ ≈ − T√
2ν

exp

(
−2J⊥

T

)
< 0,

(B3)

l∗ ≈ T

2|μ̃| ≈
√

ν

2
exp

(
2J⊥
T

)
> ls,

which coincides with the appropriate limit of the exact result
from [29] under the shift μ ⇒ μ̃. Inversion of this relation
gives the chemical potential μ∗(ν,T ) of individual bisolitons
as it is dictated by the reservoir of growing rods. For T → 0,
it saturates at a value μ∗ → 2VC ln ls but l∗ keeps growing
exponentially in 1/T . In this case, the regime of intermediate
CIs is determined by ls : Jperp � V � Vinter = J⊥/ ln ls .

In the absence of external carriers, the screening length ls
is defined self-consistently from the contribution of bisolitons
and their rods. We shall do it assuming the 3D media composed
by noninteracting, except sharing the Coulomb potential,
layers—that is not the case of our modeling which took a
2D layer embedded into the 3D space. By definition, the
dimensional screening length a⊥ls is given by the derivative
of the 3D charge density eν/(a||a2

⊥) over the chemical
potential dν/dμ ≈ 4νl∗/T . The last relation follows from
differentiation of (B3). We get

1

l2
s

= 4π (2e)2

εa||a2
⊥

dν/2

dμ
≈ 32πν

VC

T

l∗

a||a⊥
,

(l∗a⊥)2

l2
s

≈ 32πν
VC

T

a⊥
a||

l∗3.

We see that the condition of the nonscreened regime l∗ < ls
can be satisfied only for very small ν and still at not very
low T . The most common case will be described by relations
(B3), which imitates the neutral system but with the up-shifted
chemical potentials and the corresponding strong increase of
concentration of noncondensed bikinks.

2. 3D case

Consider now the 3D case. Suppose the basic units are the
straight bidiscs (lenses) of unseparated bisolitons of radii R

(dimensionless; the physical scale is a⊥).
The CI energy of a disk is

4e2

εa4
⊥

∫∫
d2rd2r ′

|r − r′| exp

(
− |r − r′|

a⊥ls

)
≈ 4πV3R

2 min{R,ls},

where V3 = CVC = Ce2/εa⊥ with C = 16/3 for R � ls and
C = 2π for R � ls . The screening length ls appears for R >

ls . Assumption of intermediate CIs (which are locally weak,
but prevent the transverse walls formation) in the 3D case
becomes J⊥ � V3 � J⊥/(H min{H,ls}) (the cross-section of
the sample is assumed to be H × H square).

The equilibrium relation for partial chemical potentials is
held as before: μR = 2πR2μ. Then the distribution of disks is

n(R) = exp (β(−4πRJ⊥ + 2πR2μ − 4πV3R
2 min{R,ls})),

(B4)

where the first term is the confinement energy lost over
the perimeter of the circle. However, new items appear in
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FIG. 16. S(R) dependence and its two local extrema R±.

the 3D case, those are domain walls with the chemical
potential μwall = μH 2. μ(ν) is to be determined from the
self-consistency condition

ν =2
∑
R

πR2n(l) + H 2nwall

=2π
∑
R

R2 exp (4πβ(R2μ/2 − J⊥R − V3R
2 min{R,ls}))

+ H 2 exp(βμH 2 − βV3H
2 min{ls ,H }). (B5)

Even in the case V3 = 0, the wall term does not contribute
to the sum as long as μ < 0. However, as T decreases, |μ|
also has to decrease in order to accommodate all the solitons
in the system. When μ reaches the value μ ∝ −T/H 2 ≈ 0,
the first wall condenses, and then μ stays at 0 analogously to
Bose-Einstein condensation but in the real space instead of the
reciprocal one.

First, consider the unscreened case ls > H . Then the
summation in (B5) is convergent because of the two terms
in the exponent: J⊥R as it was already without CI, and now
also V3R

3 from the CI. This sum is dominated by the minimal
R ∝ 1 if either βJ⊥ � 1 or βV3 � 1. Recall that our definition
of a moderate CI means that it is not efficient at the level of
minimal distances, i.e. J⊥ � V3, hence only the first inequality
is sufficient. Then

ν ≈ n(1) ≈ exp(2βμ − 8βJ⊥),

and the estimation for the transverse aggregation temperature
T2 ∝ J⊥/ ln(1/ν), obtained for the neutral case, still holds
here.

However, when the excess number of solitons condenses
to first walls, for them, R reaches the sample width H . Then

for weak CIs V3 � J⊥/H 2 when it is still unimportant hence
qualitatively never important at all. In this case T2 only slightly
decreases by �T2 ∝ V3H

2/ ln(1/ν).
For the moderate CI: J⊥ � V3 � J⊥/H 2 walls do not

form. We can estimate the maximum size of disks analogously
to the 2D case. When T decreases, the chemical potential
μ < 0 grows, then it reaches μ = 0 and continues to increase.
This means that the sum (B5) is now determined by large
values of R and summation can be approximated by integration
over R,

ν = 2π

∫
dRR2 exp (4πβ(R2μ/2 − J⊥R − V3R

3)).

(B6)

The exponent S(R) = 4πβ(R2μ/2 − J⊥R − V3R
3) in (B6)

decreases even faster at large R in comparison to the 2D case,
and the integral converges. S(R) has local extrema at points
R± = (μ ±

√
μ2 − 12V3J⊥)/V3 (Fig. 16). At some critical

value μ � μcr = 4
√

V3J⊥ the local maximum becomes pos-
itive: S(R+) � 0, which means that large disks of radius
R∗ = R+(μcr) = √

J/V3 � 1 appear in the system. In order
to find the corresponding critical νcr(T ) = ν(μcr,T ), we use
the saddle-point approximation for the integral over R (only
region R ∼ R∗ contributes in this case):

νcr(T ) ≈ 2πR∗2

(
2π

|d2S/dR2|
)1/2

eS(R∗) ≈ πT 1/2J 3/4V
−5/4

3 .

At T → 0, νcr(T ) decreases below the fixed concentration ν,
which happens at T ≈ ν2V3(V3/J )3/2, then the large disks
appear.

Now turn to the screened case. For R∗ < ls < H , the
screening is not very important: it does not affect even the
largest disks’ structure, but only affects the interactions among
them. However, for ls < R∗, the screening becomes essential,
since disks can grow up to R∗ and CIs does not prevent their
further growth, so they grow into domain walls. The wall term
appears in the sum (B5) when the chemical potential reaches
the value μ ≈ V3ls . So, as in the 2D case, at ls < R∗ there is
just the shift of the chemical potential μ̃ = μ − V3ls .

In conclusion, the very weak CI V3 � J⊥/H 2 only shifts
down the transition temperature T2 not preventing the forma-
tion of the walls. For the intermediate CI J⊥/H 2 � V3 � J⊥,
different regimes are observed depending on the screening
length ls . For ls > R∗, the CI is effectively unscreened, so it
prevents the wall formation and only disks of maximum size of
R∗ ≈ √

J⊥/V3 � 1 are observed. For ls < R∗, the screened
CI does not prevent them growing to transverse domain walls
and only shifts the chemical potential.
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