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Abelian Floquet symmetry-protected topological phases in one dimension

Rahul Roy and Fenner Harper
Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
(Received 12 May 2016; revised manuscript received 16 August 2016; published 2 September 2016)

Time-dependent systems have recently been shown to support novel types of topological order that cannot
be realized in static systems. In this paper we consider a range of time-dependent, interacting systems in one
dimension that are protected by an Abelian symmetry group. We classify the distinct topological phases that can
exist in this setting and find that they may be described by a bulk invariant associated with the unitary evolution
of the closed system. In the open system, nontrivial phases correspond to the appearance of edge modes, which
have signatures in the many-body quasienergy spectrum and which relate to the bulk invariant through a form of
bulk-edge correspondence. We introduce simple models which realize nontrivial dynamical phases in a number
of cases, and outline a loop construction that can be used to generate such phases more generally.
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I. INTRODUCTION

In recent years, topological order has become a concept
of fundamental importance in condensed matter physics. The
most unifying work in this field has been the production of de-
tailed classification schemes that systematically categorize the
variety of topological orders that may exist in physical systems
under certain conditions. The original classification schemes
considered gapped, noninteracting fermionic systems, leading
to the so-called “tenfold way” of topological insulators and
superconductors [1,2]. More recently, classification schemes
have been developed for interacting systems that are protected
by a global symmetry G, but which have no intrinsic
(long-range) topological order, known as symmetry protected
topological phases (SPTs) [3–20]. Using group cohomology
and other techniques, schemes have been developed that
classify SPT phases for systems with many different symmetry
groups and in various dimensions.

Topological or SPT order was originally thought only to
exist in a strict sense at zero temperature, since many topolog-
ical phases break down in the presence of thermal excitations
[21,22]. Recently, however, this belief has been overturned by
the theoretical prediction of many-body localization (MBL),
a phenomenon wherein strong disorder induces nonthermal
behavior in a many-body system, which may in turn exhibit
ordered phases that correspond to high temperatures [23–32].
In systems undergoing MBL, topological order can persist
above zero temperature [29,33]. Moreover, in some MBL SPT
systems with sufficiently strong disorder, the entire spectrum
can display signatures of topological order, extending the
notion of classification beyond the study of the ground state
[34–37].

SPT order has also been studied in the context of Floquet
systems: systems described by a time-dependent Hamiltonian
H (t) that varies periodically in time with period T . In a
Floquet system, to be described more fully below, the relevant
states are the eigenstates of the unitary evolution operator
at the end of the driving cycle U (T ) [38]. Using periodic
driving, it is possible to force a system into a topological
phase (see Ref. [39] for a review), and in particular, to generate
stroboscopic SPT phases [40]. Remarkably, Floquet systems
have also been shown to exhibit novel types of topological
order that cannot exist in static systems, including the existence

of edge modes when the bulk Hamiltonian is trivial [41–50].
More recently, topological order in Floquet systems has been
shown to persist in the presence of disorder [51,52].

The study of interacting phases, however, has proved to
be a more difficult endeavour. Driven, interacting systems
generically lead to heating, and the resulting eigenstates might
naively be expected to fall into trivial, infinite-temperature,
ergodic phases [53]. This may be prevented by introducing
strong disorder to the system, which leads to localized phases
that avoid the problems of infinite heating [54–60]. Moreover,
as demonstrated in Ref. [60] in a model of one-dimensional
(1D) spin chains with Ising symmetry, MBL allows sharp
phases to be defined by considering order in the Floquet
eigenstates. Two of the phases identified in this work have no
static analog, and are in fact connected to Floquet topological
insulators.

In this paper we attempt to classify interacting, symmetry-
protected Floquet systems, focusing mainly on Abelian sym-
metry groups and systems of bosons in one dimension, and
building on intuition gained from studying the noninteracting
problem [50] and the disordered Majorana Floquet chains
in Refs. [44,60]. Our approach considers the decomposition
of a general unitary evolution into a constant Hamiltonian
component, which may generate topological order analogous
to a static SPT phase, and a loop component, which can
introduce dynamical SPT order that is only possible in driven
systems. We present expressions for topological invariants
and illustrate the bulk-edge correspondence for these phases,
furnishing our results with examples from class D and ZN ×
ZN SPTs. Several recent papers consider the classification of
Floquet SPT phases using different methods [61–63], and we
find that our results are consistent with these.

The structure of this paper is as follows. We begin in
Sec. II by discussing some general features of time-dependent
systems and introducing the concept of a unitary loop
evolution, which we will require in the main text. In Sec. III
we consider fermionic systems in class D, which act as a
bridge between free and interacting Floquet systems. We then
study bosonic systems with ZN × ZN symmetry in Sec. IV
and more general Abelian groups in Sec. V, where we also
discuss bulk invariants and bulk-edge connections. We end
with a discussion in Sec. VI.
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II. PRELIMINARY DISCUSSION

The evolution due to a local, time-dependent Hamiltonian
H (t) can be described by the unitary operator

U (t) = T exp

(
−i

∫ t

0
H (t ′)dt ′

)
, (1)

where T is the time ordering operator and t usually runs from
0 to T . We assume that the Hamiltonian H (t) at every instant
is invariant under a group of symmetry transformations G.
We write the instantaneous eigenstates of U (t) as |ψ(t)〉 and
note that these correspond to instantaneous quasienergies ε(t)
through U (t)|ψ(t)〉 = e−iε(t)|ψ(t)〉, where −π < ε(t) � π . It
is conventional to define the effective Floquet Hamiltonian
at the end of the evolution as HF , obtained through U (T ) =
exp (−iHF T ), when this gives a meaningful (i.e., local and
symmetry-preserving) Hamiltonian.

For the purposes of this paper, we restrict our discussion to
unitary evolutions which, for a closed system, can be expressed
as exp(−iHF T ) for some Floquet Hamiltonian HF . As we will
see below, this implies that the unitary for the open system can
be written as a product of two factors, where one factor is of the
form exp(−iHo

F T ) and the other is an effective edge unitary
operator. We want to understand and classify the distinct types
of robust effective edge operator that can arise from such
unitary evolutions. The requirement that the effective edge
unitary have observable physical consequences places some
constraints on the form of HF , which we do not study in
detail here. One expects that integrability or MBL is necessary,
although likely not sufficient.

One way to generate edge modes protected from bulk
transitions by a quasienergy gap or an effective mobility gap in
an MBL phase, is by evolving a constant SPT Hamiltonian in
time. Phases produced in this way have protected edge modes,
resulting in a quasienergy spectrum with degenerate multiplets
at every level. The edge modes, which are connected to this
vector space, then correspond to a projective representation of
the group, and the different phases correspond to equivalence
classes of projective representations [10].

However, free fermion studies point to a set of more
interesting possibilities, which we will find correspond to
nontrivial unitary loops. We define a loop to be a unitary
evolution of the form in Eq. (1) that, for a closed system,
satisfies U (T ) = eiφI for some phase φ. In much of what
follows, we will assume φ = 0 without loss of generality. In
this way, the quasienergies at the end of a unitary loop coincide,
and the effective Floquet Hamiltonian HF = 0. Nevertheless,
after the loop evolution of an open system, there may be edge
modes present at different quasienergy values, which leads to
a richer set of possible topological phases.

The utility of studying loops becomes evident when we
consider an end point unitary for a closed system that can be
expressed as U (T ) = exp(−iHF T ), where HF is a static and
local Hamiltonian. If this is the case, then we can continuously
deform the unitary evolution into a composition of unitaries of
the form U = C ∗ L, where L is a loop and C is the evolution
due to the static Hamiltonian HF . We define the composition
of two unitaries U1 ∗ U2 in the usual way, as the complete
evolution due to U1 followed by the complete evolution due
to U2, with both components appropriately rescaled so that

the evolution runs from t = 0 to t = T (see Ref. [50] for an
explicit construction).

If the closed system unitary U (t) results from the evolution
due to the time-dependent Hamiltonian H (t), and has the end-
point form U (T ) = exp(−iHF T ), the continuous deformation
into the decomposed form U = C ∗ L may be obtained
through the homotopy Hamiltonian

H ′(t,s) =

⎧⎪⎨
⎪⎩

+2HF s, 0 � t � T s/2,

−4HF s, T s/2 � t � 3sT /4,

H
(

t−3sT /4)
1−3s/4

)
, 3sT /4 � t � T .

(2)

When s = 0, this Hamiltonian generates the original U (t),
but when s = 1, the first half of the evolution is a constant
(scaled) evolution corresponding to HF , and the second
half of the evolution corresponds to a loop L(t).1 The
end point of the evolution remains fixed throughout. In a
noninteracting system, this unitary decomposition leads to a
rigorous classification of unitary evolutions [50].

In an open system, the unitary evolution will differ from
that of the closed system at the edge, giving rise to an effective
edge unitary. Notably, for a nontrivial state, it may not be
possible to write the endpoint unitary for the open system
as Uo(T ) = exp (−iHo

F T ) for a local, symmetry-preserving
Hamiltonian Ho

F : some terms could connect sites at the two
edges of the chain. In this case, following the decomposition
of Eq. (2), the open system unitary takes the form Uo(T ) =
Ueff exp (−iHo

F T ), where Ueff is the effective edge unitary that
derives from the loop component of the evolution.

Edge unitaries of loops have some special properties, as we
shall see below, and these are likely to persist when the loops
are followed by unitaries with local integrals of motion. When
the constant Hamiltonian is MBL, the SPT classification of
1D ground states [12,16–18] can be extended to all eigenstates
[33,34] with detectable consequences [34,35].2 The effective
edge unitary of a loop followed by a constant MBL Hamil-
tonian of some SPT phase will not in general have the direct
product structure of bulk times edge. However, it is likely that
the edge modes of the loop will continue to have some ob-
servable signatures, such as those considered in Ref. [35]. The
classification of possible phases of such systems, as obtained
from studying the distinct edge unitaries, then has a natural
product structure n(L) × H 2(G,U (1)) where the second factor
originates from the usual static classification of SPT phases
[7,10] and the first factor counts the number of distinct loops.

Since the constant evolution component is well understood,
we will focus our study on loops. As noticed previously,
generic Floquet systems driven with interacting Hamiltonians
suffer from heating, and this is certainly true for loops, which
are featureless and hence, already at infinite temperature.
However, one can construct an MBL Floquet drive which
avoids this problem by pairing a loop with a constant MBL
Hamiltonian. More generally, loops are of interest and may be

1We assume in this article that the constant evolution precedes the
loop evolution in the decomposition of a general unitary. Similar
arguments may be obtained using the opposite ordering.

2We note, however, that robust edges may also exist for systems
without MBL [64].
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defined even in systems without MBL. In this work we restrict
ourselves to one dimension where progress can be made most
easily. We study nontrivial loops in a variety of contexts and
characterize them by bulk topological invariants.

III. CLASS D SYSTEMS

To motivate the ideas described in this paper, we begin
by studying the example of class D free fermionic systems
[43,44]. These have a simple description in terms of noninter-
acting Majorana fermions, and allow us to develop the intuition
required for the many-body picture that we will use in later
sections.

A. Single-particle picture

As motivated in Sec. II, we will focus on forming nontrivial
unitary loops, which will in turn allow us to generate systems
with dynamical topological order that are unique to time-
dependent systems. In a free-fermion system, loops of this kind
can always be generated by evolving with a nontrivial, flat-
band SPT Hamiltonian for the first half of a cycle, and a trivial,
flat-band Hamiltonian for the remainder of the cycle. We will
illustrate this construction with a specific example below.

A general class D Hamiltonian may be written in terms of
Majorana fermions [65] as

H = i

4

∑
ij

γiAij γj , (3)

where γ
†
i = γi are Majorana fermions and Aij is an anti-

symmetric matrix. In the static system, this Hamiltonian is
classified by studying the symmetric momentum points k = 0
and k = π , about which the Hamiltonian has the full symmetry
of class D. By considering the appropriate homotopy groups,
it can be shown that static systems in class D have a twofold
classification described by an element of Z2 [65].

In the Floquet case we form (and define) the Majorana uni-
tary evolution operator through O(t) = T exp (

∫ t

0 Aij (t ′)dt ′).
Since Aij is antisymmetric, and O(0) is the identity, we see
that O(t) belongs to the special orthogonal group SO(2n), if
2n is the number of bands in the BdG Hamiltonian.

We can classify the Floquet loop by again studying the
behavior at the symmetric momentum points k = 0 and k = π .
Since we are considering loops, O(t) must end at the identity
matrix, and so the classification is given by the fundamental
group π1(SO(2n)), which for n > 1 is Z2. We see that there is
a Z2 invariant associated with both k = 0 and k = π , yielding
four possible phases in total. The set of loops is therefore
classified by (e1,e2) ∈ Z2 × Z2 for n > 1, with each ei taking
values from {0,1}.

The topological invariant that determines the existence (or
lack) of nontrivial boundary modes for an open system is given
by the sum (modulo 2) e1 + e2 ∈ Z2. The extra Z2 element,
which does not correspond to the edge modes, may be regarded
as a weak topological invariant of the drive.3 The nontrivial

3Note that for n = 1, the classification of loops is Z × Z, but the Z2

invariant that describes the edge is still given by (e1 + e2) mod 2.

Floquet loop is characterized by a single Majorana π mode
in the open system, which, in the absence of additional static
SPT order, is also accompanied by a Majorana zero mode. For
a unitary evolution that is not a loop, there may also be edge
mode contributions from a subsequent constant Hamiltonian
evolution, as described in Sec. II.

We now illustrate these ideas by describing a specific
model in class D, with further details given in Appendix A.
We consider a one-dimensional fermionic chain of length
K that has a two-state Hilbert space at each site, with the
corresponding annihilation operators on site j being aj and
bj .4 Following Kitaev [65], we can define two sets of Majorana
operators through

γ a
2j−1 = aj + a

†
j , γ a

2j = aj − a
†
j

i
,

γ b
2j−1 = bj + b

†
j , γ b

2j = bj − b
†
j

i
, (4)

which satisfy γ † = γ . Let

H1a = −
∑

j

(
a
†
j aj − 1

2

)
= − i

2

∑
j

(
γ a

2j−1γ
a
2j

)
,

H2a = 1

2

∑
j

(−a
†
j aj+1 − a

†
j+1aj + ajaj+1 + a

†
j+1a

†
j )

= i

2

∑
j

(
γ a

2j γ
a
2j+1

)
, (5)

with H1b,H2b defined identically in terms of the b operators
and γ b Majoranas. H1a and H2a , respectively, correspond to the
trivial and nontrivial phases of the 1D class D superconductor.

We now evolve the system with H1 = H1a + 2H1b for 0 �
t � π and with H2 = H2a + 2H2b for π � t � 2π . We notice
that for an open system, H2a and H2b each have Majorana
edge modes. The evolution by the trivial Hamiltonian H1a

pushes the Majorana mode of subsystem a to quasienergy
ε = π , while the Majorana mode of subsystem b has been
pushed to quasienergy ε = 2π ≡ 0. Thus we see that at t = π

a Majorana mode at both zero and π emerge, which persist
until the end of the evolution. On the other hand, evolving the
closed system until t = 2π leads to a unitary that is the identity
(up to an overall phase factor). In this way, the two-part drive
described by Hamiltonians H1 and H2 produces a nontrivial
unitary loop with dynamical SPT order.

This order is manifested in the properties of the unitary
evolution operator. At the end of the loop, the unitary describ-
ing the closed system differs from the unitary describing the
open system through terms that act at the ends of the chain. In
the Majorana language, it is clear that the term i

2γ a
2Kγ a

1 from
H2a and the term i

2γ b
2Kγ b

1 from H2b cannot act in the open
system, since they would connect the two edges. If we define

4We choose a two-state Hilbert space so that the resulting phase
has nontrivial dynamical SPT order but trivial static SPT order. This
requires a Majorana mode at ε = 0 and a Majorana mode at ε = π .
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new fermion operators through

d = 1
2

(
γ a

2K + iγ a
1

)
, d† = 1

2

(
γ a

2K − iγ a
1

)
,

e = 1
2

(
γ b

2K + iγ b
1

)
, e† = 1

2

(
γ b

2K − iγ b
1

)
, (6)

we see that the open and closed unitary operators (Uop and Ucl,
respectively) are related through

Uop(2π ) = e[− π
2 (γ a

2Kγ a
1 +2γ b

2Kγ b
1 )]Ucl(2π )

= e[ iπ
2 (d†d−dd†)+iπ (e†e−ee†)]Ucl(2π ), (7)

where Ucl(2π ) is the identity up to some overall phase factor.
The details of this calculation are presented in Appendix A.
Thus we see that the effective unitary at the edge is

Ueff(2π ) = e[ iπ
2 (d†d−dd†)+iπ (e†e−ee†)], (8)

where the second term in the exponent merely provides an
overall factor of −1.

We will use the concept of an effective edge unitary
throughout this article to discuss topological order and define
invariants. We will be particularly interested in its behavior
under the symmetry transformations of the relevant group G,
which for class D is fermion parity. We denote the parity
operator by P̂ , which can be expressed as a product of the
on-site parity operators of all sites, P̂ = ∏

j P̂j , with P̂j =
(−iγ a

2j−1γ
a
2j )(−iγ b

2j−1γ
b
2j ). Now, if we define an effective

parity operator P̂L at the left edge of the open chain, which is
a product over a finite set of on-site parities in the vicinity of
this edge, then for the effective edge unitary in Eq. (8), we find

{P̂L,Ueff} = 0. (9)

For a trivial effective edge unitary, we would instead find
[P̂L,Ueff] = 0.

In the discussion above, we have considered a specific
model Hamiltonian, whose unitary evolution exhibits clear
signatures of the underlying dynamical SPT order. While this
model was chosen for its simplicity, the resulting signatures
will apply more generally. First, a Majorana π mode will exist
at any point after a dynamical phase transition has occurred
(until another equivalent phase transition occurs). In the model
considered here, the existence of the π mode could be shown
analytically at the special point t = π . At other times, and for
more general models, the presence of a Majorana π mode may
be inferred from the properties of the many-body spectrum,
which we discuss below in Sec. III B 3.

We may also consider perturbing the system with a local
(short-range) Hamiltonian HL, which acts near the left edge at
the end of the loop (and which hence commutes with a suitably
defined P̂L). After time t , the effective edge Hamiltonian will
have evolved to U ′

eff = e−iHLtUeff . However, it is clear that the
new effective unitary still satisfies {P̂L,U ′

eff} = 0. In this way,
the effective edge unitary is characterized by its commutation
or anticommutation properties with the parity operator P̂L, and
is robust under local perturbations that preserve symmetry.

We can also consider threading a π flux through the closed
system, and the effects of this will provide another signature
of the SPT order which is robust to perturbations. By explicit
calculation, detailed in Appendix A, it can be shown that the
unitary of the closed system at the end of the cycle with flux

differs from the unitary without flux by an overall factor of
eiπ . We write this relationship as U0U

†
π = eiπI.

B. Many-body picture

We are now in a position to formulate the problem in a
many-body setting, returning to the general set of systems in
class D. Although we will at first not introduce any additional
interactions, we note that much of the discussion that follows
is applicable to both free and interacting systems. This is in
much the same way that the classification of static class D
free-fermion systems carries over to the interacting case [65].

1. Bulk invariant

To find a bulk invariant in the many-body picture, we
consider the unitary evolution corresponding to the general
Hamiltonian given in Eq. (3). A nontrivial Majorana Floquet
loop satisfying O(T ) = I corresponds to a fermionic unitary
loop satisfying U (T ) = −I. For a nontrivial evolution we
therefore see that U0(T )U †

π (T ) = eiπI, which agrees with our
findings for the specific model considered in the previous
section. For a trivial loop, the equivalent product yields
U0(T )U †

π (T ) = I, and so we can define the bulk invariant
k ∈ {0,1} ≡ Z2 of an interacting class D system through
U0(T )U †

π (T ) = eikπI. We expect this invariant to characterize
a loop even in the presence of parity-preserving interactions,
and we will argue that this is indeed the case below.

2. Edge picture

We found previously that a nontrivial unitary loop corre-
sponds to the appearance of a zero and a π Majorana mode in
the single-particle spectrum of an open system. In the many-
body spectrum, this is manifested as a twofold degeneracy
at every quasienergy, accompanied by a π degeneracy. By π

degeneracy, we mean that every state in the spectrum has a
counterpart separated by a quasienergy π , which differs only
by a boundary Majorana mode. This implies that there are two
states of differing parity at each energy, which we expect to
persist in the presence of parity-preserving interactions.

Without loss of generality we will restrict our discussion
to nontrivial loops that can be written as a two-part drive,
comprising evolution by a trivial Hamiltonian followed by
evolution by an SPT Hamiltonian (more general unitary loops
can be considered as compositions of such two-part drives).
In these cases, the unitary for the closed system is the identity
(up to a phase), while the nontrivial behavior at the edge of
the open system can be captured by an effective unitary of the
form given in Eq. (8),

Ueff = e[ iπ
2 (d†d−dd†)+iπ(e†e−ee†)]. (10)

In the general interacting case, the operators d and e can be
many-body fermion operators that depend nontrivially on the
operators of the original Hamiltonian, but which transform
under parity in the same way as in the single-particle case.
We regard the π - and 0-Majorana modes as arising out of a
dynamical phase transition that does not change the static SPT
order of the system.
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3. Phase transitions

We now consider the phase transitions that must accompany
changes in the dynamical topological order of the system.
Formally, we note that a single unitary evolution U (t) for
t � T can also be regarded as a family of unitaries U ′(t,s)
with

U ′(t,s) = U (st)

for st � T and where s is continuously varied.
If, as in the model system above, the closed system unitary

U ′(T ,s) can be expressed as the exponent of a natural Floquet
Hamiltonian for values of s excluding some point sc, but the
open system unitary does not have such a natural Floquet
Hamiltonian expression for s > sc, then we may regard this as
a phase transition of the unitary that occurs at sc. The transition
point U ′(T ,sc) is then equivalent to U (T/sc). We will loosely
refer to this as the existence of a critical point in the original
Floquet evolution U (t) at the point t = T/sc ≡ tc. In other
words, we assume that for t > tc the open system unitary takes
the form Uo(t > tc) = Ueff exp(−iHo

F t), with the dynamical
order characterized by the effective edge unitary Ueff .

We assume that the system undergoes such a transition at
t = tc, and consider the instantaneous many-body quasienergy
spectrum of U (t) across tc. A similar approach was used
to study Floquet transitions in the noninteracting case in
Ref. [48]. We assume that the static SPT order of the
eigenstates of the unitary evolution operators before and after
the transition is trivial, so that there are no Majorana modes
before tc and one Majorana mode each at zero and π after tc.
For simplicity we will also assume that there are no other phase
transitions during the evolution. These assumptions suggest
that there is no difference between the closed and open systems
for t < tc, since in this region the evolution is topologically
trivial.

At the transition point tc, the emergence of Majoranas
is associated with a bulk (0,π ) transition, where each bulk
eigenstate |ψ〉 becomes part of a multiplet of four states that
may be written {|ψ〉,d†|ψ〉,e†|ψ〉,d†e†|ψ〉} after the transition.
If two of these states have many-body quasienergy ε(tc), the
other two have quasienergy ε(tc) + π (modulo 2π ). The two
states in each pair have opposite parity. This degeneracy pattern
in the many-body spectrum will persist until another phase
transition occurs.

We now consider what happens in the open system if
we reconnect the edges at some point just beyond tc with a
Hamiltonian of the form

H ′ = hd (d†d − dd†) + he(e†e − ee†). (11)

The effective edge unitary at time t > tc is then given by

U ′
eff(t) = e[ iπ

2 (d†d−dd†)−i(t−tc)hd (d†d−dd†)]

× e[iπ(e†e−ee†)−i(t−tc)he(e†e−ee†)], (12)

which is the effective unitary from Eq. (10) multiplied by
the evolution due to the edge-closing Hamiltonian, Eq. (11).
We note that if we close the system with antiperiodic
boundary conditions, the sign of the coefficients hd and he

changes relative to closing the system with periodic boundary

FIG. 1. Schematic splitting of a Majorana multiplet at a (0,π )-
phase transition as the system is closed with (a) periodic and
(b) antiperiodic boundary conditions. Blue lines correspond to states
with even parity, while red lines correspond to states with odd parity.
Spectrum (b) can be obtained from spectrum (a) through a shift by
π . See main text for details.

conditions. This allows us to make the following statements
about the spectrum immediately after tc:

(1) In the system with a π flux (which is equivalent to
imposing antiperiodic boundary conditions), the spectrum
after tc may be obtained from the system with zero flux by
shifting the entire spectrum by π .

(2) If the zero flux spectrum is shifted in this way, then
states are mapped onto states with the same parity.

(3) If he �= 0, there is a parity shift in the ground state (or
any other particular state) of the multiplet in the system with
flux.

These spectral features will arise in a generic class D
system with dynamical SPT order. In Fig. 1 we show the
splitting of the multiplet schematically for both periodic
and antiperiodic boundary conditions, assuming the complete
evolution forms a unitary loop. We note that if there are no other
phase transitions, then Uπ (T )U †

0 (T ) = −I, demonstrating the
correspondence between the bulk invariant and the behavior
of the edge modes.

Finally, we note that a (0,π ) transition of this form can
be viewed as a fourfold energy level crossing in the folded
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quasienergy spectrum, which plots many-body quasienergy
values modulo π in the range 0 � ε(t) � π . Notably, ordinary
phase transitions would appear as pairwise crossings in both
the folded and the unfolded spectra.

IV. SYSTEMS WITH ZN × ZN SYMMETRY

Let us now consider Floquet phases of bosonic systems
that are symmetric under the group ZN × ZN , following a
similar strategy to the discussion of class D. We will first
construct appropriate flattened (in this context, integer-valued)
SPT and trivial Hamiltonians, which have useful properties
under time evolution. Constructing loops out of these, we will
find nontrivial topological phases where there are quasienergy
degeneracies at multiples of 2π/N , related to edge modes in
the open system.

In the static case, the group cohomology classification
predicts N different SPT phases, which we label by some
integer c ∈ {0,1,2, . . . ,N − 1}. As shown in Appendix B, we
can construct integer-valued SPT Hamiltonians Hc

a,b, defined
on a spin chain with K sites, which generate these static SPT
phases and which have the following properties under time
evolution: For a closed system,

U

(
2π

N

)
= e(− 2πi

N
Hc

a,b) = [V (To)]−a[V (Te)]−b, (13)

where To,Te are generators of the two ZN groups (corre-
sponding to odd or even sites), and V (To/e) are the global
unitary operators corresponding to To/e (defined explicitly in
Appendix B).

We can also form trivial Hamiltonians H triv
a,b which have the

property (for both open and closed systems) that

U

(
2π

N

)
= e(− 2πi

N
H triv

a,b ) = [V (To)]−a[V (Te)]−b. (14)

By construction, we can form a loop by evolving the system
in time with the Hamiltonian

H (t) =
{

−Hc
a,b for 0 � t � 2π/N,

−H triv
ā,b̄

for 2π/N � t � 4π/N,
(15)

where ā = N − a is the inverse element of a. Choosing c = 1
(we drop the superscript c for the rest of this section), we find
that the result of this evolution for an open system is described
by the effective edge unitary

Ueff = exp

[
−i

2π

N
(aH1 + bHK )

]
, (16)

where H1 and HK are operators acting on the two ends of the
open system, whose explicit form is given in Appendix B.
Then, every state in the open system with quasienergy ε

is accompanied by states that differ by edge modes and
which have quasienergies ε + 2π (k1a/N + k2b/N ), where
k1/2 ∈ {1,2, . . . N − 1}. This is a signature of the topological
phase that will appear in the many-body spectrum.

Analogous to the class D discussion, we may also consider
the effect of twisting the boundary conditions of the closed
system. In our model, the effect of To-twisted boundary
conditions can be realized by transforming the operators

H1,HK by H1 → X1H1X
†
1,HK → X1HKX

†
1, where X1 is the

unitary operator corresponding to the symmetry To at site 1.
We now consider evolving the open system until t = 4π/N ,

before reconnecting the ends of the chain with an operator H ′.
The effective unitary at the edge after this point is then given
by

U ′
eff(t) = e[−i(t−4π/N)H ′]e[− 2iπ

N
(aH1+bHK )]. (17)

On the other hand, if we reconnect the system with To-
twisted boundary conditions, the Hamiltonian H ′ changes to
H ′ → X1H

′X†
1 and the resulting effective unitary changes to

U ′
eff(t) → UTo

(t) where

UTo
(t) = X1e

[−i(t−4π/N)H ′]X
†
1e

[− 2iπ
N

(aH1+bHK )]. (18)

Since det(X1) is nonvanishing, and

X
†
1HKX1 = HK − I + NP0, (19)

where P0 is the zero-energy subspace of HK , we see that UTo
(t)

has the same spectrum as

ŨTo
(t) = e[−i(t−4π/N)H ′]e{− 2iπ

N
[aH1+b(HK−I)]}, (20)

which is shifted by a phase 2πb/N compared to the untwisted
unitary operator. Similarly, under Te-twisted boundary con-
ditions, the spectrum of the effective unitary is shifted by
2πa/N , and a general effective unitary may be characterized
by these phases.

A related calculation tells us that evolving the closed system
through the entire loop with To-twisted boundary conditions
gives a unitary e2iπb/NI, while evolving with Te-twisted
boundary conditions gives a unitary e2iπa/NI. As we will argue
in the next section, these phases define a bulk topological
invariant of the evolution. Since there are N possible values
for each phase, there are a total of N2 distinct unitary loops,
corresponding to N2 distinct topological phases.

V. GENERAL ABELIAN GROUPS

For a general finite Abelian group with p factors, G =
Zn1 × Zn2 × · · · × Znp

, we follow the same strategy as before
to construct models for loops with dynamical topological
order. We first form an expanded group G′, which contains G

as a subgroup, for which a nontrivial SPT can be constructed
whose ground state multiplet contains states that can be labeled
by all the irreducible representations of the group G.

SPTs in one dimension are classified by the second
cohomology group H 2(G,U (1)). Using the result [66]

H 2(G,U (1)) ∼=
∏

1�j<k�p

Z(nj ,nk ), (21)

where (nj ,nk) indicates the highest common factor of nj and
nk , we see that the group G′ = Zn1 × Zn2 × · · · × Znp

× Zñ,
where ñ is the lowest common multiple (LCM) of the set
{n1, . . . ,np}, has SPT states with ground state multiplets
that contain all the irreducible representations of G. When
coupled with appropriate trivial Hamiltonians to form loops,
in much the same way as in the ZN × ZN case, these lead
to systems whose effective edge unitaries for evolution on an
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open chain can be characterized by the phases {αj }, where each
αj labels an irreducible representation of Tj , the generator
corresponding to the group factor Znj

. These models are
characterized by a set of robust edge modes in the open system,
which can be described by an effective edge unitary Ueff . For
a loop, since HF = 0, this implies that U = Ueff .

Following our previous discussion, we introduce twisted
boundary conditions as follows: first imagine cutting a closed
chain at some site, and labeling the two edges L and R. There
exists a set of terms in the Hamiltonian for the closed chain
that connect the two edges L and R, whose sum we label
by Hedge. For each generator Tj , there is then an operator
XL,j = ∏

i∈L Vi(Tj ), which is a product over the on-site
unitary operators corresponding to Tj over a finite set of
sites on the left edge, such that the effect of the twisted
boundary conditions is equivalent to transforming Hedge as
Hedge → XL,jHedge(XL,j )†.

A. Effective edge unitaries and spectral shift

For the models we have just introduced, one can show,
generalizing the arguments of the ZN × ZN case, that the
effective edge unitaries satisfy the property

(XL,j )†UeffXL,j = eiαj Ueff . (22)

We will argue below that this property is true more generally:
Any effective edge unitary of a loop must satisfy an equation
of the form of Eq. (22) for some XL,j which has support only
at the left edge.

Equation (22) implies that if ε is a quasienergy of Ueff , then
so too is ε + nαj , for any integer n. Furthermore, we see that
αj must in general be a multiple of 2π/nj , where nj is the
size of the Abelian group associated with Tj , for any Ueff that
satisfies Eq. (22). We can label an effective unitary by the set
of phases {αj } it is multiplied by under transformation with
the {XL,j }, writing Ueff({αj }). We can thus obtain a distinct
Ueff for every irreducible representation of the group G. The
operator Ueff must also commute with V (Tj ) = ∏

i Vi(Tj ) for
any j , where the product is now over all sites.

Let us now study the implications of the effective unitary
for the system. Suppose the effective edge unitary at some
time is Ueff . We then consider connecting the system at at this
point and evolving it for an infinitesimal time t . The resulting
evolution is captured by the transformation Ueff → e−iH ′tUeff ,
where H ′ is a Hamiltonian that has support on both L and R.

The effect of carrying out the same process with Tj -
periodic boundary conditions is Ueff → XL,j e

−iH ′tX
†
L,jUeff .

From Eq. (22), this has the same spectrum as e−iH ′tUeff but
is shifted by αj . Since the unitary of the full open system can
be written as Uo(T ) = Ueff exp (−iHo

F T ), the spectrum of the
full system under Tj -periodic boundary conditions is shifted
relative to the untwisted case by αj .

Now consider the effect of perturbing the system with
some local (short-ranged) term (with support only on L),
described by Hamiltonian HL. At time t after the perturbation
is applied, the effective unitary Ueff has evolved to U ′

eff =
exp(−iHLt)Ueff . Since HL is symmetric under V (Tj ) =∏

i Vi(Tj ), then V (Tj )e−iHLt [V (Tj )]† = e−iHLt . However,

since HL only has support on L, we see that

V (Tj )e−iHLt [V (Tj )]† = XL,j e
−iHLtX

†
L,j

= e−iHLt . (23)

It follows that
X

†
L,jU

′
effXL,j = eiαj U ′

eff . (24)

Thus we see that the defining property of the effective unitary
[given in Eq. (22)] is stable against local perturbations.

B. Phase transitions

Suppose we have a unitary evolution such that for some
range of times t , the system can be described by effective
edge unitaries Ueff({αj },t) [and instantaneous bulk Floquet
Hamiltonians HF (t)] such that the effective edge unitary is
nontrivial at some time t1 and trivial at a later time t2. As we
now argue, a bulk phase transition must then have occurred at
some point tc between t1 and t2.5

We first consider evolving the open system until time t1,
before connecting the edges of the system and evolving it
further for an infinitesimal time δ, with both Tj -twisted and
regular boundary conditions. It follows that the spectrum of
the transformed edge unitary at t1 + δ in the twisted case is
shifted by αj relative to the untwisted case. On the other hand,
if we evolve the open system until t2, and then again evolve
it for an infinitesimal time δ, closing with twisted and regular
boundary conditions, there is no relative spectral shift between
the two boundary conditions.

This change in the boundary behavior implies a bulk phase
transition at some point tc between these two times, where by
continuity, the bulk spectrum at tc is symmetric under shifts
by αj . At the phase transition point, the edge modes at the two
ends of the open system are connected through bulk modes.
This transition is of the type nontrivial to trivial, but it is clear
that a similar process occurs for transitions of the type trivial
to nontrivial. At a phase transition where a nontrivial Ueff

characterized by {αj } appears or disappears, there must be bulk
modes that are in one-to-one correspondence with, and which
have the same spectral gaps as, the edge modes represented
by U ({αj }). From our previous discussion following Eq. (22),
eigenstates of the bulk spectrum at the phase transition point
must be accompanied by other modes at quasienergies which
are nαj apart. In general we may consider phase transitions of
the type {αj } → {βj } by decomposing them into sequences of
phase transitions of the type considered above.

C. Bulk topological invariant

We now consider evolving the closed system through a loop
so that the unitary evolution operator at the end of the evolution
is I up to a phase factor eiφ , which we take to be 1 without
loss of generality below. If we now evolve the same system
with Tj -twisted boundary conditions, then we claim that the

5We are considering the idealized situation of a phase transition
occurring at a single point. More generally, extended states may
persist for some interval of time, but our discussion can be easily
extended to this more general case.
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unitary operator at the end of the evolution has to be of the
form eiθj I.

To see this, consider the following argument: theTj -twisted
periodic boundary conditions can be applied by transforming
the Hamiltonian term Hedge,i across a particular link i of the
closed chain as XL(i),jHedge,i(XL(i),j )†, where L(i) indicates
the left side of an edge cut at site i.

The Hamiltonians obtained by performing these transfor-
mations at different sites i of the chain are related by unitary
transformations. In the cases we consider, the unitary loop
can be regarded as a finite depth quantum circuit (or an LU
transformation) [10]. The effect of this transformation in a
sufficiently long chain at a particular site i must lead to
an effective unitary which is of the form Ui , where Ui acts
nontrivially only in the vicinity of i [67].

The unitary obtained by carrying out this transformation at
a distant site j , Uj , must be related to Ui through a unitary
transformation. Thus, Ui must be featureless and can only
contribute an overall phase—i.e., it must be of the form eiθj I.

Furthermore, introducing nj such twists at distant points
along the chain must have the same effect as introducing a
(Tj )nj twist, which brings us back to the untwisted case. Thus,
einθj = 1, and the discrete allowed values of θj imply that it
is a topological invariant that cannot change under continuous
deformations of the loop. Thus, the set {θj } may be used as
a bulk topological invariant for the dynamical phase of the
system. The number of distinct invariants is clearly equal to the
number of distinct irreducible representations of the group G.
It also follows that if we consider two loops with invariants {θj }
and {βj }, the loop obtained by running these unitary evolutions
in succession has an invariant {θj + βj }.

A similar argument can be used to confirm that for a general
unitary loop of fermions with class D symmetry U0U

†
π = eikπI

for integer k, as we found in Sec. III. For those systems, a π flux
insertion can be effected by the appropriate Peierls substitution
for a set of edge terms in the vicinity of some site i. Again, we
can argue as we did above that this leads to a unitary that differs
from that of the closed loop only in the vicinity of i and that this
difference must be an overall phase. To argue that the phase
must be an integer multiple of π , we note that introducing
2π flux brings us back to the case with no flux insertion and
that the phase accompanying the effective unitary must have
doubled compared to the π flux case.

D. Bulk-edge connection

Consider a unitary loop with bulk topological invariant {θj },
which we evolve as follows. We first evolve the system with
open boundary conditions along the entire loop. This leads to
some effective unitary Ueff at time T . We then reconnect the
edges with some Hamiltonian Hedge and evolve it for some
additional time T ′, such that the net unitary at T + T ′ is the
identity. This implies that

e−iHedgeT
′
Ueff = I. (25)

We may imagine a sequence of moves through which we
continuously deform the original loop of the closed system
to the above evolution, thus preserving the bulk invariant. If
we now consider the related evolution where we evolve it with
open boundary conditions until time T and with Tj -twisted

boundary conditions from time T to T + T ′, the unitary at the
end of the evolution must be

XL,j e
−iHedgeT

′
X

†
L,jUeff = eiθj I. (26)

This can be rewritten using Eq. (25) as

X
†
L,jUeffXL,j = eiθj Ueff, (27)

which has the same form as Eq. (22), with {θj } identified with
{αj }. This argument also shows us that any effective edge
unitary has to satisfy an equation of the form in Eq. (22), as
claimed before.

We can also use this thought experiment to confirm the
bulk-edge connection in the class D case. We imagine evolving
the system with open boundary conditions along the entire
loop, resulting in an effective unitary Ueff at time T . We then
reconnect it with some edge Hamiltonian Hedge, as in our
previous discussion, and evolve it until some further time T +
T ′ such that the final unitary of the entire evolution is the
identity, leading to the condition of Eq. (25). As before, we
argue that we can continuously deform the original evolution
of the closed system through the loop to the one just described.
The effect of redoing the evolution until T + T ′, but now with
π flux, must then lead to the unitary

PLe−iHedgeT
′
PLUeff = eikπe−iHedgeT

′
Ueff, (28)

where PL is a product of on-site parity operators on the left
edge of the system. This can be rearranged to give

PLUeffPL = eikπUeff, (29)

which shows that for a nontrivial loop, Ueff must satisfy Eq. (9)
and must commute with PL for a trivial loop.

VI. DISCUSSION

In this article we have considered the classification of
Abelian Floquet SPT phases in one dimension. Using systems
with class D symmetry as an intuitive example, we went
on to discuss bosonic SPT phases with ZN × ZN symmetry
and then, more generally, symmetry under any finite Abelian
group. Our approach was to consider unitary evolutions as a
composition of a constant Hamiltonian evolution with a loop.
The first component, being in one-to-one correspondence with
a static Hamiltonian, reproduced the classification scheme of
static SPT phases. More interesting dynamical SPT phases
could be obtained by constructing nontrivial loop evolutions.

In the cases discussed in this paper, we constructed explicit
models that could be used to generate such nontrivial loops,
and outlined how these models may be extended to more
general symmetry groups. The loop construction allowed us to
identify dynamical topological order by studying the behavior
at the ends of an open system, which we encoded in an
effective unitary that acted only at the edge. Effective edge
unitaries of this form are distinguished by a discrete set of
characteristic transformation properties that are protected from
local perturbations. This leads to a spectral pairing for the
many-body eigenstates provided the effective edge unitary
commutes with the unitary of the bulk, as one might expect
for MBL systems.

For closed systems, we argued that unitary loops could
only change by certain quantized phases under group-twisted
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boundary conditions. We interpreted these phases as bulk
invariants: robust quantities, stable under local perturbations,
that could be used to count and label the dynamical Floquet
SPT phases. The distinct sets of U (1) phases obtained under
such twists correspond to distinct one-dimensional irreducible
representations of the group. Moreover, these bulk invariants
were shown to be related to the effective edge unitary,
providing a bulk-edge correspondence in these systems. We
argued that invariants of this form can only change through
a bulk phase transition, and we enumerated the distinctive
properties and gap structures that arise in the quasienergy
spectrum at such points.

Overall, we expect that unitary evolutions protected by
symmetry G are classified according to the product n(L) ×
H 2(G,U (1)), where the second factor classifies the static
component, and the first factor classifies the loop component.
Distinct loop components are given by the different irreducible
representations of the group G. It is likely that the loop
construction would also permit the classification of dynamical
SPT phases under more general conditions than those dis-
cussed here. We leave a discussion of more exotic symmetries,
including higher dimensions, time-reversal symmetry, and
non-Abelian groups, to future work.

Finally, we note that our classification method and dis-
cussion differs from related work [61–63] in a number of
significant ways (the formulation in terms of loops, the
bulk invariants, the bulk-edge correspondence, and dynamical
phase transitions), although the counting of the phases is
consistent with these other results. Notably, the product
structure of our classification is reminiscent of the product
structure of the classification given in Refs. [62,63] for G

with unitary symmetries only. We expect these classes of SPT
phases to be in one-to-one correspondence.

Although we frame the discussion in the context of Floquet
systems, our approach does not require the system to be
time periodic. Rather, we consider the unitary evolution
due to a general time-dependent Hamiltonian, and study the
instantaneous topological order that may exist at a given point
in time. In order to obtain the loop component from a general
unitary evolution, we assumed that in the closed system, the
end-point unitary could be written as U (T ) = exp(−iHF T ),
with HF a static and local Hamiltonian. While this is likely
true for many systems exhibiting MBL, it may also hold
more generally. In this way, we did not need to explicitly
invoke ideas from MBL, although such considerations would
undoubtably be important in periodically driven systems.
Notably, experimental probes of SPT order, such as the
observation of persistent edge modes [34,35], would seem to
require MBL. We leave a discussion of these issues to future
work.

Note added. During the course of this work we became
aware of related works in Refs. [61–63], whose results are
consistent with those presented here.
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APPENDIX A: FURTHER DETAILS
ON THE CLASS D MODEL

In this Appendix we give additional details on the calcu-
lations outlined in Sec. III. We begin with the Hamiltonian
of Eq. (5), and consider the evolution described in the main
next. In the first part of the evolution, for 0 � t � π , the
Hamiltonians for open and closed systems are the same, and
the unitary evolution operator is given by

U
o/c

1 (π ) = exp

⎡
⎣−π

2

⎛
⎝ K∑

j=1

(
γ a

2j−1γ
a
2j

) + 2
K∑

j=1

(
γ b

2j−1γ
b
2j

)⎞⎠
⎤
⎦

=
K∏

j=1

(
γ a

2j−1γ
a
2j

)
,

where we have made use of the identity

exp[tγjγk] = cos (t) + sin (t)γjγk.

The second part of the evolution differs depending on whether
we are considering the closed or open system. For the closed
system, we find

Uc
2 (π ) = exp

⎡
⎣π

2

⎛
⎝ K∑

j=1

(
γ a

2j γ
a
2j+1

) + 2
K∑

j=1

(
γ b

2j γ
b
2j+1

)⎞⎠
⎤
⎦

=
K∏

j=1

(−γ a
2j γ

a
2j+1

)
,

while for the open system we find

Uo
2 (π ) =

K−1∏
j=1

(−γ a
2j γ

a
2j+1

)

≡ (
γ a

2Kγ a
1

) K∏
j=1

(−γ a
2j γ

a
2j+1

)
.

Then, for the complete closed loop, we obtain

Uc
2 (π )Uc

1 (π ) =
K∏

j=1

(−γ a
2j γ

a
2j+1

) K∏
j=1

(
γ a

2j−1γ
a
2j

)
= −1,

making use of the identity

2K−1∏
j=1

γj

2K−1∏
j=1

γj = (−1)K+1.

For the complete open loop, on the other hand, we obtain

Uo
2 (π )Uo

1 (π ) = −γ a
2Kγ a

1 ≡ Ueff(2π )Uc
2 (π )Uc

1 (π ).

It may be verified that Ueff(2π ) = γ a
2Kγ a

1 is equivalent to the
expressions given for the effective edge unitary in Eq. (8).

We now consider threading π flux through the closed
system as suggested at the end of Sec. III A. In the first part
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of the drive, this does not affect the unitary evolution, since
the Hamiltonian only consists of on-site terms. In the second
part of the drive, we implement the new boundary conditions
by changing the sign of the term that connects site K to site 1.
Specifically, the Hamiltonian for the second part of the drive
becomes

H̃2a = i

2

K−1∑
j=1

(
γ a

2j γ
a
2j+1

) − i

2
γ a

2Kγ a
1 ,

and similarly for H̃2b. This now corresponds to the unitary
evolution

Ũ c
2 (π ) = exp

⎡
⎣π

2

⎛
⎝K−1∑

j=1

(
γ a

2j γ
a
2j+1

) − γ a
2Kγ a

1

+ 2
K−1∑
j=1

(
γ b

2j γ
b
2j+1

) − 2γ a
2Kγ a

1

⎞
⎠

⎤
⎦

= −
K∏

j=1

(−γ a
2j γ

a
2j+1

)
.

Finally, for the complete closed loop, we obtain

Ũ c
2 (π )Uc

1 (π ) = −
K∏

j=1

(−γ a
2j γ

a
2j+1

) K∏
j=1

(
γ a

2j−1γ
a
2j

)
= +1,

which has an overall phase difference of eiπ compared to the
flux-free system.

APPENDIX B: INTEGER-VALUED SPT HAMILTONIANS
FOR SYSTEMS WITH ZN ×ZN SYMMETRY

In this Appendix we outline the construction of integer-
valued ZN × ZN SPT Hamiltonians. We start from the model
ZN × ZN Hamiltonians given in Ref. [68]. These consist of a
chain of ZN variables, divided into odd and even sites, which
have the on-site terms

Hi,c
o = − 1

2 {(Z†
i−1)cXi(Zi+1)c + H.c.},

H i,c
e = − 1

2 {(Zi−1)cXi(Z
†
i+1)c + H.c.}, (B1)

where o (e) stands for odd (even) sites. In these expressions,
Z and X are ZN generalizations of the Pauli sigma matrices,
given explicitly in Ref. [69]. Different values for c (modulo
N ) allow one to obtain the N different static SPT phases, and
the generators of the ZN × ZN symmetry are given by the
operators

V (To) =
∏
i∈o

Xi,

V (Te) =
∏
i∈e

Xi, (B2)

where To and Te are the generators of the global ZN

symmetries on the odd and even sites, respectively. We
emphasize that each term in Eq. (B1) commutes with any
other term with the same value of c, and that that these also
commute with the symmetry generators V (To),V (Te).

Each term H
i,c
o/e has eigenvalues

E = −1,−
(

ω + ω∗

2

)
,−

(
ω2 + (ω∗)2

2

)
, . . . , (B3)

where ω = e2πi/N is a root of unity. We can therefore rewrite
Hi,c

o as

Hi,c
o = −

[
P0,i + · · · + ωn + (ω∗)n

2
Pn,i + · · ·

]
, (B4)

and similarly for the even sites, where Pn,i is the projector to
the eigenstate subspace of Hi,c

o with eigenvalue −ωn+(ω∗)n

2 . It
is now possible to write down modified on-site terms through

H
i,c
int,o =

N−1∑
n=1

nPn,i , H
i,c
int,e =

N−1∑
n′=1

n′Pn′,i , (B5)

which each have integer eigenvalues E = 0,1, . . . ,N − 1.
The complete modified integer-valued Hamiltonians are

written

Hc
cl =

∑
i∈o

H
i,c
int,o +

∑
i∈e

H
i,c
int,e,

H c
op =

∑
i∈o

′
H

i,c
int,o +

∑
i∈e

′
H

i,c
int,e, (B6)

where the primes on the summations in the open system
indicate that the boundary terms (corresponding to i = 1
and i = K) should be excluded. Below, we will leave the
open/closed label implicit if the meaning is clear.

Since each term in the Hamiltonian commutes, we can
label each eigenstate of the system by its eigenvalues under
each H

i,c
int,o/e. For the closed system, we write a partic-

ular state as |λ1,λ2, . . . ,λK〉, where each λi takes values
from {0,1, . . . ,N − 1}. Since there are NK states and NK

eigenvalue combinations, every state is fully determined by
its labels. It is simple to verify that the state |{λi}〉 has
energy E{λi } = ∑

i λi and is transformed under the symmetry
generators according to

V (To)|{λi}〉 = e(2πi/N)
∑

i∈o λi |{λi}〉,
V (Te)|{λi}〉 = e(2πi/N)

∑
i∈e λi |{λi}〉. (B7)

In the open system, there are still NK states but only NK−2

eigenvalue combinations, since λ1 and λK are not specified.
This leaves an N2-fold degeneracy in every eigenstate of the
system. However, the degenerate states within a multiplet can
be labeled by their eigenvalues under the symmetry generators
V (To/e), which again take the possible values in ei2πso/e/N ,
with so/e ∈ {0,1, . . . ,N − 1}. We write the states of the open
system as |λ2, . . . ,λK−1; so,se〉.

More generally, we define a larger set of integer-valued
Hamiltonians through

Hc
a,b = a

∑
i∈o

H
i,c
int,o + b

∑
i∈e

H
i,c
int,o, (B8)

where (a,b) are integers taking the values {1,2, . . . ,N}. These
may describe either open or closed systems by refining the
range of the summations. We obtain the trivial integer-valued
Hamiltonian of this form by setting c = 0 through H triv

(a,b) =

125105-10
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H 0
(a,b),cl. Note this is the appropriate trivial Hamiltonian for

both open and closed chains, since trivial (on-site) boundary
terms exist in both types of system.

The Hamiltonians Hc
a,b have useful properties when used to

evolve a system in time. Acting on an eigenstate of the closed
system, we find U (t) has the action

e(−iH c
a,bt)|{λi}〉 = e(−iat

∑
i∈o λi−ibt

∑
i∈e λi)|{λi}〉. (B9)

After evolving through a time period t = 2π/N , we find the
unitary operator has the simple representation

U

(
2π

N

)
= [V (To)]−a[V (Te)]−b, (B10)

by comparison with Eq. (B7).

From these, we can construct useful unitaries by evolving
with a two-part Hamiltonian

H =
{−H

c1
a,b for 0 � t � 2π/N,

−H
c2

ā,b̄
for 2π

N
� t � 4π/N,

(B11)

where ā = N − a is the inverse integer to a in ZN . Unitaries
of this form are loops, since the closed system satisfies
U (4π/N ) = I, while the open system may host edge modes
at quasienergies that are multiples of 2π/N . For the specific
case of c1 = 1,c2 = 0, we find that the open system unitary at
the end of the loop affects the sites at the edge of the chain
through

U

(
4π

N

)
= exp

[
−i

2π

N
(aH1 + bHK )

]
. (B12)
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