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Efficiency bounds on thermoelectric transport in magnetic fields: The role of inelastic processes
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We examine the efficiency of an effective two-terminal thermoelectric device under broken time-reversal
symmetry. The setup is derived from a three-terminal thermoelectric device comprising a thermal terminal and
two electronic contacts, under a magnetic field. We find that breaking time-reversal symmetry in the presence of
the inelastic electron-phonon processes can significantly enhance the figure of merit for delivering electric power
by supplying heat from a phonon bath, beyond the one for producing the electric power by investing thermal
power from the electronic heat current. The efficiency of such a device is bounded by the non-negativity of the
entropy production of the original three-terminal junction. The efficiency at maximal power can be quite close to
the Carnot efficiency, but then the electric power vanishes.

DOI: 10.1103/PhysRevB.94.121402

Achieving high efficiencies in thermoelectric nanodevices
is one of the main goals of contemporary research on
nanostructural materials and setups [1–3]. It is well known that
the efficiency (the ratio of the output power to the invested one)
of a heat engine operating between two reservoirs is bounded
by the Carnot efficiency. This extreme efficiency is reached in a
quasistatic process which lasts for an infinite time and therefore
the extracted power vanishes. The maximal efficiency that can
be achieved by a heat engine delivering a finite electric power
in a two-terminal geometry is usually expressed in terms of
a single material- and setup-dependent parameter, called the
figure of merit, ζ . The larger the ζ , the higher the maximal
attainable efficiency can be. The possibility to significantly
enhance ζ of a nanostructure, and even to reach the limit of
reversibility by exploiting transmission resonances, has been
extensively discussed [4–6]; the maximal efficiency attained
at finite output powers [7] has been explored along similar
lines. A recent theoretical endeavor introduced the concept
of stochastic efficiencies, pertaining to strong fluctuations in
the efficiency of small systems (see, e.g., Refs. [8–11]). The
bound on this efficiency depends on the protocol by which the
long-time limit is reached.

Another promising route of research is the multiterminal
nanoscale heat engines [12,13], e.g., those built on coupled
quantum dots [14,15]. In contrast to the two-terminal geome-
try, where heat and charge are carried by the same particles, it
is possible in the three-terminal setups to spatially separate the
heat reservoir from the current circuit [14,16], thus improving
the functionality of the device. Here we explore the possibility
to supply heat from a nonelectronic source to produce electric
power, and examine the efficiency as compared to the one of a
conventional electronic two-terminal device.

The theoretical attempts to improve ζ [4–6] mostly pertain
to setups which are time-reversal symmetric. This means that
the matrix relating the fluxes (i.e., currents of particles and
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heat currents) to the thermodynamic driving forces (electric
voltages and temperature differences) is symmetric [17,18].
This matrix is composed of the Onsager coefficients, which
in the linear-response regime are independent of the driving
forces or the fluxes. An intriguing paper by Benenti et al. [19]
raised the possibility of manipulating the performance of
electronic thermoelectric devices by breaking time-reversal
symmetry. In fact, invoking solely the Onsager reciprocity
relations [17,18,20,21] and the non-negativeness of the entropy
production, Ref. [19] obtained the perplexing possibility of a
two-terminal (2T) device operating at the Carnot efficiency
while yielding a finite power. This result has been investigated
in the literature of not only the quantum thermoelectricity, but
also classical and quantum heat engines [22–24].

How can this claim be scrutinized? Time-reversal symmetry
can be broken by magnetic fields. However, the linear-
response Onsager coefficients of an electronic 2T device
without interactions, i.e., with only elastic scattering, must
be even functions of the magnetic field [25]. Thus, a pre-
requisite for this investigation is to find a realistic situation
in which the asymmetry of the Onsager coefficients can be
controlled. Here we respond to this challenge by adding
inelastic processes. Our system allows for the inspection
of the effect of a broken time-reversal symmetry in con-
junction with inelastic processes, on the power-harvesting
efficiency.

An effective two-terminal (E2T) setup can be constructed
from an all-electronic three-terminal (3T) device [26–28] (or
even from a multiterminal electronic junction [29]). This
proposal is based on the concept of probe terminals [30],
whose temperatures and chemical potentials can be adjusted
so as to cancel out the currents between those terminals and
the device. In this way the multiterminal setup is reduced
to an E2T one. Though breaking time-reversal symmetry can
enhance the efficiency of the E2T device, the unitarity of the 3T
scattering matrix imposes strong bounds on the efficiency of
the E2T, which are much lower than those of Refs. [19,27,28].
Adding more probe terminals can increase these bounds and
the resulting efficiency, but these still remain below those of
Refs. [19,29].
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The matrix of the Onsager coefficients can be asymmetric
when time-reversal symmetry is broken in the presence
of inelastic interactions [31], or electron-phonon ones as
considered here [32]. These interactions give rise to inelastic
processes between the conduction electrons and the phonons,
and those in turn imply the existence of thermal baths attached
to the junction that exchange energy (but not particles) with
the electronic system. Figure 1(a) illustrates a setup of this
type [32]: a nanostructure is attached to two electronic baths
held at chemical potentials μL and μR , and at temperatures
TL and TR , and is coupled to a third, thermal bath, held at
another temperature TP . There are three independent currents
flowing in this device, namely, the electric one between the
electronic baths, the electronic heat current between them, and
the phonon energy current. This setup becomes an E2T one
with asymmetric Onsager coefficients when, e.g., the driving
forces are chosen so that the electronic heat current is blocked.
In this way the device investigated in Ref. [19] is realized.

We find that while the entropy production of the 3T junction
can vanish, that of the E2T junction cannot, as long as the
magnetic field B is nonzero [33]. In other words, the E2T
device is dissipative as long as B �= 0, and its efficiency never
reaches the Carnot bound. Though the argument of Ref. [19]
is correct for the purely 2T setup, the upper bound on the
efficiency is reduced. However, this upper bound increases
with the strength of the electron-phonon interaction, and can
exceed that found for the 3T all-electronic junctions [27].

The entropy production of the nanostructure in Fig. 1(a) is

Ṡ = 〈ĖP 〉
TP

+ 〈ĖL〉 − μL〈ṄL〉
TL

+ 〈ĖR〉 − μR〈ṄR〉
TR

, (1)

where −〈ĖL(R,P )〉 is the energy current out of the left electronic
bath (right electronic bath, phonon bath) and −〈ṄL(R)〉 is

(a)

(b)

FIG. 1. Sketch (a) and simplified model (b) of a thermoelectric
device, comprising two electronic terminals (held at chemical
potentials μL and μR , and at temperatures TL and TR), and a thermal
terminal held at a temperature TP , with which the electrons exchange
energy. The nanostructure [central (gray) disk], placed in a magnetic
field B as in (a), is modeled by an Aharonov-Bohm ring threaded
by a magnetic flux � as in (b). The electrons exchange energy with
vibrational modes on a dot placed on the upper arm.

the particle current out of the left (right) electronic bath.
The particle number conservation, 〈ṄL + ṄR〉 = 0, uniquely
identifies the charge current, JL = −e〈ṄL〉 = e〈ṄR〉 (e is
the unit charge). In contrast, energy conservation, 〈ĖP +
ĖL + ĖR〉 = 0, does not yield unique identifications of the
energy currents [34]. Choosing TR as the reference, using
the electronic heat current emerging from the left electronic
bath [35], we have

J
Q
L = −〈ĖL〉 + μL〈ṄL〉, (2)

and the heat current between the thermal terminal and the
electrons, J

Q
P = −〈ĖP 〉, the entropy production becomes

TRṠ = V JL + δtelJ
Q
L + δte−pJ

Q
P . (3)

The driving forces are the voltage drop, V = (μL − μR)/e,
the (dimensionless) difference in the electronic temperatures,
δtel = 1 − TR/TL, and the temperature difference between the
phonon bath and the reference, δte−p = 1 − TR/TP .

We consider the model displayed in Fig. 1(b), in which
the nanostructure is an Aharonov-Bohm ring, threaded by
a magnetic flux �. The ring is attached to two electronic
reservoirs and carries a quantum dot on one of its arms; when
the electrons are on the quantum dot they interact with the
vibrational modes there. The latter are tightly coupled to a bath
of phonons which fixes their population [36]. In our simplified
model, the dot is replaced by a single localized electronic
level of energy ε0 and its vibrational modes are Einstein
phonons of frequency ω0; the electronic leads are assumed
to contain free electron gases. With γ denoting the coupling
energy of an electron with the vibrational modes, whose
creation (annihilation) operators are b† (b), and the creation
(annihilation) operators of the electron on the localized level
by c

†
0 (c0), the Hamiltonian (using � = 1) is

H = [ε0 + γ (b† + b)]c†0c0 + ω0

(
b†b + 1

2

)
+

∑
k

εkc
†
kck

+
∑

p

εpc†pcp +
∑

k

(Vkc
†
kc0 + H.c.)

+
∑

p

(Vpc†pc0 + H.c.) +
∑
k,p

(Vkpei�c
†
kcp + H.c.). (4)

The operators that create (annihilate) a conduction electron
in the left (right) lead, of energy εk(p), are c

†
k(p) (ck(p)). The

tunneling matrix elements between the localized level and the
left (right) electronic lead are denoted by Vk (Vp). The lower
arm of the ring in Fig. 1(b) connects the two leads with the
tunneling matrix element Vkp; the magnetic flux � (in units of
c/e) penetrating the ring is assigned to these elements. Since
the magnetic field giving rise to the Aharonov-Bohm effect is
usually small, one may neglect the tiny Zeeman effect on the
spins of the conduction electrons.

The charge and heat currents flowing through the ring
junction are found within the Keldysh formalism [37,38]. The
detailed calculation, carried out to the second order in the
coupling γ , is summarized in Ref. [32]. The charge current
emerging from the left electronic lead is expressed in terms of
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the electrons’ Green’s functions,

JL = −e〈ṄL〉 = −e
d〈∑k c

†
kck〉

dt
= −e

∫
dω

2π
JL(ω), (5)

where

JL(ω) =
∑

k

Vk[Gk0(ω) − G0k(ω)]<

+
∑
k,p

Vkp[e−i�Gkp(ω) − ei�Gpk(ω)]<. (6)

Here, G<
ab(ω) is the lesser Keldysh Green’s function [37],

which is the Fourier transform of G<
ab(t,t ′) = i〈c†b(t ′)ca(t)〉,

where a and b denote the relevant operators [0, k, or p; see
Eq. (4)]. The energy current emerging from the left electronic
lead is given by −〈ĖL〉 = d〈∑k εkc

†
kck〉/dt ; it attains the same

form as the charge current except for an extra factor ω in the
integrand in Eq. (5) (and without the electron’s charge e). The
energy current of the thermal terminal can be obtained from
〈ĖL + ĖR + ĖP 〉 = 0.

Once the Green’s functions are determined and inserted
into the expressions for the currents, one expands the latter to
linear order in the three driving forces, to obtain the Onsager
coefficients. The result can be presented in a matrix form,⎡⎢⎣JL

J
Q
L

J
Q
P

⎤⎥⎦ = M

⎡⎢⎣ V

δtel

δte−p

⎤⎥⎦, (7)

where M is the 3×3 matrix of the Onsager coefficients of
the device; its elements depend on the choice of the driving
forces [34]. Reference [32] presents the elements of the matrix
M for an arbitrary ring junction (i.e., that does not possess
any special spatial symmetries). All off-diagonal elements of
M contain terms odd in the magnetic flux (which obey the
Onsager reciprocity relations). Remarkably enough, all these
odd terms arise from inelastic processes in which the charge
carriers exchange energy (ω0) with the vibrational modes. All
elements of M also contain terms even in the flux; these arise
from elastic as well as inelastic processes of the transport
electrons [32]. In the absence of the coupling of the electrons
with the vibrational modes, the Onsager coefficients would be
even in the flux and M would be symmetric.

For a spatially symmetric junction, the matrix M is [32]

M =
⎡⎣ G SG 0

GS κ0 −P (1 + a)
0 −P (1 − a) 2P

⎤⎦, (8)

where a = τ0 sin �, which is odd in the magnetic field, and
τ0 is the transmission of the lower arm of the ring (assumed
for simplicity to be energy independent). In Eq. (8), G is the
electric conductance and S is the Seebeck coefficient; κ0 is the
“bare” thermal conductance of the electrons; i.e., for γ = 0,
the heat conductance of the electrons is κ0 − GS2. These three
coefficients, for the ring geometry of Fig. 1(b), are functions of
cos � [32]. The other three elements in M are due to inelastic
processes (and vanish at zero temperature),

P = ω2
0

∫
dω

π
Tp(ω,�), (9)

where Tp is the transmission of the inelastic processes,

Tp(ω,�) = βR

eβRω0 − 1
f (ω−)[1 − f (ω+)]c(ω,�). (10)

Here, f (ω) = {exp[βR(ω − μR)] + 1}−1 (recall that tempera-
tures and chemical potentials are measured with respect to the
right electronic lead), ω± = ω ± ω0/2,

c(ω,�) = γ 2

4
�(ω−)�(ω+)

∣∣Ga
00(ω−,�)Ga

00(ω+,�)
∣∣2

, (11)

� represents the width of the resonance on the dot due to the
coupling with the electronic leads, and Ga

00 is the advanced
Green’s function there in the absence of the coupling with the
vibrations; 2P � 0 is the heat conductance of the phonons,
proportional to γ 2, the electron-phonon coupling squared [32].

Inserting the explicit expressions for the currents [Eqs. (7)
and (8)] into Eq. (3), one finds that the entropy production of
the 3T device is non-negative, Ṡ � 0, for

κ0 − GS2 − P/2 � 0, i.e., 2κ0/P � 1 + ζ, (12)

where ζ = GS2/(κ0 − GS2) is the figure of merit of the
conventional electronic 2T device (see, e.g., Ref. [4]).

The electronic heat current J
Q
L can be blocked by choosing

δtel = − 1

κ0

[GSV − P (1 + a)δte−p]. (13)

The setup then becomes an E2T, in which electric power is
produced at the expense of thermal power from the phonon
bath. The matrix of the Onsager coefficients pertaining to
this configuration is not symmetric; that is, the off-diagonal
elements are not even in the magnetic field [39],[

JL

J
Q
P

]
=

[
G

1+ζ
PGS

κ0
(1 + a)

PGS
κ0

(1 − a) P 2

κ0
(ζmax + a2)

][
V

δte−p

]
, (14)

where ζmax = −1 + 2κ0/P is the upper bound on ζ , imposed
by the condition (12). The entropy production in the E2T
setup described by Eq. (14), which is proportional to JLV +
J

Q
P δte−p, is non-negative for

2κ0/P + a2 � 1 + ζ. (15)

The equality in Eq. (15) is what Benenti et al. [19] used in
discussing the possibility to achieve the Carnot efficiency at a
finite power. However, taking account of the 3T setup, which
is the background of the E2T device, implies that the stricter
inequality (12) must hold, and that the equality of Eq. (15) is
not achievable for a nonzero a = τ0 sin �. This means that as
long as the magnetic field [33] is finite, the entropy production
of the E2T junction cannot reach the reversible limit. Thus,
the Carnot bound is not reached, although the symmetry of the
E2T Onsager coefficients is broken.

The efficiency for producing electric power at the expense
of the phonons’ energy current, i.e., V � 0 and δte−p � 0, is

η = −V JL/J
Q
P . (16)

The electric power |V JL| is maximal at VMP = −δte−p(1 + ζ )
(1 + a)PS/(2κ0), and then the efficiency at the maximal power
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FIG. 2. The efficiency at maximal power of the E2T device
(scaled by the Carnot efficiency ηrev), Eq. (17), as a function of
the asymmetry parameter a, for ζmax = 10; ζ = 8 [the dashed (red)
curve], 9 [the dotted (green) curve], and 10 [the thick (blue) line].
The horizontal line is η(VMP,ζ = ζmax)/ηrev of the 2T junction.

is

η(VMP) = ηrev
(1 + a)2ζ/4

ζmax + a2 − (1 − a2)ζ/2
, (17)

where ηrev = δte−p is the Carnot efficiency, i.e., η(VMP; ζ =
ζmax,a = 0) = ηrev/2. Figure 2 displays η(VMP) of the E2T
device as a function of the symmetry breaking parameter
a for several values of ζ � ζmax = 10. The horizontal line
shows the maximal electronic 2T efficiency at maximal
power, ηmax(VMP)/ηrev = ζmax/(4 + 2ζmax). Interestingly, all
the graphs have a minimum, η(VMP) = 0, at a = −1 (destruc-
tive interference on the Aharonov-Bohm ring), and a maximum
at a = 1 for ζ < ζmax − 1 or at a = (2ζmax − ζ )/(2 + ζ )
for ζ > ζmax − 1. This maximal value reaches the Carnot
efficiency when ζ = ζmax → ∞, but then the power vanishes.
Remarkably enough, η(VMP) of the E2T is improved as the
asymmetry in the Onsager coefficients is increased (except
for a narrow region near ζmax) and as ζmax = 2κ0/P − 1
increases; at large enough ζ , the E2T device is more efficient
than the 2T electronic one and is significantly higher than
ηmax(VMP)/ηrev = 4/7, found in Ref. [27] for a = 1/7.

Another quantity of interest is the maximal value of the
efficiency Eq. (16), reached when the voltage is

VME

δte−p
= P (ζmax + a2)

GS(1 − a)

([
1 − (1 − a2)ζ

ζmax + a2

] 1
2

− 1

)
. (18)

This efficiency can be written in the form

η(VME) = ηrev[
√

1 + ζ̃ − 1]/[
√

1 + ζ̃ + 1], (19)

with the new figure of merit of the E2T device,

ζ̃ = ζ
(1 − a2)2/(ζmax + a2)

([1 − (1 − a2)ζ/(ζmax + a2)]
1
2 − a)2

. (20)

FIG. 3. The E2T figure of merit ζ̃ , Eq. (20) (scaled by the 2T one,
ζ ), as a function of a, for ζmax = 10; ζ = 8 [the dashed (red) curve],
9 [the dotted (green) curve], 9.5 [the thick (blue) line], 9.9 [the thin
(black) curve], and 9.95 [the thin dashed (black) curve]. Inset: The
range where ζ̃ /ζ crosses 1.

We plot ζ̃ /ζ as a function of a in Fig. 3, which shows that
ζ̃ can significantly exceed ζ of the 2T electronic device. As
for η(VMP), ζ̃ has a maximum at a certain positive a, which
grows and moves to smaller values of a as ζ increases. The
inset displays the region around ζ = ζ̃ . As seen, ζ̃ increasingly
exceeds ζ , making the E2T device better than the electronic
2T one.

In conclusion, we demonstrated that for our effective two-
terminal quantum device, breaking the time-reversal symmetry
yields efficiencies which can approach the Carnot efficiency,
but are always lower than it. It is not sufficient to consider only
the effective 2×2 Onsager matrix. Including the restrictions
from the entropy production of the underlying three-terminal
device one finds that the Carnot efficiency cannot be reached
with a nonvanishing power. The efficiency of our device can
exceed that in the 3T all-electronic device [27]. We conjecture
that similar restrictions apply to other effective two-terminal
devices, but a general proof remains a challenge for future
work. An experimental realization of our model could test the
predictions concerning the advantages of phonon heat source
over an electronic one for producing electricity, in particular
under the effect of a magnetic field.

Useful comments given by G. Benenti are gratefully
acknowledged. O.E.W. and A.A. acknowledge support from
the infrastructure program of the Israel Ministry of Science
and Technology under Contract No. 3-11173 and the kind
hospitality of the Institute of Industrial Science at the Uni-
versity of Tokyo. K.Y. is supported by the Advanced Leading
Graduate Course for Photon Science (ALPS), the University
of Tokyo, as well as by a Grant-in-Aid for Japan Society for the
Promotion of Science (JSPS) Fellows (Grant No. 16J11542).
N.H. is supported by Kakenhi Grants No. 15K05200, No.
15K05207, and No. 26400409 from the Japan Society for the
Promotion of Science.

121402-4



RAPID COMMUNICATIONS

EFFICIENCY BOUNDS ON THERMOELECTRIC TRANSPORT . . . PHYSICAL REVIEW B 94, 121402(R) (2016)

[1] M. S. Dresselhaus, G. Chen, M. Y. Tang. R. G. Yang, H. Lee,
D. Z. Wang, Z. F. Ren, J.-P. Fleurial, and P. Gogna,
New directions for low-dimensional thermoelectric materials,
Adv. Mater. 19, 1043 (2007).

[2] C. Vineis, A. Shakouri, A. Majumdar, and M. G. Kanatzidis,
Nanostructured thermoelectrics: Big efficiency gains from small
features, Adv. Mater. 22, 3970 (2010).

[3] A. Shakouri, Recent developments in semiconductor thermo-
electric physics and materials, Annu. Rev. Mater. Res. 41, 399
(2011).

[4] J. D. Mahan and J. O. Sofo, The best thermoelectric, Proc. Natl.
Acad. Sci. USA 93, 7436 (1996).

[5] T. E. Humphrey, R. Newbury, R. P. Taylor, and H. Linke,
Reversible Quantum Brownian Heat Engines for Electrons,
Phys. Rev. Lett. 89, 116801 (2002).

[6] T. E. Humphrey and H. Linke, Reversible Thermoelectric
Nanomaterials, Phys. Rev. Lett. 94, 096601 (2005).

[7] R. S. Whitney, Most Efficient Quantum Thermoelectric at Finite
Power Output, Phys. Rev. Lett. 112, 130601 (2014).

[8] M. Polettini, G. Verley, and M. Esposito, Efficiency Statistics at
All Times: Carnot Limit at Finite Power, Phys. Rev. Lett. 114,
050601 (2015).

[9] K. Proesmans, C. Driesen, B. Cleuren, and C. Van den Broeck,
Efficiency of single-particle engines, Phys. Rev. E 92, 032105
(2015).

[10] M. Esposito, M. A. Ochoa, and M. Galperin, Efficiency
fluctuations in quantum thermoelectric devices, Phys. Rev. B
91, 115417 (2015).

[11] Fluctuations of the efficiency were studied also in time-reversal-
broken systems; see J.-H. Jiang, B. K. Agarwalla, and D. Segal,
Efficiency Statistics and Bounds for Systems with Broken Time-
Reversal Symmetry, Phys. Rev. Lett. 115, 040601 (2015); B. K.
Agarwalla, J.-H. Jiang, and D. Segal, Full counting statistics
of vibrationally assisted electronic conduction: Transport and
fluctuations of thermoelectric efficiency, Phys. Rev. B 92,
245418 (2015).

[12] F. Mazza, R. Bosisio, G. Benenti, V. Giovannetti, R. Fazio, and
F. Taddei, Thermoelectric efficiency of three-terminal quantum
thermal machines, New J. Phys. 16, 085001 (2014).

[13] B. Szukiewicz, U. Eckern, and K. I. Wysokiński, Optimisation
of a three-terminal nonlinear heat nano-engine, New J. Phys. 18,
023050 (2016).

[14] H. Thierschmann, R. Sánchez, B. Sothmann, F. Arnold, C. Heyn,
W. Hansen, H. Buhmann, and L. W. Molenkamp, Three-terminal
energy harvester with coupled quantum dots, Nat. Nanotechnol.
10, 854 (2015).

[15] H. Thierschmann, R. Sánchez, B. Sothmann, H. Buhmann,
and L. W. Molenkamp, Thermoelectrics with Coulomb coupled
quantum dots, arXiv:1603.08900.

[16] F. Mazza, S. Valentini, R. Bosisio, G. Benenti, V. Giovannetti,
R. Fazio and F. Taddei, Separation of heat and charge currents
for boosted thermoelectric conversion, Phys. Rev. B 91, 245435
(2015).

[17] L. Onsager, Reciprocal relations in irreversible processes,
Phys. Rev. 38, 2265 (1931).

[18] H. B. G. Casimir, On Onsager’s principle of microscopic
reversibility, Rev. Mod. Phys. 17, 343 (1945).

[19] G. Benenti, K. Saito, and G. Casati, Thermodynamic Bounds on
Efficiency for Systems with Broken Time-Reversal Symmetry,
Phys. Rev. Lett. 106, 230602 (2011).

[20] For a recent experimental verification of the Onsager reci-
procity relations in thermoelectric quantum transport, see
J. Matthews, F. Battista, D. Sánchez, P. Samuelsson, and H.
Linke, Experimental verification of reciprocity relations in
quantum thermoelectric transport, Phys. Rev. B 90, 165428
(2014).

[21] For a generalization of the Onsager relations to include coherent
electron systems under adiabatic ac driving, see M. F. Ludovico
and L. Arrachea, Pumping charge with ac magnetic fluxes and
the dynamical breakdown of Onsager symmetry, Phys. Rev. B
87, 115408 (2013); M. F. Ludovico, F. Battista, F. von
Oppen, and L. Arrachea, Adiabatic response and quantum
thermoelectrics for ac-driven quantum systems, ibid. 93, 075136
(2016).

[22] K. Brandner, K. Saito, and U. Seifert, Thermodynamics of
Micro- and Nano-Systems Driven by Periodic Temperature
Variations, Phys. Rev. X 5, 031019 (2015).

[23] K. Proesmans, C. Van den Broeck, Onsager Coefficients in
Periodically Driven Systems, Phys. Rev. Lett. 115, 090601
(2015).

[24] N. Shiraishi, K. Saito, and H. Tasaki, Universal trade-off
relation between power and efficiency for heat engines,
arXiv:1605.00356.
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