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We consider determination of spin-orbit (SO) coupling constants for the two-dimensional electron gas from
measurements of electric properties in rotated in-plane magnetic field. Due to the SO coupling the electron
backscattering is accompanied by spin precession and spin mixing of the incident and reflected electron waves.
The competition of the external and SO-related magnetic fields produces a characteristic conductance dependence
on the in-plane magnetic field value and orientation which, in turn, allows for determination of the absolute value
of the effective spin-orbit coupling constant as well as the ratio of the Rashba and Dresselhaus SO contributions.
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Introduction. Charge carriers in semiconductor devices are
subject to spin-orbit (SO) interactions [1] stemming from the
anisotropy of the crystal lattice and/or the device structure.
The SO interactions translate the carrier motion into an
effective magnetic field leading to carrier spin relaxation
and dephasing [2–4], spin Hall effects [5–7], formation of
topological insulators [8], persistent spin helix states [9–11],
and Majorana fermions [12]. Moreover, the SO coupling paves
the way to spin-active devices, including spin filters based
on quantum point contacts (QPCs) [13] or spin transistors
[14–18], which exploit the precession of the electron spin in the
effective magnetic field [19]. The most popular playground for
studies of spin effects and construction of spin-active devices
is the two-dimensional electron gas (2DEG) confined at an
interface of an asymmetrically doped III-V heterostructure,
with a strong built-in electric field in the confinement layer
giving rise to the Rashba SO coupling [20] and with the
Dresselhaus coupling due to the anisotropy of the lattice which
is enhanced by a strong localization of the electron gas in the
growth direction [21].

The SO interaction is sample dependent and its character-
ization is of a basic importance for the description of spin-
related phenomena and devices. The SO coupling constants
are derived from the Shubnikov–de Haas [22–29] oscillations,
antilocalization in the magnetotransport [30], photocurrents
[31], or precession of optically polarized electron spins as
a function of their drift momentum [19]. Usually both the
Rashba and Dresselhaus interactions contribute to the overall
SO coupling. Separation of contributions of both types of
SO coupling is challenging and requires procedures based
on optical polarization of the electron spins [19,31,32]. In
this Rapid Communication we investigate the possibility for
extraction of the Rashba and Dresselhaus constants from a
purely electric measurement of the two-terminal conductance.
The proposed method does not involve application of optical
excitation [19,31] or a particularly complex gating [19]. The
procedure given below requires rotation of the sample in an
external in-plane magnetic field [33], which is straightforward
as compared to application of the rotated electric field to 2DEG
[19]. Also, the present approach is suitable for high mobility

samples and goes without analysis of the localization effects
in the magnetotransport [30].

The procedure which is proposed below is based on an idea
that the effects of the SO coupling related to the wave vector
component in the direction of the current flow can be excluded
by a properly oriented external in-plane magnetic field. The
procedure exploits spin effects of backscattering—due to
intentionally introduced potentials—or simply to intrinsic
imperfections within the sample. In particular, we show
that the linear conductance of a disordered sample reveals
an oscillatory behavior as a function of the magnetic field
direction and amplitude. The dependence allows one to
determine the strength of the SO interaction as compared to
the spin Zeeman effect as well as the relative strength of both
Rashba and Dresselhaus contributions.

Spin-dependent scattering model. Let us start from a simple
model of electron scattering (see Fig. 1). The electron is
injected to the system from, e.g., a QPC and comes to
the potential defect from the left. The defect is taken as
an infinite potential step, so that the scattering probability is
1. The incident and backscattered waves are denoted by |k+

σ 〉
where k±

σ stands for the absolute value of the wave vector for
the spin state σ and the superscript sign indicates the electron
incoming from the left (+) or backscattered (−). Only the
backscattering which returns the carriers to the QPC can alter
the conductance, so we consider the scattering wave function
along the line between the QPC and the defect

|�σ 〉 = eik+
σ r |k+

σ 〉 + �σ ′aσσ ′e−ik−
σ ′ r |k−

σ ′ 〉, (1)

where aσσ ′ stands for the scattering amplitudes.
Scattering at other angles does not decrease the conductance

and is neglected for a moment. Within the 2DEG, outside
the scattering center and the QPC channel the 2D electron
Hamiltonian for in-plane field B = (Bx,By,0) reads

H = EkinI + σx(αky − βkx + bx) + σy(βky − αkx + by),

(2)

where Ekin = �
2 k2

2meff
, bx/y = 1

2gμBBx/y , meff is the electron
effective mass, and α and β are the Rashba and Dresselhaus
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r=(0,0)

FIG. 1. Sketch of considered scattering process. The electron
wave is incoming from the left from a source (a QPC, for instance) in
spin state σ , propagates to the right and is backscattered at position
r = (0,0) by the potential barrier induced by the impurity.

constants. The spin Zeeman effect is introduced via Pauli
matrices σx/y and the Zeeman energy will be denoted below

by EB = 1
2gμB |B| =

√
b2

x + b2
y .

Note, that we use the symmetric gauge A = (Byz, − Bxz,0)
then by choosing the plane of the 2DEG confinement to be
located at z = 0, we get A = 0, and the magnetic field enters
the Hamiltonian only via the spin Zeeman term, i.e., the orbital
effects do not affect the electron transport.

Let us first neglect the Dresselhaus coupling (β = 0). Plane
wave solution for the eigenvalues of the Schrödinger equation
gives

Eσ = �
2k2

2meff
+ σ | p|, (3)

with σ = {+,−} denoting projections of the spin on the
direction of polarization p = (αky + bx,−αkx + by), and
eigenvectors

|k±
σ 〉 = 1√

2

(
1

σ
p±

x +ip±
y

p±

)
≡ 1√

2

(
1

σeiφ(k±
σ ,B)

)
, (4)

for the incident (+) and backscattered (−) directions of the
electron motion with p± = | p±|. Due to the assumed infinite
scattering potential, the wave function in Eq. (1) has to vanish
at r = 0 (see Fig. 1), �σ (r = 0) = |k+

σ 〉 + �σ ′aσσ ′ |k−
σ ′ 〉 = 0,

hence

aσσ ′ = −σ ′ σeiφ(k+
σ ,B) + σ ′eiφ(k−

−σ ′ ,B)

eiφ(k−
+,B) + eiφ(k−

−,B)
. (5)

In the following we use In0.5Ga0.5As material parameters
with m = 0.0465m0, Landé factor g = 9, and the Fermi
energy EF = 20 meV. For the bulk Rashba [34] constant
α3D = 57.2 Å2, the 2D value is α = α3DFz, where Fz is the
electric field in the growth direction. The Rashba constant can
be controlled by the external voltages [22] and for In0.5Ga0.5As
SO coupling constants of the order of 5–10 meV nm [22] were
recorded.

In Fig. 2(a) we present the scattering amplitudes aσσ ′

obtained from Eq. (5) as a function of the direction of
the magnetic field B = [B cos(θ ),B sin(θ )], with B = 5 T
for scattering along the x direction, k = (kx,0). Note that
for the magnetic field oriented in the y direction θ = π/2,
i.e., for B = (0,By) the diagonal elements of the scattering
amplitudes are zero. This is a special case for which the
spinor in Eq. (4) can be written in the form |k±

σ 〉 = ( 1
iσd±),

where d± = sgn(−αk±
x + by). For a weak magnetic field

FIG. 2. (a) Scattering amplitudes calculated from Eq. (5) for α =
12 meV nm and β = 0 as a function of angle formed by the magnetic
field vector and the x axis θ . (b) Same as in (a), but for a fixed angle
θ = π as a function of Rashba constant α. In (a) and (b) the solid lines
show the result for B = 5 T and the black dashed lines for B = 7.2 T.

|αk±
x | > |by |, we get d± = ∓, and the orthogonality relation

〈kd ′
σ ′ |kd

σ 〉 = 1
2 (1 + σσ ′dd ′) gives zero for the backscattering

to states with the same spin projection on the polarization
vector (p), 〈k−

σ |k+
σ 〉 = 0 [see Fig. 2(a)]. On the other hand, for

high magnetic field |αk±
x | < |by |, we get d± = 1, and the spin

projection on the polarization vector is conserved 〈k−
σ |k+

σ 〉 = 1.
In Fig. 2(b) we show the evolution of the scattering

amplitudes for the orientation of magnetic field fixed at θ = π ,
as a function of the Rashba constant α. Then, in Eq. (2)
ky = 0 and by = 0. The scattering amplitudes cross near
α ≈ 8 meV nm [Fig. 2(b)]. In this point the Zeeman energy EB

is equal to the SO coupling energy ESO = αkx . For αkx = EB

the off-diagonal terms are −bxσx + (EB + by)σy , for which
the scattering amplitudes (5) for eigenvectors (4) simplify to
|aσσ ′ |2 = 1

2 for any σσ ′ and for any in-plane orientation of B
vector. The EB ≈ ESO case is presented in Fig. 2(a) where
the black dashed lines show the scattering amplitudes for
B = 7.2 T, which shows that almost complete spin mixing
|aσσ ′ |2 ≈ 1

2 is present for any angle.
Let us now include the Dresselhaus SO coupling. The 2D

Dresselhaus constant is given by β = β3D〈k2
z 〉 = β3D

π2

d2 , where
β3D is the bulk constant and d is the width of the 2DEG
confinement in the growth direction. We consider β values
from 0 to 	α [9,10]. The cubic Dresselhaus interaction is
neglected as a small effect [10]. In the absence of the B field,
for the electron incident along the x direction, i.e., ky = 0,
the polarization direction is p = (−βkx, − αkx) with the

energy eigenvalues Eσ = �
2k2

x

2meff
+ σkx

√
α2 + β2. As a result,

the Dresselhaus interaction sets the direction of the electron
spin polarization to θ = arctan( α

β
) and increases the effective

SO coupling constant to γeff =
√

α2 + β2.

The above conclusions can also be reached by a direct
inspection of the off-diagonal part of Hamiltonian (2) for the
electron transport along the x direction (ky = 0, kx = kF ). The
effective magnetic field in Eq. (2) is (−βkF + bx, − αkF +
by). Both components of the effective magnetic field vanish
for

tan θ = by

bx

= α

β
(6)

and

EB = 1
2gμBB =

√
b2

x + b2
y = kF γeff ≡ ESO. (7)
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FIG. 3. (a) Reduction of QPC (Fig. 1) conductance G̃ = M e2

h
−

G from its quantized value for M subbands (EF = 20 meV) passing
across the QPC for a potential defect at a distance of 1500 nm
from the QPC as a function of the in-plane magnetic field value
and orientation. The results were calculated numerically within the
Landauer approach. The QPC gate potential modeled with analytical
formulas for a rectangle gate adapted from Ref. [36]. (b) Charge
density at the entrance to the QPC calculated with a simple model of
Eq. (5) for the QPC at 1500 nm from the scatterer. (c) Same as (b) but
with Rashba and Dresselhaus SO interactions present. (d) Same as (c)
but with the source at 2000 nm from the scatterer. The values of the
coupling constants α and β are given in meV nm units. The vertical
dashed line in (b)–(d) indicates B = 7.2 T for which the Zeeman
energy is equal to the SO coupling energy, EB = ESO (see text). The
horizontal dashed line shows the angle arctan α

β
.

For illustration we calculated the electron density at the
source position, including the incident and backscattered
waves using Eqs. (1) and (5) as ρ = ∑

σ 〈�σ |�σ 〉. The
backscattering probability is roughly proportional to the elec-
tron density at the QPC [35]. The electron density is depicted in
Figs. 3(b)–3(d) for α = 12 meV nm, β = 0; and Figs. 3(c) and
3(d) α = 9 meV nm, β = 8 meV nm. These values produce
the same effective coupling constant γeff ≈ 12 meV nm.

The results of Figs. 3(b)–3(d) contain a distinct circular
pattern in the θ,B plane. The position of the center is given by
Eqs. (6) and (7). The angular coordinate of the center allows
one to determine the ratio of the Rashba and Dresselhaus
constants and the SO coupling constant γeff can be read out
from the position of the center of the pattern on the B scale,
provided that the Fermi wave vector is known. In the presence
of SO coupling and/or the Zeeman effect kF is spin dependent
[21]. However, for the EB = ESO the off-diagonal terms of the
Hamiltonian (2) vanish and the Fermi wave vector is directly

related to the Fermi energy EF = �
2k2

F

2meff
, which for the adopted

parameters gives kF = 0.156/nm. For γeff = 12 meV nm one
obtains ESO = 1.875 meV, which coincides with EB for B =
7.2 T [see Figs. 3(b)–3(d)].

In Fig. 3(c) one notices a reduction of the period with respect
to Fig. 3(b) with the source-impurity distance increased to 2000
nm from 1500 nm. The period of the oscillations �B is �

(c)
B ≈

1.5 T in Fig. 3(c), and �
(b)
B ≈ 2.0 T in Fig. 3(b). The ratio

�
(c)
B /�

(b)
B ≈ 3/4, is exactly an inverse of the source-impurity

ds-i distance ratio.
Coherent quantum transport calculations. With the intu-

itions gained by the simple analytical model we can pass to
the calculations of the coherent transport using a standard
numerical method [37], based on the quantum transmitting
boundary solution of the quantum scattering equation at the
Fermi level implemented in the finite difference approach,

which produces the electron transfer probability used in the
Landauer formula for conductance summed over the subbands
of the channels far from the scattering area. Zero temperature is
assumed. For the numerical calculations we consider a channel
extended along the x direction, hence kx in Eq. (2) remains a
quantum number characterizing the asymptotic states of the
channel. Within the computational box the wave vector is
replaced by an operator k = (kx,ky) = −i∇.

We consider a QPC/defect system of Fig. 1. The results
presented in Fig. 3(a) indicate a reduction of the conductance
below the maximal value M e2

h
for M subbands passing across

the QPC. The central position of the pattern nearly coincides
with the one of Fig. 3(c). The local extremum of conductance
in the center of the pattern indicates the value and orientation
of the external magnetic field which lifts the SO interaction
effects. The angular position of Fig. 3(c) is exactly reproduced,
and the amplitude of the field is B = 6.5 T instead of
B = 7.2 T. The deviation in the location of the central point
in the B axis in Fig. 3(a) results from the confinement in the
QPC channel which is not included in our free particle model
(see below).

The effects described so far dealt with interference of the
electron waves between the source (QPC) and the defect. In
fact, the role of the source can be played by any scattering
center, and the extraction of the SO coupling constant requires
a presence of two or more scatterers to allow for formation
of standing waves described in the previous section. For the
rest of the Rapid Communication we consider a channel of
homogeneous width W , which carries M transport modes
at the Fermi level. In Fig. 4(d) we present the conductance
results for a clean channel of width W = 180 nm and the
computational box of length L = 1.6 μm. A smooth potential
barrier is introduced across the channel with height 10 meV
and width 200 nm. Depending on the orientation of the
magnetic field, the number of transport modes varies between
M = 17 and M = 18. The simulation was performed for
α = 9 meV nm and β = 8 meV nm as in Figs. 3(b) and 3(c).
The conductance plot possesses an extremum precisely at the
angle of θ = arctan 9

8 . The magnetic field of the extremum is
slightly shifted to lower values than 7.2 T—which is a result
of the reduction of kx within the potential barrier. The lack of
conductance oscillations that were observed above in Fig. 3
results from a small barrier length (ds-i = 200 nm).

The oscillations reappear when one replaces the barrier
by a random disorder due to the random nonmagnetic and
spin-diagonal potential fluctuations. The fluctuations simulate
inhomogeneity of the doping of the potential barrier which
provides the charge to the 2DEG. In 2DEG in III-V’s due to
the spatial separation of the impurities of the 2DEG, the defects
do not introduce any significant contribution to the spin-orbit
interaction (see Ref. [38] and the Supplemental Material [39]).
Figure 4(c) displays the conductance for the channel of the
same width and length. The potential, displayed in Fig. 4(a),
is locally varied within the range of (−0.5EF ,0.5EF ). The
perturbation induces a multitude of scattering events—the
local density of states at the Fermi level for B = 0 is displayed
in Fig. 4(b). In spite of the complexity of the density of states,
the angular shift is still arctan (9/8) ≈ π/4. The shift of the G

extremum along the B scale with respect to 7.2 T is detectable,
but small and of an opposite sign than in Fig. 4(d). This shift is
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FIG. 4. (a) Potential disorder in simulated quantum wire. (b)
Local density of states obtained for the channel from (a) at B = 0.
(c) Conductance through the wire in (a) as a function of magnetic
field amplitude B and direction angle. (d) Same as (c) but with
one potential barrier in the middle of the channel instead of random
disorder. (e) Same as (c) but for the wire with length L = 4000 nm
and W = 800 nm. (f) Same as (e) but for SO couplings twice smaller,
γeff = 6 meV nm. For comparison of (c) and (e), see Fig. 3(b). The
values M show the number of nondegenerated modes in the channel.

related to the fact that for a finite width channel ky is an operator
that mixes the subbands. The wave vector ky is a well-defined
quantum number for electrons moving in an unconfined space.
The small, but detectable, effects of a finite W disappear
completely for a wider channel, which is illustrated in Fig. 4(e)
for W = 0.8 μm. Here, the number of conducting bands

varies between 80 and 81. The local extremum of conductance
appears exactly at the positions indicated in the previous
section. Note, that although the number of subbands changes
by 1 in Figs. 4(c) and 4(e), the variation of conductance is as
large as ∼3e2/h in Fig. 4(c) and ∼6e2/h in Fig. 4(e). The
conductance variation in Fig. 3(a) was very small; since the
defect was far away from the QPC, for the disordered channel
it is no longer the case. For completeness, in Fig. 4(f) we
presented calculations for twice smaller SO coupling constants
α = 4.5 meV nm, β = 4 meV nm, and γeff = 6 meV nm. The
position of the maximal G along the B scale is consistently
reduced from 7.2 T to 3.6 T, and the orientation of the magnetic
field vector corresponding to the extremum is unchanged.

Summary. We have shown that the in-plane magnetic field
can lift the off-diagonal terms of the transport Hamiltonian for
the two-dimensional electron gas that results from the Zeeman
effect and the SO interaction. The effect appears only for a
value and orientation of the external magnetic field which
excludes the spin mixing effects that accompany the backscat-
tering in the presence of the SO coupling. In consequence,
the conductance maps for a system containing two or more
scatterers—intentionally introduced—or inherently present in
a disordered sample exhibit a pronounced extremum as a
function of the magnetic field modulus B and orientation θ .
An experimental value of B, for which the Zeeman energy is
equal to the SO coupling energy, should allow one to extract
the effective SO coupling constant including both the Rashba
and Dresselhaus terms, and the orientation field indicates the
relative contributions of both. The results indicate the ratio
of the Dresselhaus and Rashba constants is exactly resolved
by the procedure, and the amplitude of the magnetic field,
hence the effective SO constant varies only within 10% from
the exact value depending on the channel width and disorder
profile.
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