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The self-consistent GW� method satisfies the Ward-Takahashi identity (i.e., the gauge invariance or the
local charge continuity) for arbitrary energy (ω) and momentum (q) transfers. Its self-consistent first-principles
treatment of the vertex � = �v or �W is possible to first order in the bare (v) or dynamically screened (W )
Coulomb interaction. It is developed within a linearized scheme and combined with the Bethe-Salpeter equation
(BSE) to accurately calculate photoabsorption spectra (PAS) and photoemission (or inverse photoemission)
spectra (PES) simultaneously. The method greatly improves the PAS of Na, Na3, B2, and C2H2 calculated using
the standard one-shot G0W0 + BSE method that results in significantly redshifted PAS by 0.8–3.1 eV, although
the PES are well reproduced already in G0W0.
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The quasiparticle (QP) equation method in many-body
perturbation theory [1] is powerful for simultaneously deter-
mining the photoemission (or inverse photoemission) spectra
(PES), i.e., QP energy spectra, and QP wave functions of target
materials from first principles. In this method, we expand
the skeleton diagrams, i.e., the diagrams drawn with the full
Green’s function lines, for the self-energy in terms of the
electron-electron Coulomb interaction v, and solve the QP
equation, which is equivalent to the Dyson equation, as a
self-consistent (SC) eigenvalue problem. The Hartree-Fock
(HF) approach provides the first-order approximation. In
Hedin’s set of equations [1], known as the GW� approach,
the exchange-correlation part of the self-energy is expressed
as �xc

σ = iGσ W�σ , where Gσ and �σ are the one-particle
Green’s function and the vertex function (σ is the spin index),
respectively, and W = (1 − vP )−1v represents the dynami-
cally screened Coulomb interaction (P = −i

∑
σ Gσ Gσ�σ is

the polarization function). The simplest approximation is to
assume �σ = 1, which is called the GW approximation.

It is well known that the SC GW method usually overesti-
mates the energy gap [2,3], while the one-shot GW approach
(G0W0) using the Kohn-Sham (KS) wave functions and
eigenvalues [4] results in a better energy gap. However, quite
recently, it has been pointed out that the photoabsorption
spectra (PAS) for small molecules obtained by solving the
Bethe-Salpeter equation (BSE) [5,6] using G0W0 are often
significantly redshifted by about 1 eV [7,8]. The use of the
Heyd-Scuseria-Ernzerhof (HSE) functional or the SC GW
calculation (hereafter referred to as GW) improves the results,
but they are not perfect [8,9]. For a spin-polarized sodium
atom (Na) and trimer (Na3), G0W0 + BSE is extremely bad,
although the G0W0 QP energies are reasonably good [10]. The
calculated and experimental [11] optical gaps for Na are 1.32
and 2.10 eV, respectively, and the calculated and experimental
[12] PAS for Na3 are shown in Fig. 1. These calculated results
are far off from the experimental data [13].

*ohno@ynu.ac.jp

Here, we develop a GW� method, which involves a SC
treatment of the vertex � = �v or �W and satisfies the
Ward-Takahashi identity [14–16] to first order in v or W , and
show that it remarkably improves the QP energies and the
optical gaps of spin-polarized Na, Na3,B2, and closed-shell
C2H2. In this method, the SC one-particle Green’s function,
i.e., SC QP energies and wave functions, are obtained in the
GW� scheme. We use the all-electron mixed basis approach,
in which single particle wave functions are expanded with
both plane waves (PWs) and atomic orbitals (AOs) [10,17].
This Rapid Communication reports a first-principles SC GW�

calculation and its application to the BSE, which has never
been performed so far except for some recent reports of
non-SC GW calculations including the second-order screened
exchange by Ren et al. [18] and the GW�1 method (i.e.,
GWTC−TC + single-shot vertex correction for the self-energy
with the static approximation) by Grüneis et al. [19]. All these
authors used the KS, HF, or HSE wave functions throughout
the calculations.

In the present SC GW� + BSE calculations, we will show
the following: (1) Highly reliable PES and PAS are simulta-
neously obtained for every system. (2) All calculated results
deviate by 0.1 eV at most from the available experimental data.
(3) The failure of the G0W0 + BSE calculations for the PAS
is caused by the use of localized KS wave functions above the
vacuum level (VL), and hence accurate QP wave functions are
required.

Except for the G0W0 and GW calculations, we use our
recently developed technique [17] to linearize the energy
dependence of the self-energy �σ (εn) to avoid the non-
Hermitian problem caused by the energy dependence and to
perform fully SC calculations. The important point of this
technique is that �σ = lim(ω,q)→0 �σ (r1,r2,q; μ + ω,μ) =
1 − ∂�σ (ω)/∂ω|ω=μ is the vertex function in the limit
(ω,q) → 0. This is the Ward-Takahashi identity in the same
limit. [Here, μ = (εHOMO + εLUMO)/2.] The QP equation
is given by Hσ |nσ 〉 = εnσ�σ |nσ 〉 with Hσ = T̂ + v̂nuc +
�σ (μ) + μ(�σ − 1). Then, with the lower triangular matrix
Lσ in the Choleski decomposition [20] �σ = LσL†

σ , the
renormalized QP states are given by |ñσ 〉 = L†

σ |nσ 〉, which
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FIG. 1. Photoabsorption spectra of Na3 calculated using G0W0,
GW, LGW, LGW�v , and LGW�W . Experimental data are taken from
Ref. [12].

satisfy H̃σ |ñσ 〉 = εnσ |ñσ 〉 with H̃σ = L−1
σ HσL−1†

σ as well
as the orthogonality and completeness conditions. Moreover,
the renormalized Green’s function is given by G̃σ (ω) =
L†

σGσ (ω)Lσ ; see Ref. [17] for more details.
Theorem 1. In this linearized formulation, we can addition-

ally introduce the vertex part �vσ (r1,r2,q; ε + ω,ε) to first
order in v [Fig. 2(a)], which we call the LGW�v method, or
�Wσ (r1,r2,q; ε + ω,ε) to first order in W [Fig. 2(b)], which

FIG. 2. Skeleton diagrams of the first-order vertex part (a) �vσ

and (b) �Wσ ; (c), (d), and (e) are the polarization part P ; (f), (g), and
(h) are the exchange-correlation part of the self-energy �xc

σ ; (i), (j),
and (k) are the interaction kernel Ĩ σ1σ ′

1 of the BSE. (c), (f), and (i)
are usual diagrams without vertex correction; (a), (d), (g), (j), and
(k) involve the first-order vertex in v (dotted line); (b), (e), and (h)
involve the first-order vertex in W (wavy line).

FIG. 3. Flow chart of the SC LGW�W method. W and �W are
replaced by v and �v in the SC LGW�v method.

we call the LGW�W method. These vertex parts depend fully
on the energy and momentum transfers ω and q, respectively,
at the center (cross in those figures). See the Supplemental
Material (SM) [21] for the proof of this theorem.

Then, the polarization function and the self-energy include
the skeleton diagrams as shown in Figs. 2(c)–2(h). Figures 2(c)
and 2(f) represent the diagrams without a vertex; Figs. 2(d)
and 2(g) and Figs. 2(e) and 2(h) are the corresponding vertex
corrections to first order in v (� = �v) and W (� = �W ),
respectively. Figure 3 illustrates the flow chart of the SC
LGW�W method. The forms of the polarization function
[Fig. 2(e)] and self-energy [Fig. 2(h)] are given in the SM.

Theorem 2. The present LGW�v and LGW�W methods
satisfy the generalized Ward-Takahashi identity for arbitrary
ω and q, which is equivalent to the gauge invariance (continuity
equation for the electron density) [14–16], up to first order in
v and W , respectively. The proof is given in the SM.

Recently, the BSE has been solved in the one-shot second-
order approach [22]. In what follows, we formulate the BSE
for the LGW�v approach to spin-polarized systems. In the
linearized formulation, we use the renormalized two-particle
Green’s function S̃

σ1σ2

σ ′
1σ

′
2
(x1,x

′
1; x2,x

′
2) = Lσ ′

1
L†

σ1
S

σ1σ2

σ ′
1σ

′
2
(x1,x

′
1;

x2,x
′
2)Lσ2L

†
σ ′

2
instead of S

σ1σ2

σ ′
1σ

′
2
(x1,x

′
1; x2,x

′
2), defined by sub-

tracting δσ1σ
′
1
δσ2σ

′
2
G(x1,x

′
1)G(x2,x

′
2) from the original two-

particle Green’s function. It satisfies the BSE

S̃
σ1σ2

σ ′
1σ

′
2
(x1,x

′
1; x2,x

′
2)

= G̃σ1 (x1,x2)G̃σ ′
1
(x ′

2,x
′
1)δσ ′

1σ
′
2
δσ1σ2

+
∑
σ4σ

′
4

∫
G̃σ1 (x1,x3)

δ�σ3σ
′
3
(x3,x

′
3)

δG̃σ4σ
′
4
(x4,x

′
4)

G̃σ ′
1
(x ′

3,x
′
1)(Lσ ′

4
L†

σ4
)−1

× S̃
σ4σ2

σ ′
4σ

′
2
(x4,x

′
4; x2,x

′
2)d4x3d

4x ′
3d

4x4d
4x ′

4, (1)

where we used the fact that the original kernel



σ3σ4

σ ′
3σ

′
4
(x3,x

′
3; x4,x

′
4) is given by



σ3σ4

σ ′
3σ

′
4
= δ�σ3σ

′
3

δGσ4σ
′
4

= δG̃σ3σ
′
3

δGσ3σ
′
3

δ�σ3σ
′
3

δG̃σ4σ
′
4

= Lσ3

δ�σ3σ
′
3

δG̃σ4σ
′
4

L
†
σ ′

3
. (2)

The functional derivative δ�σ3σ
′
3
(x3,x

′
3)/δG̃σ4σ

′
4
(x4,x

′
4) is

given by −iδσ3σ
′
3
δσ4σ

′
4
δ(x3 − x ′

3)δ(x4 − x ′
4)v(r3 − r4) +

δσ3σ4δσ ′
3σ

′
4
Ĩ σ3σ

′
3 (x3,x

′
3; x4,x

′
4). Ignoring all terms having

functional derivatives of W [G̃] with respect to G̃ as usual [23],
we have Ĩ σ3σ

′
3 (x3,x

′
3; x4,x

′
4) expressed as i{δ(x3 − x4)δ(x ′

3 −
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x ′
4)W (x3,x

′
3) + δ(x3 − x4)[W�vσ ′

3
](x ′

3,x
′
4; x3) + δ(x ′

3 − x ′
4)

[W�vσ3 ](x3,x4; x ′
3)}, which is represented by the skeleton

diagrams of Figs. 2(i), 2(j), and 2(k). Here the last
two terms [Figs. 2(j) and 2(k)] come from vertex
correction to first order in v. From these equations,
we find that �σ = LσL†

σ should be multiplied to the
polarization function as P̃ σ

GG′ = P σ
GG′�σ [17]. Then, putting

V
σ1σ2
νμdc = ∑

G〈ν̃σ1|eiG·r |μ̃σ1〉〈dσ2|e−iG·r ′ |cσ2〉v(G) and using

the expression for Ĩ
σ1σ

′
1

νμdc (ω) given in the SM, we obtain the
matrix eigenvalue equation of the BSE [23],

(εc′σ1 − εd ′σ ′
1
− �r )Ar

d ′σ ′
1,c

′σ1

= −
occ∑
d

emp∑
c

{
δσ1σ

′
1

∑
σ2

V
σ1σ2

c′d ′dcA
r
dσ2,cσ2

− Ĩ
σ1σ

′
1

c′d ′dc(�r )Ar
dσ ′

1,cσ1

}
, (3)

in the Tamm-Dancoff approximation [23]. We also use this
formulation in the LGW�W approach, because the resulting
error is on the order of 0.01 eV.

For spin-polarized systems, we have to generally solve the
eigenvalue equation (3) in the ↑↑-↓↓ subspace,(

h↑↑ + v↑↑ v↑↓

v↓↑ h↓↓ + v↓↓

)(
Ar

↑↑
Ar

↓↓

)
= 0, (4)

where we put hσ1σ
′
1 = (εc′σ1 − εd ′σ ′

1
− �r )δcc′δdd ′ − Ĩ

σ1σ
′
1

c′d ′dc and
vσ1σ2 = V

σ1σ2
c′d ′dc.

We used a face-centered-cubic unit cell with edge length of
14 Å for Na and B2, 15 Å for C2H2, and 18 Å for Na3. All
of the core and (truncated) valence numerical AOs are used
together with the PWs. The atomic geometries are optimized
with DMol3 [24,25]. The bond lengths are 3.23, 3.23, and
5.01 Å for Na3, 1.61 Å for B2, 1.20 Å for C≡C, and 1.06 Å
for C-H at the Becke three-parameter Lee-Yang-Parr (B3LYP)
functional level. We used 3.61 (50.76) Ry, 1.23 (30.7) Ry,
6.82 (38.1) Ry, and 11.1 (44.2) Ry cutoff energies for PWs
(for �x

σ ), respectively, for Na, Na3, B2, and C2H2. The cutoff
energy for P and �c

σ is the same as that for PWs for Na and
Na3, and is set at 4.57 Ry for B2 and 3.98 Ry for C2H2. We
used the full ω integration [26] and the projection operator for
the GW-related calculations, but used the plasmon-pole model
[27] and 600 empty states for the �-related calculations as well
as for solving the BSE in order to save the computational cost.

The resulting ionization potential (IP), electron affinity
(EA), and optical gap E

opt
g (corresponding to the first dipole-

allowed transition) of Na, Na3, B2, and C2H2 calculated
using the G0W0, GW, LGW, and LGW�W methods are listed
in Tables I and II, together with the results of previous
multireference single and double configuration interaction
(MRDCI) calculations [28–34], configuration interaction sin-
gle and double (CID) calculations [35], and the corresponding
experimental values [11,12,36–45]. For Na and Na3, the results
of LGW�v are also listed in Table I. Note that EA of C2H2

is negative and not shown in Table II. Let us first compare
the results of IP and EA with the experimental values. G0W0

results in reasonable IP and EA (IP of C2H2 is similar to those
obtained in Ref. [46]) while GW has a tendency to overestimate

TABLE I. Ionization potential (IP), electron affinity (EA), and
optical gap Eopt

g (corresponding to 2S → 2
P and 2

B2 → 2
A1 transi-

tions) of Na and Na3 (in units of eV).

Na Na3

IP EA Eopt
g IP EA Eopt

g

G0W0 5.15 0.41 1.32 4.10 1.14 0.53
GW 5.40 0.33 2.23 4.64 0.51 1.91
LGW 5.23 0.42 2.18 4.48 0.66 1.92
LGW�v 5.01 0.60 2.00 4.08 1.04 1.57
LGW�W 5.12 0.58 2.16 4.04 1.15 1.60
MRDCI 4.97a 0.44b 1.98b 3.76c 1.07/1.17b 1.61b

Expt. 5.14d 0.55e 2.10f 3.97g 1.02/1.16h 1.65i

aReference [28].
bReference [29].
cReference [30].
dReference [36].
eReference [37].
fReference [11].
gReference [38].
hReference [39].
iReference [12].

IP and underestimate EA, although the experimental error bar
is large for B2. LGW improves GW [17], but is not perfect. In
contrast, LGW�v and LGW�W almost perfectly improve both
IP and EA. For LGW�W , the deviation from the experimental
values is 0.03 eV for Na, 0.07 eV for Na3, and 0.01 eV
for C2H2. Compared with previous MRDCI calculations,
[28–32,34] our results are closer to the experimental IP and
EA for almost all cases.

Next we compare the results of the optical gap E
opt
g

with experiments. G0W0 significantly underestimates the
experimental E

opt
g for all systems and GW overestimates

TABLE II. IP, EA, and Eopt
g (corresponding to the 3�−

g → 3�−
u

transition) of B2, and IP and Eopt
g (corresponding to the 1�+

g → 1u

transition) of C2H2 (in units of eV).

B2 C2H2

IP EA Eopt
g IP Eopt

g

G0W0 9.21 2.18 2.44 11.05 5.01
GW 9.97 1.76 3.94 11.65 8.39
LGW 9.79 1.94 3.75 11.44 8.23
LGW�W 9.87 1.91 3.84 11.48 8.25
MRDCI 9.48a 2.0b 3.85c 11.21d (8.06)e

Expt. 10.3±0.6f 1.8±0.4g 3.79h 11.49i 8.16j

aReference [31].
bReference [32].
cCASSCF/MRDCI: Ref. [33].
dReference [34].
eCID: Ref. [35].
fReference [40].
gReference [41].
hReferences [42,43].
iReference [44].
jReference [45].
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FIG. 4. QP (or KS) energy spectra of Na3 calculated using the
LDA, G0W0, and LGW�W . Unphysically bound KS wave functions at
the 21st spin-down level and the 23rd spin-up level are also depicted.
Red balls are Na atoms, while yellow and blue indicate the positive
and negative regions of the wave function, respectively.

the experimental E
opt
g . The deviation from the experimental

values is 0.8–3.1 eV for G0W0 and 0.13–0.26 eV for GW.
LGW improves the results except for Na3; the deviation from
the experimental values is 0.08 eV for Na, 0.27 eV for Na3,
0.04 eV for B2, and 0.07 eV for C2H2. In contrast, LGW�v and
LGW�W give excellent E

opt
g for all systems. For LGW�W , the

difference between the theoretical and experimental values is
less than 0.06 eV for Na and Na3, 0.05 eV for B2, and 0.09 eV
for C2H2. Compared with the experimental values, our E

opt
g is

better than the previous MRDCI results for Na [29], and CID
results for C2H2 [35], or comparable to (differs only by 0.01 eV
from) previous MRDCI results for Na3 [29], and complete-
active-space self-consistent-field (CASSCF)/MRDCI results
for B2 [33]. The LGW�W + BSE photoabsorption peak, i.e.,
the exciton wave function, mainly consists of the following
QP hole and electron level pair(s): 6(s ↑) → 7(p↑) for Na,
17(s ↑) → 19(p↑) for Na3, 4(σ ↑) → 7(π ↑) and 3(σ ↓) →
6(π ↓) for B2, and 7(π ) → 8(σ ) for C2H2. Figure 1 shows
the PAS of Na3 calculated using G0W0, GW, LGW, LGW�v ,
and LGW�W and the experimental spectra [12]. The overall
spectral shapes are similar in all these methods except for
G0W0, although the peak positions are almost constantly
shifted by an amount indicated by the difference between
the calculated and experimental E

opt
g ’s in Table I, and the

peak heights somewhat change after the inclusion of the
vertex correction. Obviously, GW and LGW overestimate
the peak positions, while LGW�v and LGW�W give good
peak positions except for P4 and P7. (LGW�v has a small
peak at 2.9 eV, which may correspond to P7.) The remaining
discrepancy between the theory and experiment in the case of
Na3 may be mainly attributed to the neglect of isomers and the
atomic vibration effects.

Figure 4 shows the QP (or KS) energy spectra calculated
using the local density approximation (LDA), G0W0, and

LGW�W . The experimental IP and EA are indicated by IP
and EA on the right vertical border line. Now we discuss the
reason why the PAS calculated using G0W0 + BSE are so poor.
For Na3, the number of up-spin (down-spin) levels below the
VL is 26 (26) for LDA, 20 (19) for GW, 20 (20) for LGW, and
22 (20) for LGW�v and LGW�W . We confirmed that the KS
and QP wave functions very much resemble each other for the
first 20 levels below the VL. However, they are quite different
for the QP levels above the VL. For example, the spin-up and
spin-down KS wave functions at the 21st down-spin level and
the 23rd up-spin level below the VL are depicted in Fig. 4.
They are localized. However, the corresponding G0W0 QP
energies are both above the VL and the full QP wave functions
are not localized. In our G0W0 + BSE calculation of Na3, the
first small photoabsorption peak around 0.35 eV (see the top
panel in Fig. 1) mainly consists of the QP hole and electron
level pairs between 16 → 17 (19.8%), 21 (8.7%) for down
spin, and 17 → 18 (21.8%), 20 (31.4%), 21 (9.0%), 23 (2.3%)
for up spin. The unphysically bound KS wave functions of
the 21↓ and 23↑ levels contribute to the BSE matrix elements,
leading to unphysically large electron-hole interactions and, in
turn, to the optical transitions with very small photoabsorption
energies. This gives the wrong spectra for G0W0 in Fig. 1. It has
already been known for more than 50 years [47] that the BSE
should be solved with the fully SC Green’s function in order to
satisfy the conservation laws as well as the longitudinal f -sum
rule. However, the QP gap and the optical gap obtained using
the GW method are blueshifted because they do not satisfy the
generalized Ward-Takahashi identity. To improve the result, it
is necessary to use the GW� method.

In this Rapid Communication, we presented the G0W0,
GW, LGW, and LGW�W (LGW�v) calculations for Na, Na3,
B2, and C2H2. If the G0W0 QP energies are used together
with the KS wave functions, there is inconsistency between
the QP energies and wave functions at some levels above the
VL. Moreover, the GW and LGW methods are not sufficient
because they overestimate both the QP energy gap and optical
gap. To obtain better gap estimates, it is necessary to perform
the GW� calculation. We showed that the LGW�W method
produces consistent and the best PES and PAS among all of
the methods used in this study. The self-consistent treatment
of � is required to obtain consistently good results for both
PES and PAS, and its computational cost scales as O(N2M3),
where N and M are the numbers of basis functions and empty
states, respectively, if we use the plasmon-pole model. The
present method is applicable to vertical transitions but cannot
handle relaxation processes.

This work was supported by the Grant-in-Aid for Scientific
Research B (Grant No. 25289218) from JSPS and also
by the Grant-in-Aid for Scientific Research on Innovative
Areas (Grant No. 25104713) from MEXT. We are also
indebted to the HPCI promoted by MEXT for the use of the
supercomputer SR16000 at Hokkaido University and at IMR,
Tohoku University (Project IDs No. hp140214, No. hp150231,
No. hp160072, and No. hp160234).
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