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Uncovering the hidden quantum critical point in disordered massless Dirac and Weyl semimetals
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We study the properties of the avoided or hidden quantum critical point (AQCP) in three-dimensional Dirac
and Weyl semimetals in the presence of short range potential disorder. By computing the averaged density of
states (along with its second and fourth derivative at zero energy) with the kernel polynomial method (KPM) we
systematically tune the effective length scale that eventually rounds out the transition and leads to an AQCP. We
show how to determine the strength of the avoidance, establishing that it is not controlled by the long wavelength
component of the disorder. Instead, the amount of avoidance can be adjusted via the tails of the probability
distribution of the local random potentials. A binary distribution with no tails produces much less avoidance than
a Gaussian distribution. We introduce a double Gaussian distribution to interpolate between these two limits. As
a result we are able to make the length scale of the avoidance sufficiently large so that we can accurately study
the properties of the underlying transition (that is eventually rounded out), unambiguously identify its location,
and provide accurate estimates of the critical exponents ν = 1.01 ± 0.06 and z = 1.50 ± 0.04. We also show
that the KPM expansion order introduces an effective length scale that can also round out the transition in the
scaling regime near the AQCP.
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Zero temperature quantum phase transitions have become
a central pillar to understand various experiments in insulating
magnets [1], two-dimensional electron gases [2], disordered
superconductors [3], and strongly correlated electron sys-
tems [4,5]. For the case of itinerant quantum phase transitions
the large accumulation of entropy, near the quantum critical
point (QCP) in the finite temperature “quantum critical fan” [6]
[see Fig. 1(a)], tends to nucleate other broken symmetry
phases (e.g., superconductivity [7]) that hides the QCP and
rounds out the critical divergences. In most cases there are
numerous ordering channels, and most theories are either
biased or have little to no control on whether the transition
will become avoided. As a result, identifying a class of models
where the avoided QCP is intrinsic to the problem and the
avoidance can be studied and controlled in an exact unbiased
fashion is a fundamental question of interest. As we will show,
disordered noninteracting Dirac and Weyl semimetals are a
quintessential example.

Recently, there has been a great deal of activity in trying
to understand weakly-interacting three-dimensional Dirac and
Weyl semimetals. These materials (such as Cd3As2 [8–10],
Na3Bi [11,12], TaAs [13,14], and NbAs [15]) have recently
been discovered through angle resolved photoemission spec-
troscopy guided by first principles calculations [16–18]. One
main theoretical focus has been the effect of short ranged
potential disorder [19–37] and the proposed (perturbatively ac-
cessible) QCP separating a semimetal (SM) and diffusive metal
(DM) phase which is driven by tuning the strength of disorder.
However, due to nonperturbative effects of rare regions [24],
that gives rise to weakly dispersing quasilocalized eigenstates
with nonzero level repulsion, this transition is rounded out and
becomes an avoided quantum critical point (AQCP) [38]. As
a result, the validity of each previous numerical study of the
critical properties of this transition are now called into doubt
since these did not take into account rare region effects and

the hidden character of the QCP. Interestingly, this AQCP is
remarkably similar to the QCP becoming hidden via other or-
dered phases with various numerical studies [21,22,25,29–34]
observing (at best) only a glimpse of the underlying quantum
critical properties. But, in this case there is only one phase,
the DM [with a density of states (DOS) ρ(E) ≈ const. for
E < E∗] at zero energy (or temperature) see Fig. 1(a), with
crossovers at nonzero energy to the SM regime [ρ(E) ≈ E2 for
ESM > E > E∗] and a quantum critical (QC) regime [ρ(E) ≈
|E| for � > E > E∗] that is anchored by the AQCP. Since
these models are noninteracting, we can study the AQCP in a
numerically exact fashion without the complications of strong
correlations. Thus disordered Dirac and Weyl SMs serve as an
excellent system to gain fundamental insights into AQCPs and
how zero temperature transitions can show universal scaling
before becoming rounded out. We show explicitly in the
current work how the hidden quantum critical properties can
be uncovered through numerical simulations by systematically
suppressing the nonperturbative (and noncritical) effects.

In this Rapid Communication we establish how to tune
the effective crossover energy scale (E∗) associated with
nonperturbative effects that hide the QCP, so that we can
make E∗ small enough at the AQCP to observe the quantum
critical scaling regime over a significant energy range [see
Fig. 1(a)]. There are two properties of the disorder distribution
that we separately control and study: (i) the long wavelength
component of the disorder, and (ii) the probability to generate
a rare eigenstate [see Fig. 1(b)]. We find that suppressing the
long-wavelength component of Gaussian disorder does not
affect the strength of the avoidance, whereas controlling the
unbound tails of the disorder distribution can systematically
tune E∗. Using a binary disorder distribution greatly reduces
the probability to generate rare events [24]. This makes the
crossover energy scale E∗ sufficiently small so that we can
precisely study the AQCP and determine accurate estimates of
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FIG. 1. (a) Schematic crossover diagram as a function of energy
(E) and disorder (W ) with each relevant regime: SM, QC fan, and
DM. For E > � the low energy description in terms of a linear
dispersion no longer applies and ESM is set by the distance to the
AQCP. Varying the disorder distribution (σ ) controls the strength of
the nonperturbative effects that round out the QCP and (as we will
show) tunes the crossover energy E∗ increasing the size of the QC
regime. (b) Schematic of a disorder profile for a rare configuration and
a rare low-|E| eigenstate that is power law quasilocalized like ∼1/r2

in the DM regime at small W/t . For σ = 1 the unbounded tails of the
distribution leads to large local fluctuations of the potential on one or
two sites that can nonperturbatively produce these rare eigenstates.
σ → 0 suppresses the probability to generate rare eigenstates; here
we expect such a rare state will be produced by a large cluster of sites
all with the same sign of W .

its critical exponents (ν = 1.01 ± 0.06 and z = 1.50 ± 0.04).
However, we are never able to completely uncover the AQCP,
as it is always rounded out eventually by the effects of rare
regions [38].

We focus on a three-dimensional tight binding Weyl
Hamiltonian in the presence of short range potential disorder,
which is defined as [25,30,38]

H =
∑

r,μ=x,y,z

1

2
(itμψ†

r σμψr+μ̂ + H.c.) +
∑

r

V (r)ψ†
r ψr. (1)

ψr is a two component spinor, σμ are the Pauli operators, and
the onsite random disorder potential is V (r). We consider a
cubic lattice of linear size L with twisted periodic boundary
conditions on each sample that gives tμ = t exp (iθμ/L) for
a twist θμ in the μ direction. We consider taking various
different choices for the probability distribution for the
disorder potential P [V ] in order to tune the length scale
associated with the AQCP, see Fig. 1. We consider five choices
for P [V ]: a Gaussian with zero mean and variance W 2,
a “colored” Gaussian with a variance in momentum space
〈|V (k)|2〉 = W 2 ∑

μ sin(kμ)2, which gives rise to correlated
disorder with a vanishing long wavelength component, a box
distribution V (r) ∈ [−W̃/2,W̃/2] (variance W 2 = W̃ 2/12), a
binary distribution which takes values ±W with equal prob-
ability, and a double Gaussian distribution that interpolates
between the Gaussian and binary distributions. For the double
Gaussian we sample two Gaussians with equal probability
that have means ±W

√
1 − σ 2 and have a standard deviation

Wσ , thus the full distribution always has a variance W 2. This
allows us to tune between Gaussian and binary distributions,
i.e., σ → 1 if it is a single Gaussian and σ → 0 if it is the
binary distribution.

We use the kernel polynomial method [39] (KPM) to
compute the average DOS

ρ(E) = 1

NRV

NR∑

r

2V∑

i

δ(E − Ei(r)), (2)

where V = L3 is the volume, NR is the number of disorder
realizations, and Ei(r) is the ith eigenvalue of the rth disorder
realization. We average over NR = 1000 disorder realizations
that each have a random twist vector θ = (θx,θy,θz) (θi is
sampled uniformly between [0,π ]). We take odd L and average
over the twist to minimize finite size effects at all E [38]. We
evaluate the stochastic trace within KPM using normalized
random vectors [40]. The KPM expands the DOS in terms
of Chebyshev polynomials to an order NC and we use the
Jackson kernel to filter out Gibbs oscillations. The Jackson
kernel broadens each Dirac-delta function in the DOS into
a Gaussian [39] of width πD/NC (for a bandwidth D). As
we will show, this broadening introduces an effective length
scale into the problem that is controlled by the expansion
order NC , which can also round out the transition when
the strength of the avoidance is sufficiently weak (after
suppressing nonperturbative effects).

Tuning the strength of avoidance: To characterize the
strength of avoidance we expand the DOS (using the sym-
metries of the model) at low energies under the assumption
that it is always analytic,

ρ(E) = ρ(0) + 1

2
ρ ′′(0)E2 + 1

4!
ρ(4)(0)E4 + · · · , (3)

where we extract the second and fourth derivative (with respect
to energy) of the DOS by directly computing them from the
KPM expansion (we can also estimate them from fitting ρ(E)
at low E [41]). If the DOS were ever to become nonanalytic
ρ ′′(0) and ρ(4)(0) would both diverge. Here, however, since
the QCP is always rounded out; both derivatives have a peak
centered very close to the location of the AQCP (see Fig. 2).
Thus, we can use the magnitude of the peak in ρ ′′(0) and ρ(4)(0)
to measure the strength of the avoidance.

For the Gaussian distribution the effects of rare regions
are significant and the QCP is strongly avoided [38]. By
changing P [V ] we make the probability to generate rare events

FIG. 2. ρ ′′(0) for each P [V ] we consider as a function W for a
fixed expansion order NC = 1024 and a linear system size L = 31.
(a) The comparison of the Gaussian distribution with shifting the
potential Ṽ (r) = V (r) − ∑

r V (r)/L3, and a colored Gaussian that
vanishes in the long-wavelength limit. (b) Tuning the tails of the
double Gaussian via σ (and also the box distribution is shown), we
find the size of the peak monotonically increases from the Gaussian
case (which is small and broad) to a very large and sharp peak for
binary disorder. The inset shows ρ(4)(0) (see [41]).
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substantially lower, which decreases E∗ near the AQCP, and
the model can thus access a larger quantum critical regime
before the transition is rounded out. As shown in Fig. 2,
the size and sharpness of the peaks of ρ ′′(0) and ρ(4)(0) are
controlled by P [V ]. For Gaussian disorder we find a very
broad and weak peak, whose size is unaffected by removing
the leading perturbative finite size effect or by suppressing the
long wavelength components of the disorder, see Fig. 2(a).
Thus for these cases the transition is very strongly avoided. In
contrast, as shown in Fig. 2(b), for binary disorder we find a
very large and sharp peak, while the double Gaussian naturally
interpolates between these two, and the box distribution falls
in between σ = 0.5 and 0.25. The peak in ρ(4)(0) is sharp and
large (∼106) for binary disorder. We also find that the location
of the AQCP (estimated from the peak location Wp) is tied to
the strength of avoidance: For the binary case it is the largest
and for Gaussian it is the smallest, with a monotonic behavior
between the two. Stronger nonperturbative rare region effects
destabilize the semimetal moving the avoided critical point to
smaller W while making the transition more avoided.

In our numerical work, the transition can be rounded by
finite-L and by finite-NC effects, in addition to the intrinsic
rounding due to nonperturbative rare region effects. For each
finite NC we go to large enough L to suppress the finite-size
effects [42], as illustrated in Fig. 3(a). However, as shown
in Figs. 3(b) and 3(c) [41] after we suppress the finite-size
effects there still remains a strong dependence on NC . The
broadening of the individual eigenenergies has introduced a
finite length scale into the problem, which in conjunction
with the nonperturbative effects is rounding out the transition.
Therefore, in order to access the regime where the transition is

FIG. 3. (a) ρ ′′(0) and (inset) ρ(4)(0) for binary disorder and NC =
1024 as a function of W for various L. The results are L independent
for L � 25 and rounded out by finite-L effects. ρ(4)(0) is similar
to ρ ′′(0) but has a very large magnitude ∼106. (b) ρ ′′(0) for binary
disorder as a function of W for various NC (L has been chosen large
enough to suppress finite-L rounding), the peak is not saturated for
these NC . (Inset) Extrapolating the peak location Wp vs 1/NC using
the scaling form Wc − Wp ∼ N

−1/νz

C yielding Wc/t = 0.86 ± 0.01
and νz = 1.5. (c) ρ ′′(0) as a function of W for various NC and L for
σ = 0.5. (d) The peak value of ρ ′′(0) versus NC for various P [V ];
other than σ = 0 we can completely saturate the peak.

only rounded due to the nonperturbative effects, we need the
results to be independent of NC , which requires larger NC as
the transition becomes less avoided. As shown in Fig. 3(d), the
peak height has a very strong dependence on NC . For σ = 1
the peak is saturated at NC = 2048; for σ = 0.5, we find the
peak is sharper, saturating at NC = 4096; for box disorder the
peak is saturated at NC = 8192, and for σ = 0 the peak is very
sharp and perhaps still not fully saturated at a large expansion
order of NC = 16384. Thus for σ = 0 the transition is very
weakly avoided as the evolution of the peak with NC is quite
dramatic rising to a value of ∼550 and ρ(4)(0) ∼ 107 [41]. In
each case after removing all of the systematic effects of L

and NC the divergence of ρ ′′(0) is always rounded out and
therefore we conclude that the nonperturbative rare region
effects always induce an AQCP albeit for σ = 0 this occurs at
a very large length scale. Lastly we have established that the
cross ver energy scale E∗ = E∗(σ ) decreases as σ decreases
and thus the avoidance is suppressed.

Properties of the AQCP: Since for σ = 0 the QCP is very
weakly avoided we are in an excellent position to use this
distribution to study quantitatively the critical properties of
the AQCP, which could not be as accurately done for the other
P [V ] due to the stronger avoidance. For sufficiently weak
disorder the DOS is exponentially small, i.e., for W � Wc,
ρ(0) ∼ a(W ) exp[−b(W )], where a and b depend on P [V ]
[e.g., b(W ) ∼ (t/W )2 for σ = 1]. Since ρ(0) �= 0 for W �= 0
it cannot be used as an order parameter to estimate the location
of the AQCP (Wc). Therefore, we estimate Wc from the
location of the peak in ρ ′′(0) as a function of NC using the
scaling form Wp − Wc ∼ N

−1/νz

C ; for σ = 0 we find Wc/t =
0.86± 0.01 and νz = 1.5 [see inset of Fig. 3(b)]. For this model
there will be a range of E and W where we are far enough
away from the AQCP that the avoidance is negligible, so we
can study the critical behavior of the nonavoided QCP, that is
actually “hidden” if we try to look closer. As a function of NC

at Wc the scaling form in the regime where the rounding due
to avoidance is negligible is ρ(E,Wc,NC) ∼ N

1−d/z

C g(ENC),
generalizing the scaling function to incorporate the rounding
due to finite NC . For a fixed NC we have ρ(E) ∼ |E|(d/z)−1

for E∗(NC) < E < � [see inset of Fig. 4(a)]. For W = Wc,
L = 181, and NC = 16384 (where ρ(E) is independent of L

and NC) we fit ρ(E) to a power law form (with no offset), which
yields z = 1.50 ± 0.04 over a full decade. We then collapse
the data for various NC’s in Fig. 4(a), which is well satisfied
over two decades of NCE for z = 1.50 ± 0.05. However, for
NC > 1024 at the lowest |E| the effects of avoidance are
present and the data deviate from this finite-NC scaling
form, establishing the AQCP behavior in the thermodynamic
limit.

At E = 0 we find the following power law forms [21] for
the DOS and its even derivatives

|ρ(2n)(0)| ∼ |δ|−(z(2n+1)−d)ν, (4)

where δ ≡ (W − Wc)/Wc is the distance to the AQCP, as
shown in Fig. 4(b). For ρ(0) this holds for W > Wc and
we find (d − z)ν = 1.51 ± 0.09, thus ν = 1.01 ± 0.06. The
divergence of ρ ′′(0) has the same power law for W < Wc and
W > Wc, however since the statistical errors in the calculation
of ρ ′′(0) are larger for W > Wc [43] we only fit the power
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FIG. 4. Critical properties of the AQCP for binary disorder. (a)
Scaling in E and NC at the AQCP Wc/t = 0.86 with an excellent
scaling collapse in the QC regime for over two decades using z = 1.5.
(Inset) Dependence of ρ(E) on NC at Wc with a fit to the largest NC

to the power law form E(d/z)−1 yields z = 1.50 ± 0.04. (b) Scaling
in the vicinity of the AQCP in terms of E and δ for L = 71 and
NC = 2048 for W < Wc (c) and W > Wc (d). Dashed lines in (c) and
(d) are the crossover functions from the one loop RG analysis [30]
(after adjusting the two bare RG scales), our data collapses onto one
common curve in agreement with the crossover functions for two
decades (c) and four decades (d).

law to ρ ′′(0) for W < Wc; we find 3(z − 1)ν = 1.53 ± 0.12,
yielding ν = 1.02 ± 0.08. It is interesting that the extracted
numerical values of z and ν are quite close to the one-
loop renormalization group (RG) prediction [20] and deviate
strongly from the two loop RG estimates [23,36], which is
perhaps understandable since the RG expansion parameter
(= 1) is not small here. We emphasize that our estimate
of the critical exponents are much more reliable than all
earlier calculations in the literature which ignored the intrinsic
rounding due to nonperturbative effects. For σ = 0 we find
an entire decade of power law dependence (opposed to half a
decade for box disorder [30]). We stress that these data deviate
from the power law closer to the AQCP because the correlation
length (ξ ∼ |δ|−ν) is saturated by the rare region length scale
(ξ−z ≈ E∗); this rounds out the transition and is neither a finite
L nor finite NC effect.

Far enough from the AQCP and at large enough NC , the
expected quantum critical scaling is

ρ(E,W ) ∼ |δ|ν(d−z)f±(E|δ|−νz). (5)

f±(x) are scaling functions for positive and negative δ. This
scaling breaks down due to the nonperturbative effects when
we go too close to the avoided transition or for W < Wc too
close to E = 0. To compare with Eq. (5), ideally we would
use a large enough NC so that the rounding of the transition
is purely due to the intrinsic avoidance, but the required NC

is too computationally demanding to get a complete set of
such scaling data. Thus we use NC = 2048 and L = 71 for
σ = 0, despite some of the apparent avoidance, is actually due
to NC ; as long as we use data far enough from the AQCP, this
still allows us to study the underlying critical behavior. The
scaling collapse in E and δ is quite rich: As shown in Fig. 4(c)
for W < Wc we find three regimes in Eδ−νz. The DM regime
E � E∗ where the data “rolls” off the scaling function for all
these W , the intermediate SM regime E∗ < E < ESM where
the data collapses for 0.7 � W/t � 0.82, and the QC regime
with ESM < E < � where all of the data collapses onto one
common curve. For W > Wc [Fig. 4(d)] there are two scaling
regimes, the QC regime at intermediate δ−νzE/t and the DM
regime at low energies. We find the collapsed data in the QC
regime matches the universal crossover functions [30] obtained
from a one-loop RG analysis [20].

In conclusion, we have shown how to systematically control
the nonperturbative effects and their associated finite (but
large) length scale that always rounds out the transition. By
making the probability to generate rare regions sufficiently low
we have made the transition very weakly avoided, allowing an
accurate study of the critical properties of the “hidden” QCP.
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